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The study of the drivers that shape spatial genetic structure across heterogeneous
landscapes is one of the main approaches used to understand population dynamics
and responses in changing environments. While the Isolation-by-Distance model (IBD)
assumes that genetic differentiation increases among populations with geographical
distance, the Isolation-by-Resistance model (IBR) also considers geographical barriers
and other landscape features that impede gene flow. On the other hand, the Isolation-
by-Environment model (IBE) explains genetic differentiation through environmental
differences between populations. Although spatial genetic studies have increased
significantly in recent years, plants from alpine ecosystems are highly underrepresented,
even though they are great suitable systems to disentangle the role of the different
factors that structure genetic variation across environmental gradients. Here, we
studied the spatial genetic structure of the Mediterranean alpine specialist Silene
ciliata across its southernmost distribution limit. We sampled three populations across
an altitudinal gradient from 1850 to 2400 m, and we replicated this sample over
three mountain ranges aligned across an E-W axis in the central part of the Iberian
Peninsula. We genotyped 20 individuals per population based on eight microsatellite
markers and used different landscape genetic tools to infer the role of topographic
and environmental factors in shaping observed patterns along the altitudinal gradient.
We found a significant genetic structure among the studied Silene ciliata populations
which was related to the orography and E-W configuration of the mountain ranges. IBD
pattern arose as the main factor shaping population genetic differentiation. Geographical
barriers between mountain ranges also affected the spatial genetic structure (IBR
pattern). Although environmental variables had a significant effect on population genetic
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diversity parameters, no IBE pattern was found on genetic structure. Our study reveals
that IBD was the driver that best explained the genetic structure, whereas environmental
factors also played a role in determining genetic diversity values of this dominant plant
of Mediterranean alpine environments.

Keywords: landscape genetics, isolation by distance, isolation by resistance, isolation by environment, genetic
diversity, marginal populations, environmental gradient

INTRODUCTION

Species resilience to changing environments largely depends on
their genetic diversity (Lande and Shannon, 1996; Frankham
et al., 2002). Thus, knowledge on the spatial distribution
of species genetic diversity is an essential component for
understanding the challenges brought about by climate change
(Manel and Holderegger, 2013). This is especially important
for species in habitats with marked environmental gradients,
such as those found in mountain ecosystems. Projected climate
warming rates are expected to have a great impact on mountain
ecosystems (Beniston et al., 1997; Nogués-Bravo et al., 2007;
Kohler et al., 2010; Rangwala and Miller, 2012), particularly on
alpine plant communities (Thuiller et al., 2005; Gottfried et al.,
2012; Steinbauer et al., 2018). It is, therefore, crucial to identify
the main ecological drivers of genetic structure at different spatial
scales to forecast the response of alpine plant species to climate
change.

Several hypotheses have been proposed to generalize patterns
of genetic variation across space. Gene flow limitation and
drift caused by geographical isolation generate an Isolation-by-
Distance (IBD) pattern (Wright, 1943). It assumes that linear
relationship between genetic and Euclidean geographic distance
per se is the main driver of genetic structure and considers
that other factors like landscape features, range boundaries
or environmental characteristics influencing gene flow are not
relevant (Manel et al., 2003; McRae, 2006; Storfer et al., 2007).
Nowadays, there is evidence that IBD may be too simplistic and
that it should be contrasted with more complex models (Jenkins
et al., 2010). Thus, the Isolation-by-Resistance (IBR) pattern
incorporates range boundaries and landscape features, such as
geographical barriers, as a cause of gene flow limitation and drift
(McRae, 2006; Spear et al., 2010; Cushman et al., 2015). Both IBD
and IBR are closely related to the underlying process of Isolation-
by-Dispersal and indirectly related to environmental conditions
(Orsini et al., 2013). Isolation-by-Environment (IBE) pattern
is caused by environmental heterogeneity and local adaptation
related to strong divergent selection (Sexton et al., 2014; Wang
and Bradburd, 2014). In mountain ecosystems, high isolation
produced by steep topography, barriers and environmental
gradients facilitate various processes that generate different
isolation patterns. Historical patterns of range expansion and
contraction can also modify current isolation effects and affect
genetic structure (Cushman et al., 2015). All these processes can
act alone or in combination, and their importance may vary
depending on the spatial scale of observation (Orsini et al., 2013).

