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Forest tree breeding has been successful at delivering genetically improved material for

multiple traits based on recurrent cycles of selection, mating, and testing. However, long

breeding cycles, late flowering, variable juvenile-mature correlations, emerging pests

and diseases, climate, and market changes, all pose formidable challenges. Genetic

dissection approaches such as quantitative trait mapping and association genetics have

been fruitless to effectively drive operational marker-assisted selection (MAS) in forest

trees, largely because of the complex multifactorial inheritance of most, if not all traits of

interest. The convergence of high-throughput genomics and quantitative genetics has

established two new paradigms that are changing contemporary tree breeding dogmas.

Genomic selection (GS) uses large number of genome-wide markers to predict complex

phenotypes. It has the potential to accelerate breeding cycles, increase selection intensity

and improve the accuracy of breeding values. Realized genomic relationships matrices,

on the other hand, provide innovations in genetic parameters’ estimation and breeding

approaches by tracking the variation arising from random Mendelian segregation in

pedigrees. In light of a recent flow of promising experimental results, here we briefly review

the main concepts, analytical tools and remaining challenges that currently underlie the

application of genomics data to tree breeding. With easy and cost-effective genotyping,

we are now at the brink of extensive adoption of GS in tree breeding. Areas for future GS

research include optimizing strategies for updating prediction models, adding validated

functional genomics data to improve prediction accuracy, and integrating genomic and

multi-environment data for forecasting the performance of genetic material in untested

sites or under changing climate scenarios. The buildup of phenotypic and genome-wide

data across large-scale breeding populations and advances in computational prediction

of discrete genomic features should also provide opportunities to enhance the application

of genomics to tree breeding.
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https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2018.01693
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2018.01693&domain=pdf&date_stamp=2018-11-22
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dario.grattapaglia@embrapa.br
https://doi.org/10.3389/fpls.2018.01693
https://www.frontiersin.org/articles/10.3389/fpls.2018.01693/full
http://loop.frontiersin.org/people/387237/overview
http://loop.frontiersin.org/people/537815/overview
http://loop.frontiersin.org/people/438306/overview
http://loop.frontiersin.org/people/577624/overview
http://loop.frontiersin.org/people/577656/overview
http://loop.frontiersin.org/people/625942/overview
http://loop.frontiersin.org/people/344616/overview


Grattapaglia et al. Genomics to Accelerate Forest Tree Breeding

INTRODUCTION

Forest tree breeding encompasses a number of steps to
increase the frequency of advantageous alleles for several
traits concurrently in a target population. Recurrent cycles
of selection ultimately result in genetically improved planting
material by maximizing genetic gain per unit time in the
most cost-effective way (Namkoong et al., 1988; White et al.,
2007). Long breeding cycles, late and poor flowering, weak
juvenile-mature correlations and changes in climate, market
demands and emerging pest and disease pressures, pose, however,
daunting challenges. The advancement and ultimate output
of tree breeding programs are therefore highly conditional
on the length of a breeding cycle. To maximize genetic
gains per unit time, extensive efforts in tree breeding were
devoted to the two fundamental means by which the length
of a breeding cycle can be decreased, namely, early selection
and accelerated breeding. While the former is based on
the understanding of juvenile-mature correlations and the
practice of selection on juvenile traits (Williams, 1988), the
latter involved early flower induction methods with hormone,
stress treatments, and top grafting (Greenwood et al., 1991;
Hasan and Reid, 1995). In the late 80s, the advent of DNA
markers and two seminal papers on the dissection of discrete
Mendelian factors underlying quantitative traits (Lander and
Botstein, 1989), and marker-assisted selection (MAS) (Lande and
Thompson, 1990), were seen as powerful tools to overcome the
time challenge of tree breeding (El-Kassaby, 1982; Neale and
Williams, 1991; Grattapaglia et al., 1992; Williams and Neale,
1992).

