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Phenylpropanoids fulfill numerous physiological functions, essential for plant growth and
development, as well as plant–environment interactions. Over the last few decades,
many studies have shown that exquisite regulatory mechanisms at multiple levels control
the phenylpropanoid metabolic pathway. Deciphering this pathway not only provides a
greater, basic understanding of plant specialized metabolism, but also enhances our
ability to rationally design plant metabolic pathways for future applications. Despite the
identification of the participating enzymes of this complex, biosynthetic machinery, we
still lack a complete picture of other genes, enzymes, and metabolites essential for
regulation and compartmentation/distribution of phenylpropanoids. Compartmentation,
as well as distribution, are critical for the fate/functioning of those molecules, and their
effective biosynthesis. At the cellular level, we have narrowed down our understanding
of these processes to organelles. Furthermore, various, overlapping, but not exclusive
scenarios of phenylpropanoid distribution within the cell have also been described. The
cross-membrane dynamics, but also intercellular communication of different branches
from phenylpropanoid biosynthesis have become an exciting research frontier in plant
science. The intra- and intercellular channeling of intermediates by various transport
mechanisms and notably membrane transporters could be a meaningful tool that
ensures, inter alia, efficient metabolite production.
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INTRODUCTION

The phenylpropanoid pathway is one of the most frequently investigated metabolic routes, among
secondary metabolites. The existence of enzymatic reactions, where phenylalanine is converted to
hydroxycinnamic acid, dates back to 450 million years ago (Fellenberg and Vogt, 2015), coinciding
with colonization of the terrestrial environment by plants (Lanfranco et al., 2016). Products of
the phenylpropanoid pathway are involved in many aspects of plant growth, structural support,
and response to the stimuli inextricably associated with the life on land. Not only do they play
a crucial role in stress response upon variation of light (Yang et al., 2018) and mineral shortage
(Clemens and Weber, 2016), but they are also key mediators of the plant interactions with other
organisms (Naoumkina et al., 2010; Shalaby and Horwitz, 2015; Liu and Murray, 2016). The
utility of phenylpropanoids is a matter of being in the right place at the right time. This is
tightly controlled, not only at the biosynthesis level, but also by various distribution systems. The
latter comprise, inter alia, membrane transporters which participate in the circulation of both the
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intermediates and final products. This mini review is intended
to position transport as a notable part of the regulatory network,
tuning the phenylpropanoid biosynthesis according to the plant’s
needs.

BIOSYNTHESIS OF
PHENYLPROPANOIDS – A DYNAMIC
COMPLEXITY

Phenylpropanoid metabolism generates an enormous array of
secondary metabolites, based on the few intermediates of the
shikimate pathway (Vogt, 2010). The shikimate pathway is
a source of phenylalanine and the entry point leading to
the biosynthesis of phenylpropanoids. The so-called central
phenylpropanoid pathway is defined by three enzymatic
activities: (i) the phenylalanine deamination by phenylalanine
ammonia-lyase (PAL) to the trans-cinnamic acid, (ii) the trans-
cinnamic acid hydroxylation to the 4-coumarate, as a resulting
from cinnamic acid 4-hydroxylase (C4H) activity, and finally
(iii) the 4-coumarate conversion to the 4-coumaroyl-CoA by
4-coumarate-CoA ligase (4CL). In many cases, genes from the
central phenylpropanoid pathway are present in multiple copies.
For instance, the PAL genes include six isoforms in Medicago
(Medicago truncatula), five in poplar (Populus trichocarpa),
nine in rice (Oryza sativa), and four in Arabidopsis thaliana.
Various isoforms differ in terms of localization and activity. For
instance, the Arabidopsis PAL1, PAL2, and PAL4 are expressed
at relatively high levels in stems during the later stages of
development, with PAL1 expression localized in the vascular
tissue, and PAL2 and PAL4 both expressed in seeds. PAL1 and
PAL2 were shown to be involved in flavonoid biosynthesis (Olsen
et al., 2008), while the two others were suggested to participate
in lignin formation (Huang et al., 2010). Similarly to PAL in
Arabidopsis, 4CL possesses four isoforms. The 4CL3 is expressed
in a broad range of cell types, and is predominantly associated
with flavonoid biosynthesis. 4CL1, 4CL2, and 4CL4 revealed co-
expression with lignin biosynthetic genes (Ehlting et al., 1999;
Li et al., 2015). The product of 4CL activity, the p-Coumaroyl-
CoA is a crucial intermediate in the phenylpropanoid pathway.
It is a precursor for: (i) monolignol, (ii) coumarin, (iii) stilbene,
as well as (iv) (iso)flavonoid biosynthesis (Kutchan et al.,
2015).