Isolation processes related to geographic and environmental
distances may produce profound demographic and genetic

outcomes for plant populations within species distribution ranges
(Eckert et al., 2008). Species range limits, characterized by
increased genetic isolation (Sexton et al., 2009), often occur across
ecological gradients where habitats become less suitable and
environmental differentiation increases when moving toward
the margins (Kawecki, 2008). Inside species distribution ranges,
we can distinguish populations inhabiting environmentally
central areas from populations occurring in marginal areas, i.e.,
those located at the edge of the species environmental and/or
geographical distribution range (Soule, 1973; Brussard, 1984;
Kawecki, 2008; Pironon et al., 2015; Papuga et al., 2018). It
is important to consider that the geographical center of the
species range is not necessarily associated to the areas with
higher habitat quality (Sagarin et al., 2006). In the distribution
margin, populations experience environmental conditions that
differ from those found at the central areas and they tend to
be prone to environmental fluctuations that ultimately reduce
habitat quality and quantity and restrict resource availability,
affecting population demography and thus genetic diversity
(Hampe and Petit, 2005; Eckert et al., 2008; Kawecki, 2008). Thus,
as we approach to the distribution margins it is expected that
other processes such as IBE will influence the distribution of
genetic diversity, in addition to IBD.

Plants from alpine ecosystems provide a very interesting
context to disentangle the various mechanisms that structure
genetic variation within and among populations at different
scales related to patterns of isolation between populations
(IBD/IBR vs. IBE). Several studies have shown adaptive genetic
differentiation and local adaptation processes related with the
strong environmental variability in these ecosystems using
phenotypic, genetic, and/or genomic data (e.g., Gonzalo-Turpin
and Hazard, 2009; Frei et al., 2012a, 2014; Di Pierro et al., 2017;
Hämälä et al., 2018). In some instances, local adaptation persists
despite the existence of significant gene flow between populations
(Gonzalo-Turpin and Hazard, 2009; Kim and Donohue, 2013).
However, in other cases, local adaptation has not been found
(Ometto et al., 2015; Hirst et al., 2016; Hamann et al., 2017). Also
the effect of geographical distance and landscape configuration
have been documented as an important forces that hinder gene
flow and promote genetic differentiation between populations
(Kuss et al., 2008; Aægisdóttir et al., 2009; Geng et al., 2009; Wang
et al., 2011; De Vriendt et al., 2017). However, few studies have
combined different isolation processes in the context of landscape
genetic approaches (e.g., Mosca et al., 2014; Wu et al., 2015;
Noguerales et al., 2016) and focused on environmental variables
causing the genetic isolation patters identification (e.g., Manel
et al., 2012; Mosca et al., 2012). Furthermore, although landscape
genetics studies have increased significantly in recent years, plants
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are still highly underrepresented (Storfer et al., 2010; DiLeo and
Wagner, 2016).

Mediterranean mountain ranges encompass a territory with
wide environmental and geographical heterogeneity where many
species reach their southernmost distribution range limits. They
are also rich in endemic species and are biogeographically
important as glacier refuges (Nieto Feliner, 2014). In this context,
we combined geographic, environmental and genetic data and
applied landscape genetics tools to depict the genetic structure
patterns of nine populations of a Mediterranean alpine plant,
Silene ciliata Poiret (Caryophyllaceae), distributed along the
elevational range of the species in central Spain. As an alpine
species, the distribution range of S. ciliata has experienced
historical environmental fluctuations related to glaciations
(Hewitt, 2001; Nieto Feliner, 2011) and is presently challenged by
environmental changes related to climate change (Körner, 2003,
2007). The species grows across an elevational gradient, where
populations at the lowest elevation experience the most stressful
conditions (due to water limitation in summer), constraining
seedling establishment and reproductive performance (Giménez-
Benavides et al., 2007a, 2011b; Lara-Romero et al., 2014). Our aim
was to assess the role of geographic isolation (IBD), landscape
features (IBR) and environmental heterogeneity (IBE) in shaping
the genetic diversity and structure of S. ciliata. We specifically
addressed three main questions: (i) Are S. ciliata populations
genetically structured across mountain ranges and elevational
gradients? (ii) If so, can observed genetic structure patterns be
explained by isolation-by-distance (IBD), isolation by resistance
(IBR) and/or isolation-by-environment (IBE)? and (iii) How do
these factors affect genetic diversity?

Most genetic approaches are addressed to species with
limited distribution ranges, whereas more widespread species
have not deserved so much attention from the conservation
genetics community. The results of this study will provide useful
information for the conservation of the genetic variation of
a dominant species of the endangered Mediterranean alpine
ecosystems (Tutin et al., 1964; Kyrkou et al., 2015) in one of its
southernmost distribution limits.