Here we cover the current state of the science on the
general theme of optimizing and accelerating tree breeding
using genomic technologies. A brief overview of the path
across QTL (quantitative trait loci) and association mapping
is first presented. It provides a quick historical perspective on
how and why we reached the point of convergence between
quantitative genetics and genomics. Furthermore, it also serves
to substantiate the fact that reductionist “genetic dissection”
approaches or attempts to use single candidate genes or diffuse,
indirect information from transcriptomics, have not proven
useful for breeding practice and are therefore not discussed
further. We focus on the factors that affect and the challenges
that remain to fully integrate genomic data in tree breeding
in light of the recent promising results of whole-genome
prediction. Although making predictions is difficult “especially
about the future” as Niels Bohr and others once amusingly
said, we attempt to look at the near future of tree breeding
when genotyping, whole genome sequencing and computational
prediction of genomic features for thousands of trees will
not be limiting. We anticipate a future where the progressive
advances made possible by routine genomic selection (GS)
in multiple large populations will provide a more powerful
platform to revisit the discovery of discrete genomic elements
that may further enhance whole-genome phenotype prediction
and eventually allow direct discrete interventions at the DNA
sequence level.

THE PATH FROM GENETIC DISSECTION
TO GENOMIC SELECTION

The prospects of MAS for forest trees was properly doubted
early on, limiting its potential value to specific genetic
backgrounds resulting from linkage equilibrium of forest tree
populations, QTLs interacting with environments and changes
of allele frequencies across generations (Strauss et al., 1992).
Notwithstanding those sound advices, a number of QTLmapping
experiments in the major conifers and eucalypts advanced,
encouraged by the promising results of QTL mapping in
inbred crops and model systems. In retrospect it is startling to
consider how far removed from real-life tree breeding those bi-
parental QTL mapping studies in forest trees were (Grattapaglia,
2017). The motivating hypothesis was that it would be possible
to locate and estimate the effects of most individual QTLs
underlying complex traits in every population and environment
and implement them in tree breeding practice. A substantial
number of studies reporting hundreds QTLs in forest trees was
reported (reviewed in (Kirst et al., 2004; Grattapaglia et al., 2009;
Neale and Kremer, 2011). Although several supposedly “major
effect” QTLs were found in those early studies, those proved
to be largely overestimated in effect size and underestimated in
number. Indeed, subsequent multi-family experiments and larger
sample sizes, revealed significantly larger numbers of QTLs with
correspondingly smaller effects and inconsistent performance
across environments and genetic backgrounds (Ukrainetz et al.,
2008; Novaes et al., 2009; Thumma et al., 2010; Gion et al.,
2011).

To solve the perceived shortcomings of QTL detection in
single mapping families, association genetics was put forward
as a way to provide population-wide marker–trait associations
applicable to breeding (Neale and Savolainen, 2004). The
limitation of methods to interrogate DNA polymorphisms at
the time only allowed candidate-gene approaches (Thumma
et al., 2005; Gonzalez-Martinez et al., 2007), which were
then followed by genome-wide association mapping (GWAS)
in several forest tree species (Beaulieu et al., 2011; Cumbie
et al., 2011; Cappa et al., 2013; Porth et al., 2013; Mckown
et al., 2014). However, irrespective of the marker density
used, population size and improved analytical methods to
account for low-frequency variants (Fahrenkrog et al., 2017;
Müller et al., 2017, 2018; Resende et al., 2017a), only few
polymorphisms of very modest effect have been detected, largely
still lacking independent validation, the cornerstone for the
scientific credibility of GWAS results. In effect, after 25 years
of research efforts based on the principle and experimental
approaches of genetic dissection of quantitative traits, no
translation of such efforts to operational tree breeding was
achieved (Grattapaglia et al., 2009; Grattapaglia, 2014; Isik,
2014).

