
ORIGINAL RESEARCH
published: 12 November 2018
doi: 10.3389/fpls.2018.01550

Frontiers in Plant Science | www.frontiersin.org 1 November 2018 | Volume 9 | Article 1550

Reviewed by:

Jedrzej Jakub Szymanski,

Leibniz-Institut für Pflanzengenetik und

Kulturpflanzenforschung (IPK),

Germany

Alessandra Salvioli,

Università degli Studi di Torino, Italy

*Correspondence:

Manijeh Mohammadi-Dehcheshmeh

manijeh.mohammadidehcheshmeh@

adelaide.edu.au

Specialty section:

This article was submitted to

Plant Systems and Synthetic Biology,

a section of the journal

Frontiers in Plant Science

Received: 16 April 2018

Accepted: 03 October 2018

Published: 12 November 2018

Citation:

Mohammadi-Dehcheshmeh M,

Niazi A, Ebrahimi M, Tahsili M,

Nurollah Z, Ebrahimi Khaksefid R,

Ebrahimi M and Ebrahimie E (2018)

Unified Transcriptomic Signature of

Arbuscular Mycorrhiza Colonization in

Roots of Medicago truncatula by

Integration of Machine Learning,

Promoter Analysis, and Direct Merging

Meta-Analysis.

Front. Plant Sci. 9:1550.

doi: 10.3389/fpls.2018.01550

Unified Transcriptomic Signature of
Arbuscular Mycorrhiza Colonization
in Roots of Medicago truncatula by
Integration of Machine Learning,
Promoter Analysis, and Direct
Merging Meta-Analysis

Manijeh Mohammadi-Dehcheshmeh 1,2*, Ali Niazi 2, Mansour Ebrahimi 3,

Mohammadreza Tahsili 3, Zahra Nurollah 4, Reyhaneh Ebrahimi Khaksefid 4,5,

Mahdi Ebrahimi 6 and Esmaeil Ebrahimie 1,2,7,8,9

1 Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of

Adelaide, Adelaide, SA, Australia, 2 Institute of Biotechnology, Shiraz University, Shiraz, Iran, 3Department of Biology,

University of Qom, Qom, Iran, 4Department of Biotechnology, Shahrekord University, Shahrekord, Iran, 5 School of Agriculture

Food and Wine, Department of Plant Science, The University of Adelaide, Adelaide, SA, Australia, 6Max-Planck-Institute for

Informatics, Saarbrucken, Germany, 7 Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia, 8Division

of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences,

University of South Australia, Adelaide, SA, Australia, 9 Faculty of Science and Engineering, School of Biological Sciences,

Flinders University, Adelaide, SA, Australia

Plant root symbiosis with Arbuscular mycorrhizal (AM) fungi improves uptake of water and

mineral nutrients, improving plant development under stressful conditions. Unraveling

the unified transcriptomic signature of a successful colonization provides a better

understanding of symbiosis. We developed a framework for finding the transcriptomic

signature of Arbuscular mycorrhiza colonization and its regulating transcription factors in

roots of Medicago truncatula. Expression profiles of roots in response to AM species

were collected from four separate studies and were combined by direct merging

meta-analysis. Batch effect, themajor concern in expressionmeta-analysis, was reduced

by three normalization steps: Robust Multi-array Average algorithm, Z-standardization,

and quartiling normalization. Then, expression profile of 33685 genes in 18 root samples

ofMedicago as numerical features, as well as study ID and Arbuscular mycorrhiza type as

categorical features, were mined by seven models: RELIEF, UNCERTAINTY, GINI INDEX,

Chi Squared, RULE, INFO GAIN, and INFO GAIN RATIO. In total, 73 genes selected

by machine learning models were up-regulated in response to AM (Z-value difference

> 0.5). Feature weighting models also documented that this signature is independent

from study (batch) effect. The AM inoculation signature obtained was able to differentiate

efficiently between AM inoculated and non-inoculated samples. The AP2 domain class

transcription factor, GRAS family transcription factors, and cyclin-dependent kinase were

among the highly expressed meta-genes identified in the signature. We found high

correspondence between the AM colonization signature obtained in this study and

independent RNA-seq experiments on AM colonization, validating the repeatability of

the colonization signature. Promoter analysis of upregulated genes in the transcriptomic
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signature led to the key regulators of AM colonization, including the essential transcription

factors for endosymbiosis establishment and development such as NF-YA factors. The

approach developed in this study offers three distinct novel features: (I) it improves

direct merging meta-analysis by integrating supervised machine learning models and

normalization steps to reduce study-specific batch effects; (II) seven attribute weighting

models assessed the suitability of each gene for the transcriptomic signature which

contributes to robustness of the signature (III) the approach is justifiable, easy to apply,

and useful in practice. Our integrative framework of meta-analysis, promoter analysis,

and machine learning provides a foundation to reveal the transcriptomic signature and

regulatory circuits governing Arbuscular mycorrhizal symbiosis and is transferable to the

other biological settings.

Keywords: machine learning, meta-analysis, regulatory mechanism, symbiosis, systems biology

INTRODUCTION

Arbuscular mycorrhiza (AM) fungal symbiosis expands the
surface area of plant root, allowing for better absorption of
substances such as phosphorus, ammonium, and zinc from
soil. This symbiosis supports plant development, particularly
under nutrient deficiency and other stressful conditions. Specific
genetic programs activated by AM inoculation lead to successful
microsymbiont colonization and functional symbiosis. Most
studies in AM symbiosis are limited to the investigation of a
single gene or a cluster of similar genes. Genes such as DMI1,
DMI2, NFP, NSP1 (Oláh et al., 2005), MtBcp1 (Hohnjec et al.,
2005), ENOD11 (Genre et al., 2005), MIG1 (Heck et al., 2016),
RAM1 (Rich et al., 2017), nfr1, nfr5, lys11 (Rasmussen et al.,
2016), and NIN (Guillotin et al., 2016) are reported to play roles
in the formation of mycorrhizal symbiosis.

The regulatory mechanisms underpinning AM symbiosis in
plants are poorly understood. The GRAS transcription factor
family contains the best known regulators of AM symbiosis.
The function of ATA/RAM1, a member of this family, in
reprogramming AM symbiosis has been established (Rich et al.,
2017). It has been suggested that RAM1 controls the expression
of many essential AM-related genes such as STR, STR2, RAM2,
and PT4 (Rich et al., 2017). Another member of the GRAS
transcription factor family,MIG1, interacts withDELLA1 and the
root GA signaling pathway to regulate cortical cell expansion in
developing AM symbiosis (Heck et al., 2016). The role of small
RNAs, such asmiR171 in establishment of AM symbiosis has also
been investigated recently (Couzigou et al., 2017).

Successful AM colonization is vital to establish symbiosis and
improve phosphorous and water uptake. The AM type, as well
as many, environmental and genetic factors affect the intensity,
timing, and the success of AM colonization. Cross-comparison
of successful colonization between different AM types in a range
of experiments by meta-analysis provides the opportunity to
move toward understanding the genetic basis of endosymbiosis
(Tromas et al., 2012), the conserved transcriptomic program
that can reflect successful AM colonization and establishment.
Those genes can unravel the functional groups that may play
key roles in the establishment and functioning of the three AM

symbioses. The transcriptomic signature of AM colonization
can be further employed for: (1) increasing AM efficiency
by application of chemical and environmental treatments, (2)
monitoring successful/unsuccessful AM colonization, and (3)
finding the upstream regulatory mechanisms and regulators
such as transcription factors and microRNAs that control AM
colonization and symbiosis.

