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Phytolith-occluded carbon (PhytOC), a highly stable carbon (C) fraction resistant to
decomposition, plays an important role in long-term global C sequestration. Previous
studies have demonstrated that bamboo plants contribute greatly to PhytOC sink
in forests based on their aboveground biomass. However, little is known about the
contribution of belowground parts of bamboo to the PhytOC stock. Here, we reported
the phytolith and PhytOC accumulation in belowground trunk and rhizome of eight
monopodial bamboo species that widely distributed across China. The results showed
that the belowground parts made up an average of 39.41% of the total plant biomass
of the eight bamboo species. There were significant (p < 0.05) variations in the
phytolith and PhytOC concentrations in the belowground trunk and rhizome between
the bamboo species. The mean concentrations of PhytOC in dry biomass ranged from
0.34 to 0.83 g kg−1 in the belowground rhizome and from 0.10 to 0.94 g kg−1 in the
belowground trunk across the eight bamboo species, respectively. The mean PhytOC
stocks in belowground biomass ranged from 2.57 to 23.71 kg ha−1, occupying an
average of 23.36% of the total plant PhytOC stocks. This implies that 1.01 × 105

t PhytOC was overlooked based on the distribution of monopodial bamboos across
China. Therefore, our results suggest that the belowground biomass of bamboo
represents an important PhytOC stock, and should be taken into account in future
studies in order to better quantifying PhytOC sequestration capacity.

Keywords: PhytOC, aboveground biomass, belowground trunk and rhizome, carbon sequestration, phytolith

INTRODUCTION

Increased greenhouse gas (GHG) emissions have been widely accepted as the main cause of
climate change, which threatens the sustainability of terrestrial ecosystem (Kosten et al., 2010;
IPCC, 2014). Among the GHGs, the CO2 emission rate had increased to 3.11 × 1011 Mg per
year by 2010 at the global scale (DOE, 2008). Methods that can reduce the speed of rapidly rising
CO2 concentrations are urgently needed to contribute to climate change mitigation. Terrestrial
biogeochemical carbon (C) sequestration is one of the most promising approaches for long-term
atmospheric CO2 sequestration (IPCC, 2014).

Occlusion of C within phytoliths (PhytOC) as an effective mechanism of biotic C sequestration
has received much attention in recent years (Parr and Sullivan, 2005; Song et al., 2012a,b, 2016;
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Yang et al., 2018). Phytolith, also referred to as plant opal, is
an amorphous silica that formed in living plants (Wang and
Lü, 1993; Parr and Sullivan, 2005). During the formation of
phytolith, some organic C can be occluded in plant tissues.
Previous studies demonstrated that PhytOC is highly stable and
could be preserved in the soil for several 1000s of years after plant
decomposition (Wilding et al., 1967; Parr and Sullivan, 2005;
Santos et al., 2010). For example, Parr and Sullivan (2005) found
that PhytOC could contribute up to 82% of the total soil C pool
after 2000 years decomposition in Numundo oil palm (Elaeis
guineensis) plantations. It is also suggested that PhytOC makes
up between 15 and 37% of the estimated global accumulation rate
(24 kg C ha−1 yr−1) of stable soil C, demonstrating the significant
potential of PhytOC in the long-term terrestrial C sequestration
(Parr and Sullivan, 2005; Song et al., 2012a).

The PhytOC concentrations in different plants vary greatly
due to their differences in the capacity for phytolith accumulation
(Parr et al., 2010; Song et al., 2012b, 2017; Yang et al., 2015;
Xiang et al., 2016). Bamboo, a typical phytolith-accumulator
(Parr et al., 2010), has been shown to have a greater production
of PhytOC in comparison with other plants such as sugarcane
(Parr et al., 2009), rice (Li et al., 2013), and millet (Zuo and
Lü, 2011). Being predominantly distributed in the tropical and
subtropical regions, bamboo has a global area of 2.2 × 107

ha by 2010 and is increasing at a rate of 3% annually (Cao
et al., 2011; Zhou et al., 2011). It has been estimated that the
present annual PhytOC sink in China’s forests is 1.7 ± 0.4 Tg
CO2 yr−1, 30% of which is contributed by bamboo because the
production flux of PhytOC through tree leaf litter for bamboo
is 3–80 times higher than that of other forest types (Song et al.,
2013).