The ineffectiveness of fully dissecting complex traits, and
the limitations of MAS has not been exclusive to forest trees,
but has also been recognized in crops (Bernardo, 2008) and
domestic animals (Dekkers, 2004). This realization has caused
a significant shift in the paradigm and technical approach to

Frontiers in Plant Science | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1693

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Grattapaglia et al. Genomics to Accelerate Forest Tree Breeding

plant and animal MAS. These fields have now moved from the
a priori discovery of discrete marker-trait associations to the
capture of the whole-genome effect assisted by DNA marker
data, harmonizing with the multifactorial polygenic nature
of quantitative genetics, as predicted by Fisher’s infinitesimal
model (Fisher, 1918). This shift was only possible following the
development of improved and accessible genomic technologies
that allow interrogating thousands of genome-wide single-
nucleotide polymorphisms (SNPs) using cost effective platforms.
The concept of using the “total allelic” (Nejati-Javaremi et al.,
1997) or “total genomic” (Haley and Visscher, 1998) relationship
from marker data to derive estimates of breeding values was
later termed “Genomic Selection” (GS) in Meuwissen et al.
(2001) seminal paper. It demonstrated that “the selection on
genetic values predicted from markers could substantially increase
the rate of genetic gain per unit time in animals and plants,
especially if combined with techniques to shorten the generation
interval.”

GS employs a genome-wide panel of markers, typically
SNP (single nucleotide polymorphism), whose effects on the
phenotype are estimated in a “training” population. In forest
trees, such a training set is usually composed by sampling one
to a few thousand individuals in progeny trials derived from
mating a few dozen parents that constitute the target elite
germplasm bred. SNPs are used to build prediction models
to be later applied to “selection candidates” for which only
genotypes are gathered and phenotypes are predicted by the
genomic data. The prediction models are cross-validated against
a “validation” population, a set of genetically related individuals
to the training set but that did not participate in the estimation
of marker effects. A prediction model that delivers a high
correlation between the observed and predicted breeding values
is subsequently used in the breeding phase to calculate the
genomic estimated breeding or total genotypic values of the
selection candidates (Figure 1). GS fundamentally exploits the
genetic relationship between the training population and the
prospective selection candidates and to a lesser extent the linkage
disequilibrium (LD) between marker data and QTL effects.
By precluding prior discrete marker selection derived from
rigorous significance tests, and by estimating marker effects in
a larger and breeding-representative population of trees, GS
captures substantial proportions of the heritability contributed
by the large numbers of genomic effects that QTL mapping
or GWAS are, on principle, neither able nor intended to
capture.

PERSPECTIVES OF GENOMIC SELECTION
IN TREE BREEDING

GS can have a substantial impact on the rate of genetic gain. Let’s
recall Falconer’s breeder’s equation (1G = irσA/L) (Falconer,
1989), where i is the selection intensity; r is the accuracy of
selection, or heritability in the original Falconer’s expression,
corresponding to the correlation between the estimated and true
breeding values; σA is the additive-genetic standard deviation of
the trait under inspection; and L is the generation interval. GS can

increase the rate of genetic gain of breeding cycle by increasing
(i) because the phenotypes of a much larger number of seedlings
in the nursery can be predicted with marker data compared
to the number of trees that can be tested in conventional
field progeny trials. Additionally, the use of realized genomic
relationships is associated with increased accuracy in estimating
σA and breeding values (r) (Hayes et al., 2009; El-Dien et al.,
2018). Yet, in forest trees, the potentially greatest impact of GS
on the rate of genetic progress will originate from decreasing
(L). Phenotypes of the selection candidates can be predicted
at very early ages, for example, when the seedlings are a few
weeks old. GS not only could preclude or at least enhance the
efficiency of progeny testing but would also optimize clonal
testing phases by advancing a smaller number of pre-selected
trees to be assessed in multi-site expanded clonal trials (Resende
et al., 2012a) (Figure 1). In conifers, GS coupled to somatic
embryogenesis for clonal propagation of elite genotypes could
allow selecting elite zygotic embryos based on their genomic
value saving a significant amount of time, and avoiding the
costs and uncertainties currently involved in cryopreservation
rescue (Resende et al., 2012b). Additionally, GS will allow
simultaneous and early selection for multiple trait in large
numbers of individuals, an impossible task in conventional tree
breeding that currently largely adopts tandem selection. The
final impact of GS would therefore be a significant improvement
in the general efficiency of a tree breeding program, provided,
of course, that genotyping is inexpensive and GS models are
accurate.