However, no attempt has been made to identify the unified
transcriptomic signature of AM symbiosis. The term of “Unified
transcriptomic signature” or “biosignature” refers to robust
transcript responses that can monitor the successful AM
colonization. Overlaps observed in transcriptional profiles of
Medicago truncatula roots inoculated with two different Glomus
fungi (Hohnjec et al., 2005) support the possibility of achieving a
unified transcriptomic signature of AM colonization to provide
an insight into the genetic program activated during AM.

The emerging field of meta-analysis may solve the issue
of merging different experiments to identify a unique
biosignature of Medicago root response to AM inoculation.
Cross-species meta-analysis of transcriptomic data has
received increased attention in recent years due to the
advances in pattern discovery and meta-analysis models
(Tromas et al., 2012; Farhadian et al., 2018b). Meta-analysis
enables the combination of expression datasets and is
highly advantageous in increasing statistical power to detect
biological phenomena from studies with a restricted sample
size (Johnson et al., 2007).

The biosignature of AM inoculation obtained may be utilized
to further computational systems biology analysis, such as
promoter analysis, common regulator discovery, and common
target discovery, in order to lead us to the key regulators and
targets of the AM symbiosis pathway.

Different statistical methods have been developed for meta-
analysis of expression data such as combining effect sizes,
combining ranks, combining p-values, vote counting, and direct
merging (DM) (Borenstein et al., 2009, 2010; Campain and Yang,
2010; Chang et al., 2013; Sharifi et al., 2018).Withinmeta-analysis
approaches, DM analysis of expression data or genomic variant
data of different studies is an attractive meta-analysis method
to increase statistical power and lead to a robust transcriptomic
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or genomic signature (Tseng et al., 2012). DM, as a meta-
analysis approach, has been used in web-tools such as INMEX
(Xia et al., 2013, 2015), A-MADMAN (Bisognin et al., 2009),
WGAS (Dai et al., 2007), and GEOSS (Bisognin et al., 2009) for
integrative meta-analysis of expression data. DM-based meta-
analysis provides the possibility of data collection from different
experiments, even when a treatment or a control is missing in
one or more experiments. This contributes to a higher statistical
power of meta-analysis.

The major concern about the DM approach is heterogenicity
across studies. The success of the DM approach depends
on normalization across studies to reduce non-biological
experimental variation as well as biological variations unrelated
to treatment (also called batch effects or study effects) (Johnson
et al., 2007; Tseng et al., 2012). Collection of arrays from
similar platforms across all studies (mainly Affymetrix) and pre-
processing of the CEL expression files by model-based robust
multi-array (RMA) normalization (Irizarry et al., 2003) have
been suggested to decrease heterogenicity across all studies (Lee
et al., 2008; Sims et al., 2008; Tseng et al., 2012). However, it has
been debated that RMA is not strong enough to remove batch
effects (Guerra and Goldstein, 2009). To sufficiently reduce batch
effects for accurate DM, additional normalization techniques
such as empirical Bayes methods (Johnson et al., 2007), cross-
platform normalization (Shabalin et al., 2008), weighted distance
weighted discrimination (Qiao et al., 2010), enrichment-based
meta-analysis, and Ratio adjustment and calibration scheme
(Cheng et al., 2009) have been used.

Recent advances in application of supervised machine
learning models in transcriptomic studies have opened a new
venue to engage data mining models in decreasing batch effects
and integration of different studies (Pashaiasl et al., 2016a,b).
Supervised machine learning has brought new possibilities
to predictive studies (Bakhtiarizadeh et al., 2014a; Ebrahimi
et al., 2014; Zinati et al., 2014; Kargarfard et al., 2015;
Pashaiasl et al., 2016a,b). The capability to simultaneously
analyse both categorical and numerical features, power to
analyse large data, and various predictive algorithms with
diverse statistical backgrounds are distinguished features of
supervised machine learning models (Shekoofa et al., 2014;
Ebrahimi et al., 2015; Jamali et al., 2016). The possibility
to include the categorical variables in predictive models
can outstandingly decrease the heterogenicity across studies
as the batch effects (Shekoofa et al., 2014). For example,
in this study, the different experiments or types of AM
can be added as variables and analyzed in the predictive
model of the AM transcriptomic signature. This possibility
is highly limited in traditional multivariate or regression
models.

Due to the central role of colonization in establishing a
microsymbiont, we developed a framework for finding the
transcriptomic signature of successful AM colonization on roots
of Medicago truncatula by integration of meta-analysis and
machine learning (attribute weighting) models. Special attention
was paid to reducing the batch effects by utilizing normalization
methods and finding reliable gene candidates by machine
learning models. The genes discovered in the transcriptomic

signature were further used as the input of promoter analysis to
identify the transcription factors which regulate the signature.

METHODS

A flowchart of the integrative computational systems biological
approach employed in this study is presented in Figure 1.

Data Collection for Meta-Analysis
Studies on the AM transcriptome were identified in repositories
of high-throughput expression data such as NCBI GEO (https://
www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://www.
ebi.ac.uk/arrayexpress/). Supplementary Table 1 presents the list
of the studies mined and their platforms. The Microarray studies
belonged toMedicago truncatula A17.

The microarray experiment (Floss et al., 2017) was originally
designed to compare gene expression in roots of Medicago
truncatula A17 and Medicago truncatula mutant mtpt4-1
colonized with Gigaspora gigantea. We only used data from
three independent biological replicate samples of wild type plants
colonized with Gigaspora gigantea for meta-analysis. Samples
were harvested 18-day post planting and 11 days post contact
with the spores.

In the original experiment (Truong et al., 2015), the impact of
P limitation and both P and N limitation onMedicago truncatula
A17 root transcriptome in response to Rhizophagus irregularis
(previously known as Glomus intraradices) were investigated. In
the original experiment, the root transcriptome of both wild type
plants and a hypermycorrhizal mutant (B9) grown on limiting
or non-limiting phosphate were analyzed to determine which
processes were in the hypermycorrhizal mutant. Plants were
harvested 4 weeks after inoculation. From this experiment, only
data ofmycorrhizied wild type plants colonized withRhizophagus
irregularis and grown under P limitation were used for our
meta-analysis study.

In the experiment of Hogekamp et al. (2011), gene expression
profiles of roots of Medicago truncatula A17 in response to
colonization by two different arbuscular mycorrhizal fungi
(Rhizophagus irregularis and Glomus mosseae) as well as P
treatment with phosphate were studied. From this experiment,
data of two groups of samples were used formeta-analysis; data of
inoculated plants and non-inoculated plants under P limitation.
Non-inoculated plants were used as control.

CEL (expression intensity) files of these studies were
downloaded from NCBI GEO databank and their corresponding
library (CDF) and annotation (CSV) files from the Affymetrix
FTP repository by Affymetrix Expression Console Software
(version: 1.3.1.187, https://www.affymetrix.com/).

Reducing the Batch Effect in Direct
Merging (DM) Meta-Analysis
Reducing heterogenicity across studies (batch effects) is an
essential step for direct combination of expression data in
DE meta-analysis. Here, we developed an integrative approach
including multi-array (RMA) normalization within studies,
Z-standardization of expression values, and between studies
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FIGURE 1 | The flowchart of computational systems biological approach, developed in this study.

Frontiers in Plant Science | www.frontiersin.org 4 November 2018 | Volume 9 | Article 1550

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Mohammadi-Dehcheshmeh et al. Transcriptomic Signature of Arbuscular Mycorrhiza

quartiling/scaling normalization for reducing batch effects before
combining samples for supervised machine learning.