The potential of PhytOC sequestration in bamboo species
also varies depending on the rhizomatous forms (Li et al.,
2014a; Xiang et al., 2016). Monopodial scattering bamboo
(typically Moso bamboo and Lei bamboo) forests accounted
for 77.71% of the total area of bamboo forests in China
and were estimated to contribute 75% of the total PhytOC
sequestration in Chinese bamboo (Li et al., 2014b). Yang et al.
(2015) further demonstrated that the PhytOC production flux
contributed by aboveground biomass (including branches and
culms) was 1.18 to 1.78 times compared with those estimated
by leaf samples for eight monopodial bamboo species due
to their larger biomass. Although existing research suggest
the significant role of global PhytOC sequestration through
bamboo plants, their estimates were only based on the
aboveground biomass and the contribution of belowground
parts was never determined. Bamboo plants usually have
vigorous rhizomes with high biomass. For example, the
belowground biomass of Moso bamboo could account for
more than one third of total stand biomass (Wang et al.,
2013). Given the large phytolith accumulation in bamboo
branches and culm in our previous studies (Huang et al.,
2014; Yang et al., 2015), we infer that the phytolith could
also be accumulated in the bamboo rhizomes and a large
amount of PhytOC sequestered in the belowground biomass
may have been overlooked in previous studies, leading to a
severe underestimation of the PhytOC stock in bamboo forests.

The purposes of this study are (1) to examine and compare
the concentration of phytolith and PhytOC in belowground
trunk and rhizome and (2) to estimate the PhytOC stocks in
belowground biomass of bamboo species that widely distributed
across China. We hypothesize that the bamboo species differ
in PhytOC concentrations in their belowground trunks and
rhizomes, and that the belowground parts make a significant
contribution to the total PhytOC sequestration of bamboo
plants.

MATERIALS AND METHODS

Experimental Site and Sampling
We selected eight monopodial bamboo species that account
for more than 85% of the total area of monopodial bamboo
forests in Zhejiang and Anhui Provinces, China. The
eight bamboo species are Phyllostachys heterocycla (Carr.)
Mitford ‘Pubescens’ (PHMP), Phyllostachys praecox C. D.
Chu ‘Prevernalis’ (PPP), Phyllostachys prominens W. Y.
Xiong (PP), Pseudosasa amabilis (McClure) Keng f (PAMK),
Phyllostachys glauca McClure (PGM), Pleioblastus amarus
(Keng) Keng f (PAKK), Phyllostachys heteroclada Oliver
(PHO), and Bambusa piscatorum McClure (BPM). Detailed
sampling site information is given in Table 1. For each
species, four plots with an area size of 20 m × 20 m were
established in the bamboo forest. The plots in each forest had
similar site conditions including elevation, soil type, slope
gradient and aspect. The average diameter at breast height
(DBH) and stem density were determined. In each plot, one
individual bamboo plant having an DBH similar to the mean
values was selected and used to determine the biomass of
organs including leaves, branches, culms and belowground
trunk. The silicon content, phytolith content, C content of
phytolith, and PhytOC content per dry biomass were also
determined. The rhizome for each species was collected
from four subplots of 1 m × 1 m randomly established in
each plot. All leaves, branches, and culms of each sample
plant, and the belowground trunk and rhizome were weighed
separately.