What makes GS distinctive from what tree breeders have
done so far is that instead of relying uniquely on the expected
pedigree, frequently prone to errors, DNA data allows one to
build additive and non-additive genomic relationship matrices
that more accurately specify the relationships among individuals
and simultaneously account for contemporary as well as
historical pedigree. This procedure not only allows rectifying
pedigree inaccuracies, but critically it captures the within family
variation resulting from random Mendelian segregation term.
Accordingly, the realized genetic covariances are now based on
the actual fraction of the genome that is identical by descent
or by state between individuals (Vanraden, 2008). It has been
shown in a number of studies in forest trees that realized
genomic relationships can produce more accurate predictions
than pedigrees alone (Munoz et al., 2014; El-Dien et al.,
2015, 2018; Bouvet et al., 2016; Cappa et al., 2017, 2018; Tan
et al., 2018). Additionally, the realized genomic relationships
of a small subset of the progeny testing population have been
effectively combined with a substantially large proportion of
un-genotyped individuals in a single-step analysis (Legarra
et al., 2009). This method was dubbed “HBLUP,” since the
best linear unbiased predictors (BLUPs) of breeding values
are derived using a single (H) genetic covariance matrix that
combines the pedigree-based average numerator relationship
matrix (A) with the marker-based relationship matrix (G).
HBLUP increases the precision of the genetic parameters
generated from traditional pedigrees as shown in recent studies
with forest trees (Cappa et al., 2017, 2018; Ratcliffe et al.,
2017).
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FIGURE 1 | Genomic selection in forest trees. GS begins with the development of a predictive model for the traits of interest (Left panel), which are then used in the

GS cycles (Right panel) and progressively updated. GS uses genome-wide markers whose effects on the phenotype are estimated concurrently in a large and

representative “training population” of individuals without applying severe significance tests. Markers are retained as forecasters of phenotypes in prediction models to

be later applied to “selection candidates” for which only genotypes are collected. The prediction models are cross-validated against a “validation population,” a set of

individuals of the same reference population that were not used for the estimation of marker effects. Once a prediction model is shown to provide adequate accuracy,

it can be used in the GS cycle. An array of selection candidates - full of half-sib families derived from crossing either the original elite parents of the training set, or elite

individuals selected in the training set - are genotyped and have their breeding values (GEBV) and/or genotypic values (GEGV; additive + non-additive effects)

estimated using the model developed earlier. Top ranked seedlings for GEBV are subject to early flower induction and inter-mated to create the next generation of

breeding. Top ranked seedlings for GEGV are clonally propagated and tested in verification clonal trials where elite clones are eventually selected for operational

plantation. Additionally, all or subsets of the already genotyped selection candidates are planted in experimental design and phenotyped at the target selection age to

provide genotype and trait data for GS model updating as GS generations advance and climate changes.

GS: ADVANCES AND CHALLENGES IN
FOREST TREES

A comprehensive and time-lined list of empirical GS reports
in forest tree species was recently published (Grattapaglia,
2017) and it is now updated in Table 1. Prediction accuracies
have been largely very good, matching or surpassing those
obtainable by pedigree-based phenotypic selection, in line with
former simulations (Grattapaglia and Resende, 2011; Iwata
et al., 2011; Denis and Bouvet, 2013). When considering the
practicalities of tree breeding, however, a number of factors
that affect the prospects of GS have to be considered, including
the composition of training populations, analytical methods,
genotype x environment interaction (G∗E), age-age correlations,
the long term models performance and cost and quality of DNA

marker data. All these have been the subject of research and
reviewed in detail in the context of tree breeding by Grattapaglia
(2017) and are briefly discussed below in light of the experimental
results reported to date in forest trees.

GS experiments in forest trees have capitalized on the existing
structure and diversity of breeding populations and their designs
that account for the expected relationship between training
and prospective selection candidates. Training populations of
several hundred to a few thousand individuals sampled from
existing progeny trials with effective population sizes consistent
with those used in operational breeding have provided good
predictions in essentially all studies and for all traits. Analytical
methods differing with respect to the presumed trait architecture
have been used and compared. In all studies, the ridge
regression best linear unbiased prediction (RR-BLUP), with
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TABLE 1 | Timeline summary of experimental genomic selection studies in forest tree species published to date.