RMA Normalization of Samples in Each Study (Within

Study Normalization)
CEL files of Affymetrix arrays in each study were normalized
by an RMA algorithm (Irizarry et al., 2003) using Affymetrix
Expression Console Software (version: 1.3.1.187).

Z-Value Standardization
Z-standardization has been extensively used in meta-analysis
(Lipsey and Wilson, 2001; Kinoshita and Obayashi, 2009). RMA
normalized expression values of each samples were converted to
Z-value by subtracting the mean and dividing by the standard
deviation using Minitab 17 (www.minitab.com/).

Between Sample Normalization by Scaling and

Quartiling
To unify the RMA-normalized and Z-standardized values,
we used an additional normalization step. Here, we evaluated
the efficiency of the scaling and quartiling approach (Bolstad
et al., 2003) in reducing the batch effects, using CLC Genomics
Workbench (QIAGEN, https://www.qiagenbioinformatics.com/
products/clc-genomics-workbench/). Supplementary Figure 1

shows the pseudo code for scaling and quartiling approach. In
the Scaling approach (Supplementary Figure 1A), the sets of the
expression values for the samples were multiplied by a constant
so that the sets of normalized values for the samples have the
same ‘target’ value. The target (normalization) value was defined
as Median mean/Median median of all samples. The Mean and
Median are the types of normalization value of the samples to
ensure that they are equal for the normalized expression values.

In quartiling approach (Supplementary Figure 1B), the
empirical distributions of the sets of expression values for the
samples were used to calculate a common target distribution,
which was used to calculate normalized sets of expression values
for the samples. Here, the term of empirical distribution refers to
real (empirical) statistical characteristics of samples to be used for
calculation of normalization values.

Application of Seven Supervised Machine
Learning Models to Find the Medicago
Response Genes Distinguishing AM
Colonized From Non-colonized Symbiosis
At first, a cleaning step was performed and the probsets
with no gene annotation, or the ones which matched to
multiple genes were removed. Then, the expressions of
33685 probsets/genes in AM colonization and non-colonization
conditions, as numerical features, were mined by seven
attribute weighting (feature selection) models. Also, study
number and type of AM (Gigaspora gigantean, Rhizophagus
irregularis, Glomus mosseae, or none) were added to the
dataset as categorical features. Consequently, a dataset of
33687 (33685 gene probes + type of AM + Study ID)
and 18 records (samples), belonging to two categories of
AM-inoculated and non-inoculated (label variable), were used
for machine learning. The selected feature selection models

were able to analyse both categorical and numerical features
simultaneously. This provided the opportunity to assess batch
effects.

Feature selection models identify the most important genes
whose AM expression differs between colonized and non-
colonized symbioses. The resulting weights of each feature
selection model were normalized into the interval between
0 and 1 to provide the similar significance across various
feature selection models. Weights closer to 1 show a higher
relevance (importance) of a particular gene in distinguishing AM
inoculated from non-inoculated roots, according the employed
feature selection model. The genes determined to be important
by most of the feature selection models (intersection of weighting
methods with various statistical backgrounds) with cut-off ≥

0.95 were assumed to be the key distinguishing genes to form
the biosignature. The employed feature selection models were:
RELIEF, UNCERTAINTY, GINI INDEX, CHI SQUARED, RULE,
INFO GAIN RATIO, and INFO GAIN.

RELIEF is a classification attribute weighting model,
independent from Heuristic search and is considered to be
one of the most successful models for evaluating the quality
of features because of its simplicity and efficiency. RELIEF
is a robust noise-tolerant model able to feature interactions
where it employs the random selection of instances for weight
estimation (Kira and Rendell, 1992; Rosario and Thangadurai,
2015). RELIEF estimates the relevance of attributes (genes +

study number + AM type) according to how well their values
discriminate between the instances of the same and different
classes of label (AM colonization/non-colonization) that are near
each other (Ebrahimi et al., 2014).

UNCERTAINTY measures the weight of attributes (genes
+ study number + AM type) against the label attribute (AM
colonization/non-colonization) by estimating the symmetrical
uncertainty with respect to the class (Liang, 2011).

GINI INDEX attribute weighting algorithm evaluates the
weight of attributes (genes + study number + AM type)
by computing the Gini index of the class distribution (AM
colonization/non-colonization) and is ameasure of data impurity
(Lerman and Yitzhaki, 1984; Ebrahimi et al., 2011).

CHI SQUARED attribute weighting model evaluates the
importance of attributes (genes + study number + AM type)
with respect to the label attribute (AM colonization/non-
colonization) based on chi squared statistic (Ebrahimi et al.,
2014).

INFO GAIN model calculates the relevance of attributes
(genes + study number + AM type) by measuring the
Information Gain in class distribution (AM colonization/non-
colonization) (Guyon and Elisseeff, 2003). INFOGAIN is suitable
for datasets such as the expression of genes where attributes
cannot take a large number of distinct values.

INFO GAIN RATIO uses information Gain Ratio for feature
selection. This model is a modified version of INFO GAIN that
biases against considering attributes with a large number of
distinct values (Zinati et al., 2014).

RULE attribute weighting model estimates the weights of
attributes (genes + study number + AM type) with respect
to the label attribute (AM colonization/non-colonization) by
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constructing a single rule for each attribute and calculating the
error (Liu and Motoda, 2012).

Multivariate Analysis of the Developed AM
Transcriptomic Signature
After developing the AM transcriptomic signature by integration
of meta-analysis and machine learning, clustering based on
the Average Linkage method and Euclidean distance measure,
as well as cross validation based on Discriminant (modeling)
analysis, was used to evaluate the power of the emergent AM
transcriptomic signature for discrimination of AM-inoculated
from non-inoculated samples. For clustering, the expression
values of genes which formed the transcriptome biosignatures
were standardized. The multivariate analyses mentioned were
performed using Minitab 17 (www.minitab.com/).

Based on the paper published by Hogekamp et al. (2011), we
also investigated the fitness of some previously-reported markers
of the mycorrhizal symbiosis, including MtLec5 (legume lectin
family protein, MTR_5g031030), MtGIP1 (germin-like protein
9-2, MTR_4g052770), MtPt4 (high affinity inorganic phosphate
transporter, MTR_1g028600), and MtBcp1 (blue copper-like
protein, MTR_6g013420).

Gene Ontology (GO) Analysis
For a better understanding of the biological importance of
the identified AM transcriptomic signature, we used a Gene
Ontology (GO) approach that classifies genes and proteins
based on a controlled functional vocabulary in terms of
their Molecular Function, Biological Process, and Cellular
Component (Ashburner et al., 2000; Fruzangohar et al., 2013,
2017). Unregulated genes (73 in total) in the AM inoculation
transcriptomic signature with a Z-value difference of >0.5, were
announced important by most feature selection models that were
used as input of Ensembl Biomart and agriGO web applications
(Kinsella et al., 2011; Tian et al., 2017). Agrigo employs the Fisher
test and FDR correction for identifying the significance of GO
terms of input genes compared to whole genome GO distribution
(as a control/background).

Upstream Regulatory (Common TFs)
Analysis of AM Colonization Signature
Through Promoter Analysis of Highly
Expressed Meta-Genes in Response to AM
Inoculation
The developed transcriptomic signature of successful AM
colonization of roots of Medicago truncatula, obtained by
integration of meta-analysis and machine learning (attribute
weighting) models, was used for upstream regulatory analysis
through common regulator discovery, as previously described
(Deihimi et al., 2012; Babgohari et al., 2014; Bakhtiarizadeh
et al., 2014b; Shamloo-Dashtpagerdi et al., 2015). To this end,
the top 20 highly upregulated meta-genes, which responded
to AM inoculation, (Supplementary Table 5) were selected for
promoter analysis and common transcription factor discovery. In
other words, the genes revealed in the transcriptomic signature
were further used as the input of promoter analysis to find

the transcription factor matrix families which regulate the
transcriptome signature. Matrix families are groups of weight
matrices for the same or functionally similar transcription factors
(Cartharius et al., 2005).