Sample Measurements
Each sample was mixed, rinsed with ultrapure water and
ultrasonic cleaning to clear all clays contaminated on the bamboo
roots. The plant samples were oven-dried at 70◦C for 48 h to
a constant mass and then ground to pass through a 0.25-mm
sieve for chemical analysis. Phytoliths in samples were extracted
using a microwave digestion method (Parr et al., 2001). The
phytolith extracts were transferred into pre-weighed centrifugal
tubes, dried at 65◦C for 48 h in an oven, and then weighed.
A K2Cr2O7 solution (0.8 M) was used to detect whether the
organic matter surrounding the phytolith had been completely
removed before the determination of PhytOC (Parr et al., 2010).
The PhytOC was determined according to the PhytOC alkali
spectrophotometry method (Yang et al., 2014). The accuracy
and repeatability of this analytical method was well verified
against the results obtained with acid dissolution-Elementar
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TABLE 1 | Site information of sampling plots of eight monopodial bamboo species studied.

Bamboo species Abbreviations Sampling site Longitude and Altitude (m) Density DBHa Parent material

latitude (plants·ha−1) (cm)

Phyllostachys heterocycla (Carr.) PHMP Hangzhou, Zhejiang N 30◦14′22′ ′ 149.18 2200 9.60 Tuff

Mitford ‘Pubescens’ E 119◦2′30′ ′

Phyllostachys praecox C. D. Chu PPP Lin’an, Zhejiang N 30◦14′ 150.00 20450 3.90 Arenaceous shale

‘Prevernalis’ E 119◦42′

Phyllostachys prominens W. Y. PP Tonglu, Zhejiang N 29◦48′0′ ′ 208.35 9700 6.70 Tuff

Xiong E 119◦34′24′ ′

Pseudosasa amabilis (McClure) PAMK Lin’an, Zhejiang N 30◦15′43′ ′ 50.10 36875 2.40 Tuff

Keng f E 119◦43′38′ ′

Phyllostachys glauca McClure PGM Ningguo, Anhui N 30◦29′24′ ′ 101.50 28150 2.85 Arenaceous shale

E 119◦9′1′ ′

Pleioblastus amarus (Keng) Keng f PAKK Lin’an, Zhejiang N 30◦11′31′ ′ 150.60 78400 2.50 Tuff

E 119◦51′1′ ′

Phyllostachys heteroclada Oliver PHO Lin’an, Zhejiang N 30◦18′55′ ′ 553.63 52500 2.15 Tuff

E 119◦27′9′ ′

Bambusa piscatorum McClure BPM Lin’an, Zhejiang N 30◦19′6′ ′ 425.88 45625 2.10 Tuff

E 119◦27′20′ ′

aDBH, diameter at breast height. PHMP, Phyllostachys heterocycla (Carr.) Mitford ‘Pubescens’; PPP, Phyllostachys praecox C. D. Chu ‘Prevernalis’; PP, Phyllostachys
prominens W. Y. Xiong; PAMK, Pseudosasa amabilis (McClure) Keng f; PGM, Phyllostachys glauca McClure; PAKK, Pleioblastus amarus (Keng) Keng f; PHO, Phyllostachys
heteroclada Oliver; BPM, Bambusa piscatorum McClure.

Vario MAX CN method (Germany) (Yang et al., 2014). In this
method, a 0.01 g phytolith sample was placed into a 10 mL
centrifuge tube, 0.5 mL 10 M NaOH added, and incubated
for 12 h at 25◦C to dissolve the phytoliths. The extract was
further treated with 1.0 mL of 0.8 M K2Cr2O7 solution followed
by addition of 4.6 mL of concentrated H2SO4 to oxidize the
released organic C. The obtained solutions were placed in a
water bath at 98◦C for 1 h, and the concentration of PhytOC
in the solutions was determined colorimetrically at 590 nm
on a Hitachi 150-20 spectrophotometer (Hitachi, Ltd., Tokyo,
Japan).