Forest tree DNA marker data Traits analyzed References

Eucalypts (Eucalyptus grandis x E.

urophylla, E. camaldulensis - hybrids)

3,129 DArT array Growth and wood quality Grattapaglia et al., 2011

Resende et al., 2012a

Loblolly pine (Pinus taeda) 4,852 SNP chip Growth, wood and disease Resende et al., 2012b

Resende et al., 2012c

Munoz et al., 2014

De Almeida et al., 2016

Loblolly pine (Pinus taeda) 3,461 SNP chip Growth and wood quality Zapata-Valenzuela et al.,

2012

Zapata-Valenzuela et al.,

2013

Eucalypts (Eucalyptus grandis x E.

urophylla - hybrids)

29,090 SNP EuCHIP60K Growth and wood quality Lima, 2014

White spruce (Picea glauca) 6,932 SNP chip Growth and wood quality Beaulieu et al., 2014a

Beaulieu et al., 2014b

Ratcliffe et al., 2017

Interior spruce (Picea glauca x P.

engelmannii)

8,868 to 62,198 GbS SNPs Growth and wood quality El-Dien et al., 2015

Ratcliffe et al., 2015

El-Dien et al., 2018

Maritime pine (Pinus pinaster) 4,332 SNP chip Growth and form Isik et al., 2016

Bartholome et al., 2016

Eucalypts (Eucalyptus grandis x E.

urophylla - hybrids)

3,303 DArTseq SNPs Growth Bouvet et al., 2016

Eucalypt (Eucalyptus pellita and E.

benthamii)

19,506 SNP EuCHIP60K Growth Müller et al., 2017

Eucalypt (Eucalyptus grandis x E.

urophylla - hybrids)

24,806 SNP EuCHIP60K Growth and wood quality Resende et al., 2017b

Eucalypt (Eucalyptus globulus) 12,000 SNP EuCHIP60K Growth and wood quality Duran et al., 2017

Black spruce (Picea mariana) 4,993 SNP chip Growth and wood quality Lenz et al., 2017

Eucalypt (Eucalyptus grandis) 2,816 DArT array Growth Cappa et al., 2017

Cappa et al., 2018

Eucalypt (Eucalyptus grandis x E.

urophylla - hybrids)

41,304 SNP EuCHIP60K Growth and wood quality Tan et al., 2017

Tan et al., 2018

Douglas fir (Pseudotsuga menziesii) 69,551 exome capture SNPs Growth and wood quality Thistlethwaite et al., 2017

Norway spruce (Picea abies) 116,765 exome capture SNPs Growth and wood quality Chen et al., 2018

Eucalypt (Eucalyptus nitens) 12,236 SNP EuCHIP60K Growth and wood quality Suontama et al., 2018

Eucalypt (Eucalyptus polybractea) Shallow whole genome sequencing; up to 500,000 SNPs Foliar terpene yield traits Kainer et al., 2018

Eucalypt (Eucalyptus grandis x E.

urophylla - hybrids)

40,932 SNP EuCHIP60K and 55,772 capture probe SNP Growth and wood quality De Moraes et al., 2018

Studies that investigated different aspects of GS but used partially or totally the same breeding population data (genotypes and/or phenotypes) are listed in the same entry.

marker effects treated as random, normally distributed with
common variance, has been very efficient. RR-BLUP has been
equivalent to Genomic BLUP (GBLUP), providing the best
conciliation between prediction efficiency and fast computation,
while also revealing that essentially all major traits in forest trees
fit the infinitesimal model (Resende et al., 2012c; Beaulieu et al.,
2014b; Ratcliffe et al., 2015; Isik et al., 2016; Müller et al., 2017;
Tan et al., 2017; Chen et al., 2018). Still, additional research in
this area is warranted especially as prior functional information
on genomic regions of slightly larger effect might emerge, for
example, for disease resistance traits as shown for prediction of
fusiform rust resistance in loblolly pine (Resende et al., 2012c).