To mine the binding of transcription factor families to the
promoter regions, we used the MatInspector webtool (Quandt
et al., 1995; Cartharius, 2005; Cartharius et al., 2005; Hosseinpour
et al., 2013) to calculate the following scores: Core similarity,
Matrix similarity, Model similarity, Free energy, Match rate,
and p-value for the common TFs. Core similarity describes
the similarity between core sequence of transcription factor
matrix family and the input sequence. Core sequence of a
transcription factor matrix family is the consecutive highest
conserved positions of the matrix. The maximum core similarity
of 1.0 is only reached when the highest conserved bases of a
matrix match exactly with the input sequence. Matrix similarity
is more important than the core similarity that takes into account
all bases over the whole matrix length. Matrix similarity of
1.0 reaches only if the candidate sequence corresponds to the
most conserved nucleotide at each position of the matrix. The
free energy (in kcal/mol) is a thermodynamic parameter for the
stability of secondary structures (hairpins) of matrix family with
input sequence. The higher the free energy, the more stable the
hairpin is. Thematch rate is the number of matching base pairs in
percent of the total element length. The p-value for the common
TFs is the probability to obtain an equal or greater number of
sequences with a match in a randomly drawn sample of the
same size as the input sequence set using Fisher’s exact test. The
lower this probability, the higher the importance of the observed
common transcription factors.

Based on p < 0.01 of the common TFs and Matrix similarity
>0.95, the enriched transcription factors on promoter regions
of AM colonization signature were recorded as “common
regulators.” In other words, transcription factors with the highest
number of possible interactions with the upregulated genes after
AM inoculation were assumed as the key regulators, called
common regulators of AM inoculation.

Independent Validation of Meta-Genes
Based Biosignature of AM Inoculation by
RNA-Seq
For independent validation of the AM colonization signature,
derived by integration of meta-analysis and supervised attribute
weighting models, independent samples of AM-inoculated
and non-inoculated from RNA-seq experiment with GEO
accession of GSE94266 (Garcia et al., 2017) were selected.
The original experiment was designed to determine the effect
of K+ on colonization of Medicago truncatula plants (Garcia
et al., 2017). Plants were co-cultured with the AM fungus
Rhizophagus irregularis under normal and low K+ regimes. We
used 3 AM-inoculated samples (GEO accessions: GSM2471944,
GSM2471945, and GSM2471946) and 3 AM non-inoculated
samples (GSM2471950, GSM2471951, and GSM2471951) of
this experiment under normal K+ regime to investigate
the transcriptome response of Medicago truncatula to AM
inoculation. Raw SRA files of the above-mentioned samples (100
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bp, single end, Illumina sequencing technology) were retrieved by
the DRAsearch tool (http://trace.ddbj.nig.ac.jp/DRASearch/) of
the Research Organization of Information and System National
Institute of Genetics (NIG), Japan. SRA files were transformed to
fastq files using SRA Toolkit software (NCBI).

The Medicago truncatula reference genome (Mt4. 0v2
Assembly), including fasta (genome sequence) and GFF3
(genome annotation) files, were downloaded from the
Medicago truncatula Genome Database (Young et al., 2011;
Krishnakumar et al., 2014). Quality control of reads was
analyzed using FastQC package (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Low quality reads and adaptor
sequences were trimmed by the CLC Genomics Workbench
11.0.1 (QIAGEN). Mapping of short reads to the reference
genome was performed using the CLC Genomics Workbench
using the following criteria: mismatch cost = 2, insertion
cost = 3, deletion cost = 3, length fraction = 80%, and
similarity fraction = 80%). Total counts of mapped reads
and RPKM (Reads Per Kilobase of transcript per Million
mapped reads) were recorded as expression measurements for
each gene. The differences related to the depth of sequencing
were corrected by per-sample library size normalization
using TMM (trimmed mean of M values) normalization
method via calculating and adjusting the effective libraries
sizes (Robinson and Oshlack, 2010).

To find the differentially expressed genes during AM-
colonization vs. non-colonization, Generalized Linear Model
(GLM) based on Negative Binomial distribution (Anders and
Huber, 2010) was used to fit curves to expression values without
assuming that the error on the values is normally distributed.
GLM-based p-values for differentially expressed genes were
calculated and corrected using FDR statistics and the CLC
Genomics Workbench tool. Also, fold changes were calculated
from the GLM to correct for differences in library size between
the samples and the effects of confounding factors.

To visualize the differentially-expressed genes by heatmap,
the following steps were performed: (1) log CPM (Counts
per Million) values were calculated for each gene. The CPM
calculation uses the effective library size, calculated by the TMM
normalization. (2) log CPM values were standardized across
samples for each gene by transforming to Z-values.

RESULTS

Selected Samples From Different Studies
for De Meta-Analysis
As the transcriptomic signature of AM may differ in different
tissues, we selected the transcriptome files of root samples
of Medicago truncatula A17. To reduce the variation between
experiments, theMedicagoGenomeArray of Affymetrix platform
with 61278 probset IDs was selected. Some samples in four
studies had these criteria (Table 1, Figure 1) (Hogekamp et al.,
2011; Bonneau et al., 2013; Truong et al., 2015; Floss et al.,
2017). These samples were roots colonized with Gigaspora
gigantean, Rhizophagus irregularis, or Glomus mosseaeas well as
non-inoculated ones.

Reducing Heterogenicity Between
Samples of Studies: A Framework
Integrating Within Study
RMA-Normalization, Z-Value
Transformation, and Within Samples
Scaling/Quartiling Normalization
Reducing heterogenicity across studies (batch effects) is an
essential step for direct combination of expression data in DE
meta-analysis. To reduce the batch effects for DM meta-analysis,
we developed an integrative approach of within-study RMA-
normalization, Z-value transformation, and within samples
scaling/quartiling normalization. Figures 2A–D compares the
heterogenicity between samples of different studies after different
normalization steps. As can be inferred from Figure 2, the
proposed framework of normalization and standardization
reduced the batch effects and facilitated direct merging of
samples from different experiments.

Meta-Genes Based Biosignature of AM
Inoculation Derived by Supervised
Attribute Weighting Models
To achieve the transcriptomic signature of AM inoculation, the
expression of 33685 genes in inoculated and non-inoculated
Medicago roots was mined by 7 feature selection models. Also,
the effects of Study (batch effect) and AM type were considered
by adding 2 additional polynomial attributes to the expression
dataset. The weights of genes as well as Study ID and AM type
are presented in Supplementary Table 2. The resulting weights
of each feature selection model were normalized into the interval
between 0 and 1. The genes announced important by most of the
feature selection models with the cut-off > 0.95 were assumed
as the key distinguishing genes to form the AM inoculation
biosignature.

In total, 681 genes received weight equal or higher than 0.95 by
most feature selection algorithms (5 out of 6 models), including
UNCERTAINTY, GINI INDEX, CHI SQUARED, RULE, INFO
GAINRATIO, and INFOGAIN. RELIEFwas not efficient in gene
selection and only gave a high weight to 2 genes out of 33685.
Within 681 genes, 180 genes had absolute Z-value difference
of 0.5 (> 0.5 or <−0.5) between AM inoculated and non-
inoculated (Supplementary Table 3). As presented in Table 2, 73
genes selected by feature selectionmodels were up-regulated with
a Z-value difference of > 0.5.