METABOLONS AND
PHENYLPROPANOID PATHWAY

The cooperating enzymes from the phenylpropanoid pathway
were proposed to be organized into complexes called metabolons,
and a number of reviews may serve as evidence in this respect
(Winkel-Shirley, 1999; Jørgensen et al., 2005; Sweetlove and
Fernie, 2013; Laursen et al., 2015; Bassard and Halkier, 2018).
The term “metabolon” encompasses multienzymatic complexes
bound to the cellular structural elements – membranes. Most
metabolon models are based on a dynamic, non-covalent
aggregation of components on the endoplasmic reticulum

(ER) surface. Enzymes like chalcone synthase (CHS), chalcone
reductase (CHR) are cytoplasmic enzymes however, other ones,
like C4H or isoflavones synthase (IFS), are lodged in the
ER, anchoring the biosynthetic enzyme complex (Dastmalchi
et al., 2016). Organization of enzymes in metabolons is, at the
cellular level, a way to optimize biosynthesis. It provides: (i)
direct transport of intermediates between successive enzymes,
hence increasing local concentration of the substrate around the
enzyme active center, (ii) minimization of highly biologically
active and potentially toxic intermediates within the cell, as well
as (iii) coordination of reactions leading to different branches
of pathways with shared enzymes or intermediates (Jørgensen
et al., 2005; Bassard and Halkier, 2018). In the phenylpropanoid
pathway, intracellular interactions between biosynthetic enzymes
were shown for the central phenylpropanoid pathway – where
PAL and C4H colocalize in the ER (Achnine et al., 2004),
as well as for particular branches leading to the formation
of (iso)flavonoids, monolignols, and anthocyanins (Figure 1).
Key flavonoid enzymes exhibit multidirectional interactions:
CHS-chalcone isomerase (CHI) (Saslowsky and Winkel-Shirley,
2001), CHS-CHR, IFS-upstreaming enzymes (Dastmalchi et al.,
2016) and IFS- isoflavone O-methyltransferase (IOMT) (Liu
and Dixon, 2001). In the anthocyanin route, flavonol synthase
(FLS), and dihydroflavonol 4-reductase (DFR) were shown to
interact with CHS in a competitive manner (Crosby et al., 2011),
while flavanone 3-hydroxylase (F3′H) was indicated to interact
with CHI (Burbulis and Winkel-Shirley, 1999). Additionally,
flavone synthase II (FNS II) was shown to interact with DFR,
as well as with the upstreaming enzymes like CHS and CHI,
while the latter also interacts with CHS and DFR (Fujino
et al., 2018). In the branch leading to lignin precursors, C4H
and p-coumaroylshikimate 3′-hydroxylase (C3′H) were found
to colocalize in the ER and being connected to shikimate
hydroxycinnamoyl transferase (HCT) (Chen et al., 2011; Bassard
et al., 2012). The existence of metabolons was also demonstrated
in primary metabolism, for instance in fatty acid biosynthesis
(Kwiatkowska et al., 2015), purine synthesis (Kyoung et al.,
2015), or Krebs cycle (Wu et al., 2015). These systems involve
stable enzyme associations that are suitable for experimental
analysis. Potential metabolons formed in metabolic channeling
of secondary metabolites in plants seem to be more dynamic and
transient, according to the required plasticity in response to wide
spectrum of stimuli, thus their existence is much more difficult to
investigate and demonstrate.

INTERCELLULAR METABOLONS
COOPERATION?

When the concept of metabolons was conjectured the
main feature of the model was the assumption that all
stages of biosynthesis/intermediates sharing occur in a
single cell. Recently, transient and dynamic metabolons
formation/cooperation has been proposed as means of swift
adaptation of the metabolite profile to environmental changes
(Bassard and Halkier, 2018). Interestingly, in the opium poppy
(Papaver somniferum), the spatial distribution of alkaloid
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FIGURE 1 | Scheme of the phenylpropanoid pathway. Direct interactions between particular biosynthetic enzymes, demonstrated by means of
co-immunoprecipitation, BiFC or FRET, are illustrated by red arrows. Discontinuous lines indicate that certain steps along the pathway are not included in the figure.
The enzymes are: PAL, phenylalanine ammonia-lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; CCR, cinnamoyl CoA reductase; CAD,
cinnamoyl alcohol dehydrogenase; PER/LAC, peroxidase/laccase; HCT, shikimate hydroxycinnamoyl transferase; C3H/C4H, 4-coumarylshikimate
3-hydroxylase/cinnamate 4-hydroxylase; CHS, chalcone synthase; CHR, chalcone reductase; CHI, chalcone isomerase; IFS, isoflavone synthase; IOMT, isoflavone
O-methyltransferase; HID, hydroxyisoflavanone dehydratase; F3H, flavanone 3 hydroxylase; DFR, dihydroflavonol 4-reductase; FNSII, flavanone synthase II; FLS,
flavonol synthase.