Ever since the first experimental GS studies in forest trees
(Grattapaglia et al., 2011; Resende et al., 2012a,b), it became
clear that prediction accuracies are mainly driven by genetic

relationship between training and validation sets and are
dependent on G∗E and age-age correlations. Predictions will be
most effective at the same age and in the same environment
where the prediction model was trained. Further studies in
conifers (Zapata-Valenzuela et al., 2013; Beaulieu et al., 2014a,b;
El-Dien et al., 2015; Ratcliffe et al., 2015; Thistlethwaite et al.,
2017; Chen et al., 2018), and eucalypts (Müller et al., 2017;
Tan et al., 2017), corroborated the key significance of genetic
relationships and the impact of G∗E and age-age correlations,
consistent with findings in domestic animals and crop plants
(Lin et al., 2014; Van Eenennaam et al., 2014). While data
from G∗E or age-age correlation studies will shed light on what
to expect from genomic prediction, assuring that the target
environment of future selection candidates will be equivalent to
the one where models were originally trained is a challenging
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issue for GS (Heslot et al., 2015). Regular retraining of GS models
by incorporating phenotypes collected in breeding generations
closer to the current (Iwata et al., 2011) are expected to mitigate
this problem, and will be especially essential in light of climate
fluctuations. Research efforts in this area are highly needed and
will come as GS programs advance, coupled to innovations in
phenotyping platforms that integrate remote sensing, spatial and
geographic information systems (Dungey et al., 2018).

Notwithstanding the encouraging estimates of predictive
ability, most studies in forest trees used contemporary training
and validation sets and thus have not yet been able to adequately
assess the realized performance of GS across generations at a
larger scale, but results on this topic are imminent. However,
given that the relationship between parents and progeny are
accurately captured by DNA marker data, and environments
should be relatively stable across close generations, it is
expected that the performance will be equivalent to current
estimates in contemporary sets. In Pinus pinaster, preliminary
promising results of inter-generation prediction were reported
by training models with parents and progeny in the same set
(Isik et al., 2016), and later using parents and grandparents
to predict in the subsequent generation, albeit with limited
effective population sizes (Bartholome et al., 2016). However,
this outcome was not observed in a three-generation study of
Pseudotsuga menziesii (El-Kassaby, personal communication).
Model updating strategies will therefore be crucial to counteract
the decay of relatedness and LD between the original training set
and selection candidates as generations of breeding advance, as
shown by simulations for eucalypt breeding (Denis and Bouvet,
2013).

In the past 2 years, a number of additional experimental GS
studies have been reported (Cappa et al., 2017, 2018; Duran
et al., 2017; Lenz et al., 2017; Müller et al., 2017; Ratcliffe et al.,
2017; Tan et al., 2017, 2018; Thistlethwaite et al., 2017) (Table 1;
Resende et al., 2017b; Chen et al., 2018; De Moraes et al., 2018;
El-Dien et al., 2018; Kainer et al., 2018; Suontama et al., 2018).
Many of them in species of Eucalyptus for which public high-
throughput genotyping platforms of DArT (Sansaloni et al.,
2010) and SNPs (Silva-Junior et al., 2015) have been available.
Access to such resources for eucalypts also allowed improved
precision of genetic parameter estimates, pedigree reconstruction
and inbreeding studies (Telfer et al., 2015; Klápště et al., 2017;
Müller et al., 2017). This clearly points to the fact that the
advancement of research and operational adoption of genomics
into breeding is strongly dependent on the availability of public,
robust, cost-accessible and portable SNP genotyping platforms.
The success of GS or any other genomic-based breeding approach
will rely on high data quality, as one has to be able to genotype
SNPs across generations with high reproducibility and negligible
missing data. Although shallow whole genome sequencing
(Kainer et al., 2018), genotyping-by-sequencing (GbS) (El-Dien
et al., 2015) and sequence capture (Thistlethwaite et al., 2017;
Chen et al., 2018; De Moraes et al., 2018) have also been used
for GS in trees, currently fixed SNP arrays provide the gold
standard of data reproducibility across samples batches and
laboratories. Additionally, SNP array data are breeder friendly,
available from multiple service providers, easily manageable and