The 73 highly upregulated genes responding to AM
inoculation, as transcriptomic biosignature (Table 2),
contain important classes of genes including AP2 domain
class transcription factors (MTR_6g029180), GRAS family
transcription factors (MTR_1g069725 and MTR_2g089100),
cyclin-dependent kinase (MTR_1g098300), receptors [lectin
receptor kinase (MTR_8g068050), LRR receptor-like kinase
(MTR_8g044230), cysteine-rich RLK (MTR_3g064090), and
LRR receptor-like kinase (MTR_8g044230)], trypsin inhibitor
(MTR_5g045470), Nodule Cysteine-Rich secreted peptide
(MTR_3g065050), early nodulin 93 (MTR_4g113820), and
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TABLE 1 | The studies and samples used in this study for obtaining the unified transcriptomic signature of Arbuscular mycorrhiza in roots of Medicago truncatula.

Study Reference Sample GEO

accession

of

experiment

Strain of

arbuscular

mycorrhiza

Treatment Platform Type of

platform

GEO accession

of sample

1 PMID:

28392110

1 GSE95545 Gigaspora

gigantea

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM2516130

1 PMID:

28392110

2 GSE95545 Gigaspora

gigantea

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM2516131

1 PMID:

28392110

3 GSE95545 Gigaspora

gigantea

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM2516132

2 PMID: 23506613 4 GSE38847 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM950680

2 PMID: 23506613 5 GSE38847 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM950682

2 PMID: 23506613 6 GSE38847 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM950688

3 PMID: 24815324 7 GSE44102 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM1078957

3 PMID: 24815324 8 GSE44102 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM1078949

3 PMID: 24815324 9 GSE44102 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM1078951

4 PMID: 22034628 10 GSE32208 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM797965

4 PMID: 22034628 11 GSE32208 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM797966

4 PMID: 22034628 12 GSE32208 Rhizophagus

irregularis

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM797967

4 PMID: 22034628 13 GSE32208 Glomus

mosseae

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM797968

4 PMID: 22034628 14 GSE32208 Glomus

mosseae

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM797969

4 PMID: 22034628 15 GSE32208 Glomus

mosseae

AM

inoculated

Affymetrix Medicago

Genome

Array

GSM797970

4 PMID: 22034628 16 GSE32208 None Non-

inoculated

Control with

low P(20 miM)

Affymetrix Medicago

Genome

Array

GSM797971

4 PMID: 22034628 17 GSE32208 None Non-

inoculated

Control with

low P(20 miM)

Affymetrix Medicago

Genome

Array

GSM797972

4 PMID: 22034628 18 GSE32208 None Non-

inoculated

Control with

low P(20 miM)

Affymetrix Medicago

Genome

Array

GSM797973
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FIGURE 2 | Reducing heterogenicity between samples of studies for direct merging meta-analysis by a three-step normalization process. (A) Box plot of raw

expression. (B) Box plot of expression of RMA-normalized samples. (C) Box plot of expression of scaling after Z-standardization and RMA normalized samples. (D)

Box plot of expression of quartiling after Z-standardization and RMA normalized samples.

transporters (MTR_4g081190, MTR_4g081190, MTR_8g022270,
MTR_8g087710, and MTR_1g050550) (Table 3).

Within the previously-reported AM markers (Hogekamp
et al., 2011), MtGIP1 received high weights (values) in 6 out
of 7 of the employed attribute weighting models in order
to distinguish AM-inoculated from non-inoculated samples.
Figure 3 visualizes the high weights assigned to MtGIP1 by
UNCERTAINTY, GINI INDEX, CHI SQUARED, RULE, INFO
GAIN RATIO, and INFO GAIN models where weighting
closer to 1 shows a higher relevance (importance) of gene
according to the respective model. Also, Figure 3 presents the
normalized expression value of MtGIP1 in AM-inoculated and
non-inoculated samples. MtGIP1 can be assumed to be a reliable
AM colonization marker as its predictive powers is confirmed by
previous individual studies as well as the combinedmeta-analysis
performed here.

Supervised Machine Learning Models
Showed That the Batch Effect
(Heterogenicity Between Experiments) Is
Remarkably Reduced
The results of attribute weighting (feature selection)
models presented in Table 2 show that the effect of

Study ID (batch effect) is not significant in deriving the
signature of AM inoculation. Interestingly, while 180 genes
were selected by most of attribute weighting models to
discriminate AM-inoculated from non-inoculated roots
(Supplementary Table 3, Table 2), none of the models selected
Study ID.

In line with this finding, clustering analysis (Figure 4)
showed that the developed AM inoculation signature
is able to discriminate between AM-inoculated and
non-inoculated samples. As presented in Figure 4,
while the AM-inoculated samples had more than
50% similarity to transcriptomic signature genes, this
similarity decreased to 22% with AM non-inoculated
genes.

The Transcriptomic Signature of Am
Inoculation Identifies the Involvement of
Hydrolase Activity, Phosphorylation, Cell
Wall Organization, and Transport, Based on
Computational Systems Biology Analysis
Functional annotation of the transcriptomic signature
based on GO analysis showed that a majority of genes
in the transcriptomic signature encode membrane
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TABLE 3 | Description of highly upregulated genes in transcriptomic signature of Arbuscular mycorrhiza (AM) inoculation on Medicago roots.

Class of protein Subclass Member from upregulated transcriptomic

signature responding to AM inoculation

Transcription factor GRAS family transcription factor MTR_1g069725, MTR_2g089100

AP2 domain class transcription factor MTR_6g029180

Zinc finger, C3HC4 type (RING finger) protein MTR_5g026730

Phosphate synthase 1-deoxy-D-xylulose-5-phosphate synthase MTR_8g068265

Geranylgeranyl pyrophosphate synthase MTR_5g019460

Transporters Phospholipase A1 transporter MTR_4g087830

ABC transporter B family protein MTR_4g081190, MTR_8g022270

Major intrinsic protein (MIP) family transporter MTR_8g087710

MFS transporter MTR_1g050550

Peptide transporter MTR_3g112460, MTR_7g098230

Cyclin-dependent kinase Cyclin-dependent kinase MTR_1g098300

Receptors Cysteine-rich RLK (receptor-like kinase) protein MTR_3g064090

Lectin receptor kinase MTR_8g068050

LRR receptor-like kinase MTR_8g044230

Nodule proteins Nodule Cysteine-Rich (NCR) secreted peptide MTR_3g065050

Early nodulin 93 MTR_4g113820

Tyrosine kinase Tyrosine kinase family protein MTR_4g129010

Cytochrome Cytochrome P450 MTR_3g057970, MTR_3g057980,

MTR_3g058000, MTR_5g092150,

MTR_7g092620

Oxidase L-ascorbate oxidase MTR_3g078730, MTR_3g078730

Multi-copper oxidase-like protein MTR_4g075690

Serine carboxypeptidase Serine carboxypeptidase-like protein MTR_3g079620, MTR_7g080180

Biotin carboxyl carrier acetyl-CoA carboxylase MTR_6g015020

Inhibitor Inhibitor of trypsin and hageman factor-like protein MTR_5g045470

legume specific proteins Legume lectin beta domain protein MTR_5g031160

Cysteine-rich protein CAP, cysteine-rich secretory protein, antigen 5 MTR_2g010580