Data Calculation and Statistical Analysis
C concentration in phytolith, PhytOC concentration in dry
biomass and PhytOC stock were calculated using the following
formulas:

C concentration in phytolith (g kg−1) = C content in

phytolith (g)/phytolith weight (kg) (1)

PhytOC concentration (g kg−1) = C content in

phytolith (g)/ dry biomass (kg) (2)

PhytOC stock (kg ha−1) = 6 [PhytOC

concentration (g kg−1) × biomass (kg ha−1) × 10−3
] (3)

MS Excel 2010 and SPSS 18 software were used to carry
out data processing and statistical analysis. One-way ANOVA
followed by LSD test (p < 0.05) were used to examine the
difference in phytolith and PhytOC contents among different
plant species.

RESULTS

Belowground Biomass of Eight
Monopodial Bamboo Species
The total aboveground biomass (including leaves, branches, and
culm) ranged from 20.82 to 48.68 t ha−1 per dry weight across
the eight species, with the highest in PAKK [Pleioblastus amarus
(Keng) Keng f] and lowest in PP (Phyllostachys prominens W. Y.
Xiong) (Table 2). The biomass of the rhizome was much smaller
than that of the aboveground across the eight species with the
exception that the biomass of rhizome of PP was almost three
times higher than that in the aboveground. The biomass of the
belowground trunk ranged from 1.19 to 7.18 t ha−1 across the
eight species. The proportion of belowground biomass to total
biomass varied from 18.64% for PHO (Phyllostachys heteroclada
Oliver) to 74.91% for PP, with a mean of 39.41%.

Phytolith and PhytOC Concentrations of
Bamboo in Belowground Biomass
There was a significant (p < 0.05) variation in the concentrations
of Si, phytolith, C concentration in phytolith, and PhytOC in
belowground biomass among the eight bamboo species (Table 3).
The concentration of Si and phytolith in the rhizome ranged
from 8.43 g kg−1 for PHMP [Phyllostachys heterocycla (Carr.)
Mitford‘Pubescens’] to 21.05 g kg−1 for PGM (Phyllostachys
glauca McClure), and from 11.20 g kg−1 for PAKK to 35.44 g kg−1

for PGM, respectively. The C concentration in phytolith in
the rhizome ranged from 11.02 g kg−1 for BPM (Bambusa
piscatorum McClure) to 80.42 g kg−1 for PHMP. There were
no significant differences in the C concentration in phytolith
in the rhizome among the other seven bamboo species except
PHMP.
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TABLE 2 | Biomass of eight monopodial bamboo species studied.

Bamboo Aboveground Biomass of Biomass of Belowground Ratio of

species biomass rhizome belowground trunk biomass belowground to total

(t ha−1)a (t ha−1) (t ha−1) (t ha−1) biomass (%)

PHMP 45.94 22.19 2.17 24.36 34.65

PPP 24.47 19.78 2.96 22.74 48.17

PP 20.82 60.71 1.45 62.16 74.91

PAMK 35.55 13.23 1.33 14.55 29.05

PGM 37.85 25.65 1.89 27.54 42.11

PAKK 48.68 29.68 7.18 36.86 43.09

PHO 25.24 4.28 1.50 5.78 18.64

BPM 24.52 6.83 1.19 8.03 24.66

aData were cited from Huang (2014) and Yang (2016). The aboveground biomass includes leaves, branches and culm. PHMP, Phyllostachys heterocycla (Carr.) Mitford
‘Pubescens’; PPP, Phyllostachys praecox C. D. Chu ‘Prevernalis’; PP, Phyllostachys prominens W. Y. Xiong; PAMK, Pseudosasa amabilis (McClure) Keng f; PGM,
Phyllostachys glauca McClure; PAKK, Pleioblastus amarus (Keng) Keng f; PHO, Phyllostachys heteroclada Oliver; BPM, Bambusa piscatorum McClure.

The concentration of Si and phytolith in the belowground
trunk ranged from 2.30 g kg−1 for PPP (Phyllostachys praecox
C. D. Chu‘Prevernalis’) to 14.07 g kg−1 for PHO, and from
5.88 g kg−1 for BPM to 14.95 g kg−1 for PHO, respectively.
The C concentration in phytolith in the rhizome were generally
higher than those in the belowground trunk, and both of them
varied greatly among the bamboo species. The C concentration in
phytolith was highest in PPP (179.99 g kg−1), and lowest in BPM
(23.44 g kg−1). The concentration of PhytOC in dry biomass
was also significantly higher in PPP (0.94 g kg−1) than the other
bamboo species, followed by PHO (0.61 g kg−1) and was lowest
in PP (0.10 g kg−1).