MATERIALS AND METHODS

Study Species and Sampling Design
Silene ciliata Poiret (Caryophyllaceae) is a dwarf cushion
perennial plant which inhabits Mediterranean alpine habitats
with marked environmental gradients. It is pollinated by
nocturnal insects, mainly belonging to the genus Hadena
(Lepidoptera, Noctuidae), and diurnal insects (Giménez-
Benavides et al., 2007b). The flowering period spans from the
end of July to the end of August. Seeds are relatively small
(mean ± SD: 1.53 ± 0.49 mm diameter, 0.59 ± 0.06 mg weight),
and most of them are dormant and need cold stratification to
germinate (Giménez-Benavides et al., 2005; García-Fernández
et al., 2015). The species is essentially barochorous, i.e., seeds
lack any specific structure to promote dispersal. Thus, effective
seed dispersal distances are low and relatively invariant across
populations (mean ± SE: 0.40 ± 0.08 m, Lara-Romero et al.,

2014). The distribution range of S. ciliata comprises the
mountain ranges of the Northern Mediterranean area from
Spain to Bulgaria (Tutin et al., 1964; Kyrkou et al., 2015),
reaching its southernmost limit in the Sistema Central of the
Iberian Peninsula (Figure 1). S. ciliata populations from the
Sistema Central have the same phylogenetic origin as shown by
chloroplast DNA analysis (Kyrkou et al., 2015). In these areas
the species grows from 1900 to 2590 m in dry cryophilic pastures
above the tree line. This Mediterranean Alpine ecosystem
presents a pronounced summer drought combined with high
solar radiation which induces typical xerophilic characteristics
in the inhabiting species (Rivas-Martínez et al., 1990).The study
took place in three mountain ranges of the Sistema Central
(Spain): Guadarrama (GDM), Béjar (BJR) and Gredos (GRD)
(Figure 1 and Table 1). The Sistema Central is a southwest-
northeast oriented mountain range of approximately 500 km
located in the center of the Iberian Peninsula. The GDM, GRD
and BJR mountain ranges are located in the western, central and
eastern areas of the Sistema Central, respectively.

We characterized the quality of the habitats of the study area
by generating a niche model. We used MAXENT algorithm
(Phillips et al., 2006) to generate a model for the Sistema Central
according to the species environmental requirements (Morente-
López et al., unpublished data). Minimum annual temperature
(MAT), precipitation of the driest month (PPd), medium annual
snowpack (SP) and medium annual potential evapotranspiration
(PET) were used to build the model. We used climatic data from
the Atlas Climático de la Península Ibérica with a 200-meter
resolution (Ninyerola et al., 2005). Medium annual snowpack
was calculated following the methodology proposed by López-
Moreno et al. (2007) and the rest of the environmental variables
were calculated using ENVIREM R package (Title and Bemmels,
2018). Thus, according to this model, we defined the higher-
quality habitats as “Optimal” and the lower-quality habitats as
“Marginal” following the definition of environmental marginality
(Soule, 1973; Kawecki, 2008). “Optimal” areas were those with
habitat suitability values in the highest 33rd percentile of the
distribution. The lower values of MAT and PET and the higher
values of SP and PPd define these areas. “Marginal” areas were
defined as those with habitat suitability values in the lowest 33rd
percentile of the distribution. This classification is congruent
with demographic trends obtained by Giménez-Benavides et al.
(2011a). We selected three S. ciliata populations in each of the
three mountain ranges, one located in an optimal area and
two in marginal areas. The names, location and ecogeographic
characterization of the nine studied populations are shown in
Table 1.

DNA Extraction and Molecular Analysis
We collected S. ciliata leaf tissue from 20 individuals per
population for genetic analysis (n = 180). DNeasy Plant
minikit (QIAGEN, Valencia, CA, United States) was used
for DNA extraction of 10–20 mg of dried S. ciliata tissue.
Based on a previous study (García-Fernández et al., 2012a),
we selected eight microsatellite loci for genotyping: Sci1224,
Sci1208, Sci0106, Sci1443, EST-2HTS, EST-37HTS, EST-G34D06
and EST-G47A02. PCR protocols were performed as described
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FIGURE 1 | (A) Location of the study sites in the Sistema Central of the Iberian Peninsula. Yellow circles represent each of the three populations located in optimal
areas and red dots represent each of the six populations located in marginal areas (see Table 1). NAJ, Najarra Baja; MOR, Morrena Peñalara; PEN, Pico Peñalara;
SES, El Sestil; CAM, Los Campanarios; ZON, Altos del Morezón; RUI, Las Cimeras; AGI, Pico del Aguila; NEG, Canchal Negro. (B) Representation of Silene ciliata
distribution area. Red circle indicates the Sistema Central of the Iberian Peninsula, where our study takes place.