Tetrahydrodipicolinate

synthase

4-hydroxy-tetrahydrodipicolinate synthase MTR_8g036050

Hydrolase Glycoside hydrolase MTR_8g075330, MTR_8g075990

Epoxide hydrolase MTR_7g112963

Chitinase Chitinase MTR_6g079630

Alginate lyase Alginate lyase MTR_6g043700

Oxidoreductase 2OG-Fe(II) oxygenase family oxidoreductase MTR_2g068950

Glucan-protein synthase Alpha-1,4-glucan-protein synthase protein MTR_2g461970

Arginase Arginase family protein MTR_0088s0100

Beta-carotene isomerase Beta-carotene isomerase D27 MTR_1g471050

Carbonic anhydrase Carbonic anhydrase family protein MTR_6g006990

Glucosidase Glucan endo-1,3-beta-glucosidase MTR_4g076490

Glutathione S-transferase Glutathione S-transferase MTR_1g115195

Oxygen enhancer protein Oxygen-evolving enhancer protein MTR_8g005175

Pectinacetylesterase Pectinacetylesterase family protein MTR_8g072010

Polygalacturonase Polygalacturonase MTR_6g005630

Prolyl oligopeptidase Prolyl oligopeptidase family protein MTR_1g115230

Lipoxygenase Seed linoleate 9S-lipoxygenase MTR_8g018650

Transmembrane Seven transmembrane MLO family protein MTR_3g115940

Squalene synthase Squalene/phytoene synthase MTR_3g083630

Proteolysis Subtilisin-like serine protease MTR_4g102400

Syntaxin Syntaxin of plants 122 protein MTR_2g088700

The 73 up-regulated genes responding to AM inoculation were derived by meta-analysis and supervised machine learning analysis.
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FIGURE 3 | MtGIP1 received high weights (values) in 6 out of 7 of the employed attribute weighting models in order to distinguish Arbuscular mycorrhiza

(AM)-inoculated samples from non-inoculated ones, according to UNCERTAINTY, GINI INDEX, Chi Squared, RULE, INFO GAIN RATIO, and INFO GAIN models, where

weighting closer to 1 shows a higher relevance (importance) of gene according to the respected model. The normalized expression value of MtGIP1 in AM-inoculated

and non-inoculated samples are also presented.

proteins and are involved in cell wall organization,
membrane transport, proteolysis, and oxidoreductase
activities (Supplementary Table 4). GO distribution
of the transcriptomic signature is presented in
Figure 5.

The isoprenoid biosynthetic/metabolic process and the
lipid biosynthetic/metabolic process were statistically significant
(enriched) biological processess that can be activated by
upregulated genes of transcriptomic signature (p-value FDR <

0.05) (Figure 5A). Response to stimulus was another interesting
aspect enriched in the GO. In the cellular component GO
category, genes involved in response to AM colonization,
including cell wall and external encapsulating structure, showed
high enrichment (Figure 5B). In terms of Molecular Function,
transferase and hydrolase activities were significantly enriched
(Figure 5C) (Supplementary Table 4). In line with this finding,
analysis of transcriptome response of Medicago truncatula to
Glomus mosseae and Rhizophagus irregularis by Hohnjec et al.
(2005), showed that 201 plant genes were significantly co-induced
at least 2-fold. These genes were related to functions such
as nitrate, ion, and sugar transporter, and enzymes involved
in secondary metabolism, proteases, and Kunitz-type protease
inhibitors.

Overrepresented Transcription Factor
Binding Sites on Promoter Regions of
Upregulated AM Colonization
Transcriptomic Signature Enabled
Discovery of Potential Master Regulators
of AM Colonization
Transcription factors with enriched binding sites on
promoter regions of the transcriptomic signature are
candidates for “common master regulators” (Hosseinpour
et al., 2013; Mahdi et al., 2014; Alanazi and Ebrahimie,
2016; Alanazi et al., 2018). Transcription factor matrix
families with statistically enriched (p < 0.01) binding
sites in the highly upregulated meta-gene transcriptomic
signature (top 20 genes) of successful AM inoculation
is presented in Table 4 and Supplementary Table 6.
The common enriched TFs were: P$FLO2, P$SEF3,
P$TERE, P$ASRC, P$CARM, P$TOEF, P$SEF4, P$LREM,
P$MYBL, P$CAAT, P$GTBX, and P$WOXF (Table 4 and
Supplementary Table 6).

Promoter analysis of upregulated genes in the AM
colonization signature identified the P$FLO2 matrix family
as one of the master regulators due to the highest number
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FIGURE 4 | Evaluation of the developed transcriptomic signature of Arbuscular mycorrhiza (AM) inoculation in discrimination of inoculated from non-inoculated

samples. Clustering was performed based on Average Linkage method and Euclidean distance. Clustering based on the identified transcriptomic signature was able

to efficiently distinguish between AM inoculated from non-inoculated samples.

FIGURE 5 | Gene Ontology (GO) distribution of upregulated genes in transcriptomic signature of successful Arbuscular mycorrhiza (AM) colonization in roots of

Medicago truncatula. (A) GO at Biological process level, (B) GO at Cellular component level, (C) GO at Molecular function level.

of binding sites (71) within promoter regions of all the 20
highly upregulated genes (0.0000204538). The P$FLO2 family
contains transcription factors with AP2 domains and ethylene-
responsive element (ERE) binding. (Table 4, Figure 6A, and
Supplementary Table 6).

The P$CAAT matrix family that includes CCAAT binding
transcription factors, such as NF-YA, NF-YB, and LEC1, was
selected as another common TF (master regulator) with a low
p-value (p = 0.00316799) in common TF analysis. P$CAAT
matrix had binding sites on promoter regions in 19 out of the 20
upregulated genes in the AM inoculation signature with the total
number of 92 binding sites (Table 4, Supplementary Table 6, and
Figure 6B).

P$SEF3 (soybean embryo factor 3) and P$SEF4 (soybean
embryo factor 4), that contain SEF3 and SEF4 transcription
factors, had a significantly (p- value <0.01) high number of

interactions with the top 20 upregulated genes in the AM
colonization signature and these were tentatively identified
as potential key regulators of AM colonization (Table 4,
Supplementary Table 6). The P$TEREmatrix family that confers
transcription factor-specific expression was also enriched in
promoter regions of upregulated genes after AM colonization.

Another enriched transcription factor matrix family was
P$TOEF that contains the AP2 domain in its structure
and is involved in early activation/response (Table 4,
Supplementary Table 6). RAP2.7 and TOE2 are well-
known members of this matrix family. GO analysis
showed that this matrix family is involved in organ
morphogenesis.

A matrix family involved in response to fungal
colonization, P$ASRC, had 103 binding sites on
promoter regions of the top 20 upregulated genes in
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FIGURE 6 | P$CAAT (A) and P$FLO2 (B) transcription factor matrix families were master regulators of successful Arbuscular mycorrhiza (AM) colonization in roots of

Medicago truncatula with enriched (high number of) binding sites on promoter regions of the top 20 upregulated genes during successful AM colonization. P$FLO2

transcription factor matrix family contains transcription factors with AP2 domain structure and ethylene-responsive element (ERE) binding. P$CAAT matrix family

includes CCAAT binding transcription factors, such as NF-YA, NF-YB, and LEC1.

AM successful colonization with p-value of 0.000432195.
AS1, AS2 are members of this transcription factor matrix
family.

The transcription factor family of MYB-like
proteins, belonging to the P$MYBL matrix family,
was also enriched (total of 293 binding sites and p-
value of 0.002825). This family includes important
transcription factors, including MYB, AS1, AS2, and
FIF1.

The AM Colonization Meta-Signature
Showed High Repeatability in an
Independent RNA-Seq Experiment of AM
Colonization
In an independent RNA-seq experiment, we observed high
correspondence between RNA-seq data of AM colonization
and the identified AM colonization signature in this study,
derived from integration of meta-analysis with supervised
attribute weighting models (Figure 7, Supplementary Table 7).
Fifty-one of 73 (70%) of the upregulated genes in the
developed transcriptomic biosignature of AM colonization
were also upregulated in the independent RNA-seq data of
AM colonization with FDR-corrected p < 0.01 (Figure 7A).