Estimation of PhytOC Stock of Bamboo
in Belowground Biomass
The PhytOC stocks in the rhizome and belowground trunk varied
among the bamboo species with the range of 2.30–23.58 and
0.13–3.73 kg ha−1, respectively (Table 4). The PhytOC stocks
in the rhizome of PP were almost 10 times higher than those
in the rhizome of PHO and BPM. The PhytOC stocks in the
rhizome were much higher than those in the belowground trunk,
accounting for more than 80% of the total belowground biomass
across the eight species with the exception of PHO (69.48%).
The PhytOC stocks in the aboveground and belowground
biomass ranged from 13.00 to 90.36 kg ha−1 and from 2.57 to

TABLE 3 | The concentrations of Si and phytolith, C concentration in phytolith and PhytOC/dry biomass in the belowground trunk and rhizome of eight monopodial
bamboo species.

Organ Bamboo Si Phytolith C concentration in phytolith PhytOC/dry biomass

species (g·kg−1) (g·kg−1) (g·kg−1) (g·kg−1)

Rhizome PHMP 8.43 ± 3.53b 14.69 ± 3.12bc 80.42 ± 16.87a 0.83 ± 0.38a

PPP 14.51 ± 2.47ab 34.93 ± 7.39a 32.27 ± 19.17b 0.83 ± 0.54a

PP 10.58 ± 5.83b 24.53 ± 9.55ab 28.33 ± 2.52b 0.38 ± 0.06a

PAMK 16.16 ± 9.17ab 19.78 ± 3.96bc 34.63 ± 27.20b 0.67 ± 0.43a

PGM 21.05 ± 15.00a 35.44 ± 17.84a 23.20 ± 19.70b 0.66 ± 0.50a

PAKK 10.47 ± 3.93b 11.20 ± 5.33c 32.14 ± 2.75b 0.58 ± 0.08a

PHO 10.70 ± 2.90ab 20.61 ± 5.57bc 23.94 ± 18.32b 0.53 ± 0.34a

RMBPM 13.90 ± 4.69ab 34.74 ± 9.77a 11.02 ± 2.21b 0.34 ± 0.04a

Belowground trunk PHMP 4.88 ± 3.75bc 10.82 ± 0.78ab 57.25 ± 23.53bcd 0.31 ± 0.05bcd