biosynthesis and the cell-specific localization of key enzymes,
which represent different pathway branches of the alkaloid, have
been demonstrated. Such a separation of the intermediates in
different cell types might help to avoid undesired secondary
modifications (e.g., acetylation or methylation) of the alkaloids
(Weid et al., 2004). Likewise, in Arabidopsis, the key steps of
the glucosinolate biosynthesis are localized in distinct cells, in
order to minimize the risk of self-toxication (Fuchs et al., 2016;
Nintemann et al., 2018). In Medicago enzymes like PAL and IFS
represent enzymatic crossroads in the central phenylpropanoid
pathway and isoflavonoid biosynthesis, respectively. Upon biotic
stress/elicitation, their activity is crucial for de novo production
of medicarpin, a major phytoalexin of Medicago (Naoumkina
et al., 2007). Among the six PAL and three IFS genes present
in the Medicago genome, those expression of which is highly
and peculiarly induced by fungal elicitor, exhibit differential
tissue localization in root. The upregulated PAL isoforms
(PAL4, PAL6) were mainly expressed in the vascular bundles,
while the IFSs (IFS1, IFS3) were generally present in the root
cortex (Biala et al., 2017). Spatial separation of enzymatic steps
leading to desired product suggests that cooperation between
various metabolons in different cells cannot be excluded and

sharing of the intermediates in such scenario could also be
considered.

INTRACELLULAR DISTRIBUTION OF
PHENYLPROPANOIDS

In addition to the possibility that certain low-molecular-
weight molecules, e.g., 4-coumarate, can disperse by membrane
diffusion, three various overlapping, but not exclusive, scenarios
of phenylpropanoid distribution exist in planta: (i) vesicle
trafficking, (ii) gluthatione S-transferases (GSTs)–supported,
and (iii) membrane transporter mediated, fulfilled mostly by
members of two protein families, namely the MATE (Multidrug
and Toxic Compound Extrusion) and ABC (ATP binding
cassette) (Figure 2) (Zhao and Dixon, 2010).

All three scenarios are well-described in the intracellular
distribution context and have been proposed to collaborate
in the circulation of phenylpropanoids (Zhao, 2015).
Vesicular transport may proceed in Golgi-dependent or
independent manner, and it is controlled by adaptor proteins,
like small GTPases and protein complexes such as SNARE
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FIGURE 2 | Transport of phenylpropanoids across biological membranes, by three different mechanisms: (i) vesicle trafficking, (ii) gluthatione S-transferases
(GSTs)-supported, and (iii) membrane transporters. Membrane transporters are distinguished by respective colours, as involved in intracellular transport (red),
intercellular transport (blue), and extracellular transport (green). CW, cell wall; PM, plasma membrane; ER, endoplasmic reticulum; N, nucleus; V, vacuole; TGN,
trans-Golgi network; PVC, pre-vacuolar compartment; PBE, phenylpropanoid biosynthetic enzymes; PER/LAC, peroxidase/laccase; VSR, vacuolar sorting receptor;
GST, glutathione S-transferase; GSH, glutathione.

(Žárský et al., 2009; Kulich and Žárský, 2014; Singh et al., 2014).
It was shown that the distribution of, e.g., anthocyanins, into the
vacuole occurs, inter alia, by vesicular transport (Winkel-Shirley,
2001; Hsieh and Huang, 2007; Poustka et al., 2007; Gomez et al.,
2011; Ichino et al., 2014).