Noticeably, the identified AM colonization meta-signature was
able to discriminate accurately between AM-inoculated samples
and non-inoculated ones (Figure 7B). High correspondence
between the expression of some of the important genes
of the AM-colonization signature in the original microarray
experiments (based on standardized Z-value of expression)
and the expression of those genes in the RNA-seq experiment
[based on RPKM (Reads Per Kilobase of transcript per Million
mapped reads) are visualized in Figure 7C, including the AP2
domain class transcription factor (MTR_6g029180), members
of GRAS family of transcription factor (MTR_1g069725,
MTR_2g089100), Cyclin-dependent kinase (MTR_1g098300),
MIP family transporter (MTR_8g087710), ABC transporter B
family-like protein (MTR_8g022270), Legume lectin beta domain
protein (MTR_5g031160), Sigma factor sigb regulation rsbq-
like protein (MTR_3g045440), and Serine carboxypeptidase-like
protein (MTR_3g079620).

In short, after quality control and trimming, 18772504,
19678186, 22009349, 18982223, and 19364133 remained in 3
AM-inoculated and non-inoculated samples. High efficiency of
mapping to genes (more than 95%) was observed in all samples.
Supplementary Table 8 presents RNA-seq based differential
expression analysis of Medicago truncatula response to AM
inoculation compared to non-AM inoculation.
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FIGURE 7 | High correspondence between RNA-seq data of Arbuscular mycorrhiza (AM) colonization and the identified AM colonization meta-signature in this study,

derived from integration of meta-analysis with supervised attribute weighting models. (A) 51 out of 73 (70%) of the upregulated genes in the developed transcriptomic

biosignature ofcolonization were also upregulated in the RNA-seq data of AM colonization with FDR-corrected p < 0.01. (B) The identified AM colonization

meta-signature was able to accurately discriminate AM-inoculated samples from non-inoculated ones. (C) Visualization of the expression of some important genes of

AM colonization signature in original experiments (based on standardized Z-value of expression) and RNA-seq experiment [based on RPKM (Reads Per Kilobase of

transcript per Million mapped reads)].
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DISCUSSION

Finding a biosignature/predictors based on a single
transcriptomic experiment is a major challenge due to a
large prediction error caused by a large number of independent
predictors (genes) and a restricted number of observations
(replications) (Baseri et al., 2011). Also of concern is the
repeatability of a selected subset of a gene derived from a
single experiment/condition. Inter-species analysis of a range of
experiments by meta-analysis and machine learning techniques
is able to deal with theseshortcomings, leading to the generation
of a robust and repeatable biosignature (Farhadian et al., 2018b).
Meta-analysis has received increased attention in recent years
because of its remarkable potential to increase the statistical
power and generalizability of single study analysis (Farhadian
et al., 2018a; Sharifi et al., 2018). Meta-analysis not only
reinforces the findings of the individual studies, but is also may
identify new undetected outcomes/patterns in single studies
as meta-analysis considers the direction/trend of variables in
each experiment to find the consistent, robust and repeatable
patterns in all experiments (Sharifi et al., 2018). The inter-species
DE-based meta-analysis employed in this study had more
samples and stronger statistical power and was successful in
achieving a statistically-reliable transcriptomic biosignature of
successful AM inoculation, independent from the study. In
addition, the biosignature was repeatable and discriminative
when a new and independent RNA-seq experiment was used
for its validation. Due to the availability of Medicago truncatula
transcriptomic data (as a model plant), the meta-analysis was
solely performed on this plant resulting in the identification of
a robust and high performance transcriptomic signature of AM
colonization. However, in non-model plants with the subsequent
generation of new transcriptomic data, it will be necessary the
identified Medicago truncatula-derived transcriptomic signature
of AM colonization will need further examination.

In DE-based meta-analysis, it is crucial to adjust for batch
effects before combining expression datasets. Heterogenicity
(batch effects) is themajor concern inmeta-analysis of expression
data (Leek and Storey, 2007; Ramasamy et al., 2008). In this study,
we developed a new approach for reducing batch effects and
direct merging meta-analysis by combination of meta-analysis,
multi-step normalization, and supervised attribute weighting
models. We observed that quartiling outperforms the scaling
approach in reducing the batch effect. Heterogenicity-reducing
based on the quartiling approach has been used extensively
for knowledge discovery and pattern recognition in large data
analysis, particularly in integrated classification and association-
rule mining (CBA) algorithm (Kargarfard et al., 2015, 2016).
As an example, CBA analysis of quartiled protein and DNA
measurements was able to find a biosignature for increased host
range and the emergence of an outbreak in influenza (Kargarfard
et al., 2016). Supervised machine learning has brought new
possibilities to predictive studies (Bakhtiarizadeh et al., 2014a;
Ebrahimi et al., 2014; Zinati et al., 2014; Ebrahimie et al., 2018b).
Supervised attribute weighting (feature selection) algorithms are
techniques for reducing the variables and identifying a subset
of highly relevant ones in order to improve the efficiency

of classification algorithms (Rosario and Thangadurai, 2015).
The capability to simultaneously analyse both categorical and
numerical features, power to analyse large data, and the ability
to produce various predictive algorithms with diverse statistical
backgrounds are distinguished features of supervised machine
learning models (Ebrahimie et al., 2011; Shekoofa et al., 2014).
The possibility to include the categorical variables in predictive
models can remarkably decrease the heterogenicity across studies
as the batch effects and other non-biological experimental
variation were incorporated in the models (Shekoofa et al.,
2014). In this study, different experiments or types of AM
were added as variables and analyse in the predictive model
that resulted in remarkable control of batch effect. This
possibility is very limited in traditional multivariate or regression
models.

The identified meta-genes of successful AM colonization,
derived by integration of meta-analysis with supervised attribute
weighting models, was able to discriminate efficiently between
AM-inoculated and non-inoculated samples. As a validation
analysis, the developed signature showed high performance in
distinguishing AM-colonized roots from non-inoculated ones in
an independent RNA-seq experiment. Recently, integration of
supervised machine learning algorithms with meta-analysis has
been used to identify a mastitis bio-signature and early prediction
of its occurrence (Ebrahimie et al., 2018a; Sharifi et al., 2018).
The developed integrative approach in this study, comprising
multi-step normalization, direct-merging meta-analysis, and
supervised attribute weighting models, is platform-independent
approach. By subsequent generation of more RNA-seq data, the
developed pipeline may be employed for biosignature discovery
in RNA-seq transcriptomic data, integration of microarray
and transcriptomic data as is possible using some other NGS
platforms, such as ChIP-Seq and SNP to perform meta-analysis
on significant peaks in ChIP-Seq experiments and frequency of
SNPs in genome-wide experiments.