PPP 2.30 ± 0.60c 10.68 ± 1.58ab 179.99 ± 40.04a 0.94 ± 0.53a

PP 3.87 ± 1.03bc 6.13 ± 0.66c 77.71 ± 67.83bcd 0.10 ± 0.02d

PAMK 5.62 ± 2.25b 11.95 ± 4.57ab 38.51 ± 35.06cd 0.19 ± 0.08d

PGM 5.12 ± 1.23bc 9.91 ± 5.45bc 138.58 ± 139.21ab 0.25 ± 0.04cd

PAKK 6.89 ± 1.70b 9.10 ± 3.46bc 132.66 ± 82.84abc 0.54 ± 0.16bc

PHO 14.07 ± 3.67a 14.95 ± 2.79a 40.73 ± 18.44cd 0.61 ± 0.13b

RMBPM 5.05 ± 1.34bc 5.88 ± 1.19c 23.44 ± 5.57d 0.21 ± 0.06d

Values are means± standard error of four replicates. Means followed by different letters within a column are significantly different at the p < 0.05 level. PHMP, Phyllostachys
heterocycla (Carr.) Mitford ‘Pubescens’; PPP, Phyllostachys praecox C. D. Chu ‘Prevernalis’; PP, Phyllostachys prominens W. Y. Xiong; PAMK, Pseudosasa amabilis
(McClure) Keng f; PGM, Phyllostachys glauca McClure; PAKK, Pleioblastus amarus (Keng) Keng f; PHO, Phyllostachys heteroclada Oliver; BPM, Bambusa piscatorum
McClure.
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23.71 kg ha−1 among the studied bamboo species, respectively.
The PhytOC stocks in the belowground biomass accounted for
5.55–56.76% of the total PhytOC stocks of plant biomass among
the eight species, with a mean of higher than 23.36%. The highest
proportion was in PPP (56.76%), followed by PP (37.80%). The
proportion of PHO and BPM was lowest, with a mean of 7.73
and 5.55%, respectively. According to the distribution area of the
bamboo, the total PhytOC stock belowground of the eight species
was 9.14× 104 t, to which 94.84% was contributed by PHMP.

DISCUSSION

The present study showed that the phytolith and PhytOC
concentrations in belowground trunk and rhizome differed
greatly between bamboo species. Our results were partly similar
to the findings by Yang et al. (2015), who found that the phytolith
and PhytOC concentrations vary across leaf, branch and culm,
and also between bamboo species. However, in comparison
with the range of phytolith and PhytOC concentrations in
aboveground biomass found by Yang et al. (2015), the quantity
of PhytOC in the rhizome and belowground trunk in our
study was much smaller. Our study suggested that the PhytOC
production capacities of different bamboo species and different
organs of the same species vary substantially, which may be
ascribed to differences in both physiological properties and the
environments. Several studies suggested that the variation of
PhytOC concentration in plant depends on the contents of
phytolith and C concentration in phytolith, both of which are
related to the plant absorption capacities of Si (Ding et al.,
2008; Parr et al., 2010). It is well-known that although Si can
be taken up by plant roots in the form of Si(OH)4 (Gong et al.,
2004; Ranganathan et al., 2006), the ability of transpiration for
Si varies in bamboos of different species and within different
organs (Leng et al., 2009; Li et al., 2014a; Yang et al., 2015). In
addition, phylogenetic type, climate, soil, and the efficiency of C
encapsulation by the silica are also important factors influencing
the absorption and transpiration of Si (Song et al., 2013; Li
et al., 2014a,b; Zhang et al., 2017). Among these factors, soil
conditions such as water and pH could not only influence the
accumulation of soil phytoliths by affecting the stability of soil
phytoliths, but also influence plant Si uptake from soil solution
by affecting the bioavailability of Si in soils (Parr and Sullivan,
2005; Li et al., 2014c; Yang et al., 2018). For example, plants in
soils with low pH and high organic matter are reported to take
up and accumulate more Si, and consequently higher PhytOC
accumulation (Song et al., 2012b). Liu et al. (2017) found that the
contents of Si and PhytOC in the Moso bamboo leaves differed
between soils derived from different parent rocks. Similarly, Li
et al. (2014c) observed that variation of bioavailable Si of soils
developed on different parent rocks could lead to the differences
in Si absorption from soil solution and phytolith accumulation
in bamboo leaves. Nevertheless, we acknowledge that it is a
limitation of our study that the soil properties were not examined,
and the mechanisms of Si absorption and phytolith accumulation
in belowground trunk and rhizome of bamboo deserves more
studies.

Frontiers in Plant Science | www.frontiersin.org 5 November 2018 | Volume 9 | Article 1615

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01615 November 5, 2018 Time: 7:47 # 6