Gluthatione S-transferases from various plants, such
as petunia (Petunia hybrida) Anthocyanin9 (AN9), maize
(Zea mays) Bronze2 (BZ2), Arabidopsis Transparent Testa
(TT) 19, and grapevine (Vitis vinifera) GST1/GST4 are also
essential for anthocyanin and proanthocyanidin vacuolar
accumulation (Conn et al., 2008). Two scenarios of GSTs
involvement in anthocyanin accumulation were proposed: (i)
GST activity and glutathione conjugation, followed by vacuolar
sequestration of glutathione-conjugated anthocyanins, as well
as (ii) just GST binding to anthocyanin and formation of GST-
anthocyanin complexes protecting flavonoids from oxidation
and/or guiding them to the central vacuole (Zhao and Dixon,
2010). Interestingly, it was also shown that free glutathione
could be required for transport of the anthocyanin, malvidin
3-O-glucoside, into the vacuole (Francisco et al., 2013).

Membrane transporters belonging to MATE family
from various species like V. vinifera (Gomez et al., 2009;

Pérez-Díaz et al., 2014), persimmon (Diospyros kaki) (Yang
et al., 2016), Arabidopsis (Marinova et al., 2007), as well as
Medicago (Zhao and Dixon, 2009; Zhao et al., 2011) are engaged
in the transport of phenylopropanoid glucosides into the
vacuole. In Medicago, MATE1 transports epicatechin 3-O-
glucoside associated with the synthesis of PAs, whereas MATE2
preferentially transports anthocyanin malonates (Zhao and
Dixon, 2009; Zhao et al., 2011). Genetic studies have also shown
that multidrug resistance-associated proteins (MRP)/C-type of
ABC (ABCC) transporters, such as maize MRP3 and grapevine
ABCC1, are involved in anthocyanin accumulation, with the
assumption that they transport flavonoid conjugates through the
tonoplast (Goodman et al., 2004; Francisco et al., 2013).

INTER- AND EXTRA-CELLULAR
DISTRIBUTION OF
PHENYLPROPANOIDS

The metabolon formation together with intracellular distribution
and, e.g., vacuolar storage, are important for the functioning
of phenylpropanoids in particular cells. Less is known about
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the molecular determinants participating in the intercellular
sharing/transport of those molecules. It is worth considering
that export to the apoplast could be also a simple way to
control, inter alia, the concentration of chemically/biologically
active intermediates. The latter were shown to negatively
modulate the biosynthesis of particular metabolites. For
instance, the PAL activity is negatively regulated by trans-
cinnamic acid and subsequent metabolites (Zhang and Liu,
2015). It was shown that in Arabidopsis, the double mutant
deficient in UGT78D1 and UGT78D2 (UDP carbohydrate –
dependent glycosylotransferases, responsible for flavonol-sugar
conjugation) accumulating flavonols, repressed activity of
flavonoid-related PAL isoforms as well as CHS, and inhibited
flavonol synthesis (Yin et al., 2012). In this respect, the export
to the apoplast could be recognized as a regulatory aspect of
both the efficiency of cellular biosynthesis and intermediates
dispersal.

Two transport mechanisms, (i) vesicular trafficking
and (ii) membrane transporters, were shown to mediate
phenylpropanoids transport out of the cell. In rape (Brassica
napus) anthers, the ER derived vesicles – tapetosomes
accumulate flavonoids, which are discharged to the pollen
surface upon tapetum programmed cell death (Hsieh and
Huang, 2007). Phenylpropanoids like, for instance, the
hydroxycinnamic acid derivatives, were found in the cell
walls, esterified to the wall polysaccharides. Hydroxycinnamic
acid derivatives are synthesized at the ER, and from there,
they are released as small membrane vesicles, which aggregate
into bigger structures, fusing with the plasma membrane and
releasing the content into the apoplast (Kulich and Žárský,
2014).

Membrane transporters of the G-type of ABC (ABCG)
proteins have been shown to export phenylopropanoids out
of the cell. Until recently, it was thought that most of
the molecules translocated to the apoplast, by proteins like
ABC transporters, are final products of individual biosynthetic
pathway, fulfilling a particular biological role. For instance,
the flavonoid genistein is suggested to be an exudate from
soybean (Glycine max) roots, by the G-type of ABC (ABCG)
transporters. Genistein, together with daidzein, were found
in soybean root exudates, as signaling molecules mediating
communication between plant and nitrogen fixing bacteria
Bradyrhizobium japonicum (Sugiyama et al., 2007, 2008).
Scopoletin, belonging to the coumarin subfamily, is synthesized
in Arabidopsis roots and excreted to the rhizosphere by ABCG37,
in order to facilitate Fe nutrition (Fourcroy et al., 2014, 2016;
Ziegler et al., 2017). Similarly, in tobacco (Nicotiana tabacum),
NtPDR3/ABCG3 is involved in secretion of O-methylated
coumarins, such as fraxetin, to the rhizosphere (Lefèvre
et al., 2018). For further reading, see Lefèvre and Boutry
(2018).