The core 73 upregulated genes in the developed
transcriptomic biosignature contain novel regulators of
AM colonization including two transcription factors from
the GRAS family (MTR_1g069725, MTR_2g089100), one
transcription factor from AP2 domain class (MTR_6g029180),
and one Zinc finger protein. It has been documented that the
GRAS-type transcription factors, such as NSP1 (Nodulation
Signaling Pathway1) and NSP2, play essential signaling functions
in promoting both Rhizobium nodulation and mycorrhizal
colonization (Kaló et al., 2005; Smit et al., 2005; Liu et al.,
2011; Gobbato et al., 2012). Another transcription discovered
factor, MTR_6g029180, has an AP2 domain in this structure.
Interestingly, it has been reported that ERF transcription
factors with a highly conserved AP2 DNA-binding domain
are necessary for nodulation and symbiosis (Middleton
et al., 2007). Cyclin-dependent kinase (MTR_1g098300) was
another highly upregulated gene in the signature of successful
AM colonization in this study. Mycorrhizal colonization is
classified as postembryonic development of plant organs
that need a constant interplay between the cell cycle and
developmental programs (Kondorosi and Kondorosi, 2004).
Cyclin-dependent kinase controls cell cycle and plays the key role
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in endoreduplication and activation of the anaphase-promoting
complex during symbiotic cell development (Kondorosi and
Kondorosi, 2004). The discovery of the essential transcription
factors of successful mycorrhizal colonization and symbiosis
in the developed biosignature highlights the robustness and
applicability of meta-analysis in the AM colonization signature
discovery and the importance of the developed transcriptomic
signature. The biosignature obtained here provides a platform
for increasing the efficiency of AM inoculation in future by
finding accelerator AM colonization agents, such as small
molecules/chemicals, and manipulating the expression of key
genes in the biosignature.

The reasons that some previously-reported AM-associated
genes were not identified in the AMmeta-signature might be: (1)
there are other genes with higher and more repeatable expression
in response to AM induction and colonization which are, as a
result, selected. These new candidates have higher preference
over some of the previously-known biomarkers of AM symbiosis,
(2) some AM markers might interact with the type of AM
and consequently these will not appear in cross-species meta-
analysis, and (3) some AM markers may interact with a specific
condition or timing of AM symbiosis. As example, mycorrhiza-
specific phosphate transporter seems to be more closely related
to P homeostasis rather than colonization as the phosphate
transporter mediates early root responses to phosphate status in
non-mycorrhizal roots (Volpe et al., 2016).

Reinforcing the importance of the existence of AP2
transcription factors in the upregulated transcriptomic signature
of AM colonization, promoter analysis demonstrated that
the P$FLO2 transcription factor matrix family, with the AP2
domain structure and ethylene-responsive element-binding,
had the highest number of promoter binding sites of all 20
highly upregulated genes in the AM inoculation signature.
Floral homeotic protein APETALA 2, a member of P$FLO2
matrix family, has a documented role in the control of flower
and seed development (Jofuku et al., 1994). Strong induction
of APETALA 2 in developing nodules of Medicago truncatula
has been observed and suggested as a potential regulator of the
symbiotic program (El Yahyaoui et al., 2004). Another enriched
transcription factor matrix family was the P$TOEFmatrix family
that contains the AP2 domain in its structure and is involved in
early activation/response (Table 4, Supplementary Table 6). GO
analysis showed that these are involved in organ morphogenesis.

P$CAAT was another potential master regulator of the
identified AM colonization signature that contains CCAAT-
binding family transcription factors. It has been documented
that CCAAT-binding family transcription factors are essential
for endosymbiosis establishment and development (Diédhiou
and Diouf, 2018). Laser microdissection has documented the
expression of CAAT-Box transcription factor in AM, correlated
with fungal contact and spread (Hogekamp et al., 2011). Two
members of this CCAAT-binding family, NF-YA1a and NF-
YA1b, are positive regulators of AM colonization in soybean
(Schaarschmidt et al., 2013). Before the present study, most
of the known CCAAT-binding family transcription factors had
been reported to be involved in nodulation (Marsh et al.,
2007; Soyano et al., 2013). Functional genetic studies of

symbiotic genes in Medicago truncatula indicate a role for a
CCAAT-box transcription factor in rhizobial infection (Cousins,
2016). Analytical approaches based on literature mining have
suggested association between a number of potential microRNAs
(particularly microRNA169 and microRNA156) and microRNA-
regulated transcription factors, which may be involved in
the coordinated regulation of nitrogen and phosphorous
starvation responses in soybean and NF-YA3 and NF-YA8 are
targets of microRNA169 (Dehcheshmeh, 2013; Chiasson et al.,
2014).

A MYB transcription factor belonging to P$MYBL matrix
family was also enriched on promoter region of the identified
signature of AM colonization. It has been demonstrated that a
transcriptional program for arbuscule degeneration during AM
symbiosis is regulated by MYB1 (Floss et al., 2017).

At the regulatory level, promoter analysis of co-expressed
genes has demonstrated high potential in identifying key
enriched transcription factors, finding undiscovered roles of
genes (Deihimi et al., 2012), developing the functional genomics
catalog of activated transcription factors during a phenomenon
(Mahdi et al., 2013; Zinati et al., 2014), and discovery of
transcriptional regulatory networks (Bakhtiarizadeh et al., 2013,
2014b). It has been also shown that number and diversity of
differential cis-regulatory elements on promoter regions are
strong predictors of gene function and level of expression
under different conditions (Babgohari et al., 2014; Shamloo-
Dashtpagerdi et al., 2015). This has resulted in developing new
indicators of gene importance not based on the gene sequence
but on the promoter region. In our previous study, we developed
a novel pairwise comparison method for in silico discovery
of statistically significant cis-regulatory elements in eukaryotic
promoter regions (Shamloo-Dashtpagerdi et al., 2015).

Transcription factors have interactions with DNA to
regulate gene expression in cells (Pomerantz et al., 2015). In
future studies, genome-wide mapping of binding sites of the
identified transcription factors [GRAS family transcription factor
(MTR_1g069725, MTR_2g089100), AP2 domain transcription
factor (MTR_6g029180), and CCAAT-binding transcription
factors] by CHIP-seq techniques may unravel the cistrome of
successful AM colonization in symbiosis establishment.

CONCLUSION

In this study, we developed a new approach for reducing
heterogenicity between experiments (batch effect) and direct
merging meta-analysis by combining meta-analysis, multi-
step normalization, and supervised attribute weighting
models. We employed this approach to obtain a unified
transcriptomic signature of successful AM colonization in
roots of Medicago truncatula. The genes of identified in
the signature, derived by integration of meta-analysis with
supervised attribute weighting models, were strongly up-
regulated in all AM symbioses and probably correspond to
the end targets of the symbiotic programme. The identified
meta-genes of successful AM colonization discriminated
efficiently between AM inoculated and non-inoculated samples.
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Furthermore, the developed signature showed high performance
in distinguishing AM-colonized roots from non-inoculated
ones in an independent RNA-seq experiment. Important
protein classes such as the AP2 domain class transcription
factor (MTR_6g029180), GRAS family transcription factors
(MTR_1g069725 and MTR_2g089100), and cyclin-dependent
kinase (MTR_1g098300) were highly upregulated during
AM successful colonization. The developed direct merging-
based meta-analysis, by combining meta-analysis, multi-step
normalization, and supervised attribute weighting models,
provides the possibility of data collection from different
experiments even when a treatment or a control is missing in
one or more of the experiments.

We suggest that the promoters of meta-genes identified in the
transcriptomic signature of AM colonizationmay have the power
to unravel key transcription factors as master regulators of AM
symbiosis. Analysis of promoter regions of the top upregulated
meta-genes in the AM-successful colonization signature in
this study identified enriched transcription factor binding
sites and led us to possible master regulators that form the
transcriptome expression pattern. These included AP2 domain
class transcription factors, CCAAT-binding family transcription
factors, SEF transcription factors, and response to fungus ASRC
transcription factors. Further functional characterization of these
transcription factors is needed to understand their precise role in
AM symbioses.

This study provides a framework for an improved
understanding of the dynamics of successful AM colonization in
establishing microsymbionts. It offers a new approach for related
investigations into the other symbiosis systems.
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