Chen et al. Belowground Phytolith-Occluded Carbon of Monopodial Bamboo

In previous studies, the potential of phytolith C bio-
sequestration has been largely assessed based on the above- rather
than belowground biomass across both agriculture, grassland
and forestry ecosystems (Parr et al., 2010; Song et al., 2012b;
Li et al., 2013; Ru et al., 2018). One of the important reasons
is that the belowground biomass including shoot stumps and
roots is usually smaller than the aboveground especially for
some Si-accumulator plants, such as sugarcane, rice, and wheat.
Another key reason is that some researchers believed that only the
aboveground biomass, such as leaves and sheath, can accumulate
phytoliths and have high PhytOC concentration (Parr and
Sullivan, 2005; Parr et al., 2009; Song et al., 2012b), leading
to the potential of belowground C sequestration by phytoliths
being overlooked. Our study showed that the belowground trunk
and rhizome of bamboo accounted for an average of 39.41%
of the total plant biomass, while the belowground material
of PP contributed 74.91% of the total weight. These results
are consistent with the findings of Wang et al. (2013). The
PhytOC stock in the belowground biomass of eight monopodial
bamboo species ranged from 2.57 to 23.71 kg ha−1, which was
comparable to those in the aboveground of grassland (1.64 to
10.36 kg ha−1) (Song et al., 2012a), wetland (0.82 to 21 kg
ha−1) (Li et al., 2013) and wheat (1.64 to 10.36 kg ha−1) (Parr
and Sullivan, 2011). The PhytOC stock in the belowground
biomass of PPP (Phyllostachys praecox C. D. Chu ‘Prevernalis’)
was even larger than that in its aboveground biomass. These
observations suggested that though the PhytOC concentrations
in belowground biomass were relatively smaller than those in the
leaves or branches of bamboo or in other plants, the large total
belowground biomass per hectare of the monopodial bamboo
could contribute greatly to the PhytOC stock in belowground.
In contrast, the PhytOC stock in the belowground biomass of
bamboo species was much lower than that in the aboveground
of sugarcane (32.73 to 98.18 kg ha−1) (Parr et al., 2009), which
could be explained by the higher phytolith accumulation ability
and greater biomass of aboveground per unit area of sugarcane
compared to monopodial bamboo (Tu, 2011). Qi et al. (2017)
observed that the PhytOC stock in belowground biomass was
about 40 times of that in aboveground biomass in a typical steppe
grassland due to the greater belowground PhytOC content and
net primary productivity. In agreement, our study for the first
time showed that the PhytOC stock in belowground biomass
makes up an average of 23.36% of the total PhytOC stocks of plant
biomass among the eight bamboo species, though the percentage
value was much smaller than that reported by Qi et al. (2017).
Taking the mean value (14.60 kg·ha−1) of PhytOC stock in
belowground biomass across the eight species and China’s current

monopodial bamboo area of 5.85× 106 ha, we estimated that the
belowground PhytOC stock of monopodial bamboo is 1.01× 105

t, and approximately 3.69 × 105 t CO2 would be sequestered in
belowground phytoliths of Chinese monopodial bamboo forests.
According to Huang et al. (2014) and Yang et al. (2015) who
estimated that the total aboveground PhytOC stock of the eight
species was 4.27 × 105 t, this study further showed that the total
belowground PhytOC stock of the eight species was 9.14× 104 t,
accounting for 21.38% of the whole plant PhytOC stock in China.
Our study provides an important finding that the belowground
biomass of bamboo is a large PhytOC stock that should be
taken into account when estimating the potential of PhytOC
sequestration of the whole bamboo biomass accurately in future
studies. Therefore, the findings here supported our hypothesis
that the bamboo species differ greatly in PhytOC concentrations
in their belowground biomass and between species, and that the
belowground parts make a significant contribution to the total
PhytOC sequestration of bamboo plants.

CONCLUSION

Our study reveals that the PhytOC concentration in the
belowground trunk and rhizome varied among the studied
bamboo species. The PhytOC stock in belowground biomass
makes up an average of 23.36% of the total PhytOC stocks of
plant biomass among the eight bamboo species. Based on our
results, approximately 3.69 × 105 t CO2 would be sequestered in
belowground phytoliths of Chinese monopodial bamboo forests,
suggesting that the belowground biomass of bamboo represent
a great PhytOC stock, and should not be overlooked in future
studies in order to better quantify the PhytOC sequestration
capacity.
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