stored without the cost and logistics of sequence data transfer,
storage and analysis. This and a significant recent drop in array
costs, making them as cost-effective as sequence-based methods,
has motivated a large international effort to develop SNP arrays
for all main planted conifers (F. Isik pers. comm.), and a second
generation, higher density optimized SNP array for species of
Eucalyptus and Corymbia (O.B. Silva-Junior and D. Grattapaglia
pers. comm.). The use of a common SNP genotyping array across
breeding programs of different organizations will be a key issue
to provide the necessary economy of scale to integrate genomics
into breeding.

A LOOK TO THE NEAR FUTURE

With easy access to SNP genotyping and positive results in
essentially all major forest trees, we are now at the brink of
widespread adoption of genomic prediction data, thus realizing
the early promises of MAS in forest tree breeding. In addition to
the outstanding research challenges discussed above, a promising
area to enhance the value of genomic data will involve the
inclusion of environmental co-variables in GS models as already
shown in crops (Jarquin et al., 2014; Saint Pierre et al., 2016). The
integration of multi-environment trials data will be strategic for
predicting performance in unobserved environments, identifying
suitable sites for evaluating or deploying genetic material
and predicting climate change scenarios. While predicting the
performance of untested clones or families can be accurate when
there is knowledge of genomic relatedness, correspondingly, the
performance in yet unobserved or future environments could
be forecasted if there is data about those environments as
shown for recommendation of Eucalyptus clones (Marcatti et al.,
2017). Resources such as ClimateNA (Wang et al., 2016) and
the NASA POWER project (Stackhouse, 2014) offer multitudes
of historical and predicted future environmental data. Because
environmental variables that define the correlation between
growing conditions are trait specific, research on those most
appropriate for inclusion in genomic prediction models will be
essential.

Another area that will demand research comes from the
evolution of sequencing technologies in moving from sparse
SNP data to sequence data for GS. Apart from the challenge
and cost of managing massive next generation sequencing data
sets for large numbers of individuals in a breeding program
framework, in theory, if sequence data were used instead of dense
SNPs, accuracy should increase because rare causal alleles would
be better captured in predictive models. Until now, however,
simulation and experimental studies in domestic animals have
shown that whole-genome sequence data does not increase
accuracy when LD has a slow decay pattern (Macleod et al.,
2014; Forneris et al., 2017; Vanraden et al., 2017), unless very
precise prior estimates on the functionality of particular SNPs
exist (Perez-Enciso et al., 2015). Increasing the availability and
quality of functional data on specific genomic regions might
therefore, be warranted.

The success of whole-genome prediction and the poor
outcome of dissection approaches in identifying functional
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quantitative trait nucleotides, have contributed nevertheless to
an exciting new perspective for the study of complex trait
variation. A clear pattern has emerged in annual plants indicating
that the association signal of common variants in large sample
sizes, although spread across the entire genome, is heavily
concentrated in regulatory DNA in open chromatin marked
by deoxyribonuclease hypersensitive sites (Sullivan et al., 2014;
Rodgers-Melnick et al., 2016; Swinnen et al., 2016). In these
plants, cis-regulatory elements (CREs) associated with open
chromatin such as promoters and enhancers regulating gene
expression may contain close to half of all variants influencing
traits. As GS implementation advances and large datasets of
several thousand trees across unrelated populations are collected,
opportunities will emerge for joint and meta-GWAS, as recently
described in Eucalyptus (Müller et al., 2018). At the same time,
chromatin accessibility and gene network data as reported for
Eucalyptus (Hussey et al., 2017) and Populus (Zinkgraf et al.,
2017) will become increasingly available which, combined with
data from highly powered SNP-trait association studies, should
provide new avenues for computational predictive discovery
of key regulatory elements in the genome. The progress of

such integrative approaches based on large genotype and
phenotype datasets might, thus, result in additional clues
toward understanding the complex connections and interactions
between discrete genomic elements and continuous phenotypic
trait variation, ultimately enhancing tree breeding practice.
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