Interestingly, it was recently shown that ABCG transporters
might participate in transporting of the precursors from the
phenylpropanoid pathway. The Medicago plasma membrane
protein MtABCG10 is responsible for selective translocation of
4-coumarate, an early precursor of the core phenylpropanoid
pathway, and liquiritigenin from the 5-deoxyflavonoid branch

leading to medicarpin. Upon biotic stress, MtABCG10 action
is strictly associated with the 5-deoxyflavonoid branch, even
if early precursors like 4-coumarate are common for almost
all of the phenylpropanoid products (Banasiak et al., 2013).
Biotic stress driven expression of genes encoding enzymes
crucial for de novo production of medicarpin like PAL
and IFS goes along with MtABCG10. Moreover, PAL and
MtABCG10 are concomitantly expressed in contrast to IFS
present in different tissue. Thereby, it was proposed that
MtABCG10 appears as a transporter facilitating allocation of
common intermediates between various metabolons situated
in diverse tissues, upon biotic stress (Biala et al., 2017).
Another example is the AtABCG29, which in Arabidopsis
has been described as a plasma membrane transporter of
the p-coumaryl alcohol to the cell wall, where this molecule
is further oxidized and finally polymerized to lignins (Miao
and Liu, 2010; Alejandro et al., 2012). Moreover, it was
also proposed that the translocation of the two other lignin
precursors, namely sinapyl and coniferyl alcohol, is ABCG
dependent (Takeuchi et al., 2018). The expression pattern of
those putative transporters was similar to the transcription factor
involved in lignin synthesis and lignin polymerization peroxidase
(Takeuchi et al., 2018). Interestingly, the dedicated transcriptional
network was also determined, underlying the production of
benzenoid, as well as phenylpropanoid volatiles, in petunia
flowers. This network involves: (i) the ODORANT1 transcription
factor which controls biosynthesis in petunia flowers, (ii) a
biosynthetic enzyme catalyzing an end-product, and (iii) ABC
subfamily G member PhABCG1, a predicted plasma-membrane
transporter that is expressed almost exclusively in petals of
open flowers. However, the latter transporter is responsible for
active transport of emitted volatiles across the plasma membrane,
rather than the distribution of intermediates (Adebesin et al.,
2017).

POTENTIAL ROLE OF IMPORT

Despite our knowledge on phenylpropanoid biosynthetic
enzymes, we are still about to discover how they spatially
interact and what are the molecular determinants enabling
such interaction. One currently existing gap in the targeted
intercellular distribution scenario is the presence/identification
of dedicated importers. Indeed, importers are key regulators
of intracellular channeling of simple phenolics and/or
biosynthesis of different end products. For instance, the full
size peroxisomal ABC transporter of Arabidopsis ABCD1/PXA1
is indirectly linked to the synthesis of various secondary
metabolites such as: (i) benzoic acids, likely by transport
of cinnamic acid/cinnamoyl-CoA into the peroxisome
(Bussell et al., 2014), (ii) ubiquinone, probably by import of
4-coumarate/coumaroyl-CoA (Block et al., 2014), and (iii)
flavonoids by mediation in fatty acids breakdown, which
induces flavonoid biosynthetic enzymes (Carrera et al.,
2007). From biosynthesis of other secondary metabolites,
e.g., root-synthesized glucosinolates in Arabidopsis, we
have learnt that modulating specific import activities at
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the plasma membrane level could be essential for shaping the
distribution pattern/biosynthesis at the organismal level (Xu
et al., 2017). However, our knowledge about import as well as
plasma membrane localized importers of phenylpropanoids is
still limited.

CONCLUSION

Revealing the transport mechanisms/transporters involved in
targeted intermediates distribution will bridge the knowledge
gaps regarding spatiotemporal phenylpropanoid production
under various conditions. It will also facilitate more precise
metabolic engineering of those compounds in plants, in order
to improve agronomic traits or nutritional value. In the future,
metabolons could incorporate switching mechanisms in which
metabolic status is sensed, causing association or disassociation
of the enzymatic complexes. Such a switching mechanism
could rely, inter alia, on tightly controlled transport/dedicated

transporters, being present in both inter and intracellular
scenarios.
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