TABLE 1 | Geographic and environmental features of nine sampled populations of Silene ciliata. Env. Class., populations environmental classification; Tmax, Annual
maximum temperature; Tmin, annual minimum temperature.

Population Pop ID Mountain range Env. Class. Elevation (m) Tmax (◦C) Tmin (◦C) Lat. Long.

Najarra baja NAJ Guadarrama (GDM) Marginal 1850 26,5 −5,9 40◦49′23,46′ ′N 3◦49′52.53′ ′W

Morrena Peñalara MOR Guadarrama Marginal 1980 24.7 −5.7 40◦50′11.82′ ′N 3◦57′0.91′ ′W

Pico de Peñalara PEN Guadarrama Optimal 2400 24.1 −7.8 40◦51′2.11′ ′N 3◦57′24.02′ ′W

El Sestil SES Gredos (GRD) Marginal 1900 28 −5.9 40◦16′24.45′ ′N 5◦14′54.93′ ′W

Los Campanarios CAM Gredos Marginal 2000 27.7 −6 40◦15′42.63′ ′N 5◦12′55.74′ ′W

Altos del Morezón ZON Gredos Optimal 2380 26.9 −7.7 40◦14′57.5′ ′N 5◦16′8.3′ ′W

Las Cimeras RUI Bejar (BJR) Marginal 2000 26.7 −6.7 40◦21′7.03′ ′N 5◦40′59.71′ ′W

Pico El Aguila AGI Bejar Marginal 1950 26.9 −6.1 40◦21′12.36′ ′N 5◦41′46.52′ ′W

Canchal Negro NEG Bejar Optimal 2360 26 −7.2 40◦20′19.97′ ′N 5◦41′22.27′ ′W
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in García-Fernández et al. (2012b). We genotyped all samples
in an automated DNA sequencer (ABI PRISM 3730, Applied
Biosystems, Foster City, CA, United States) in the Unidad
de Genómica (Universidad Complutense de Madrid, Spain).
GeneMarker version 1.85 (SoftGenetics, State College, PA,
United States) was used to determine fragment size. We evaluated
genotyping accuracy by re-amplifying and re-scoring 20% of
the samples (N = 36). MICRO-CHECKER (Van Oosterhout
et al., 2004) was used to assess the frequency of null alleles,
and allelic dropout. No allelic dropout was found. We detected
null alleles in most of the populations, but as they were not
related to a particular locus across populations, we kept all
the markers. We tested for linkage disequilibrium across loci
and populations (Log-likelihood ratio G statistic based on 5000
permutations performed in GENEPOP v. 4.1, Rousset, 2008).
Only one locus presented significant linkage disequilibrium
across populations. However, we decided to include it in the
analysis as the disequilibrium was only present in two of the nine
populations.

Data Analysis
Geographic Distribution of Genetic Variation
Population genetic characterization
To characterize the study populations, we calculated the
following estimators of genetic diversity across populations:
(i) total number of alleles (Na); (ii) number of private alleles
(PA); (iii) mean number of alleles per locus (A); (iv) observed
heterozygosity (Ho); (v) expected heterozygosity (He); and (vi)
inbreeding coefficients Fis defined as [1-(Ho/He)] and (v) Fi,
calculated as the probability that the two alleles at a locus
are identical by descent following the definition of Malécot
and Blaringhem (1948). We applied the methodology proposed
by Chybicki and Burczyk (2008) using the Bayesian approach
implemented in INEST 2.2 software to calculate Ho, He and
inbreeding coefficient Fi corrected for null alleles. We also tested
for deviances from Hardy–Weinberg equilibrium (HWE) per
locus in each population following Haldane (1954) and for all
populations using Fisher’s exact test. Significance of the latter was
assessed with Monte Carlo tests using 2000 iterations. Analyses
were performed with diveRsity v. 1.9.90 R package (Keenan et al.,
2013) implemented in R (R Core Team, 2009).

Genetic structure and differentiation among populations
In order to study the contribution to the genetic structuring
of the different hierarchical levels in our data set (populations,
mountain ranges and environments), we tested for genetic
differentiation measured as Fst across three different hierarchical
configurations: (i) genetic differentiation among and within
the nine populations, (ii) genetic differentiation among the
three mountain ranges considering the genetic variance among
populations within mountain ranges and within populations and
(iii) genetic differentiation between environments (optimal vs.
marginal) considering the genetic variance among populations
within environments and within populations (Table 1). Fst
values and 95% confidence intervals were estimated by
1000 randomizations of bootstrapping distance matrices. We
performed the hierarchical genetic structures analysis across

these organization levels using Hierfstats v. 0.04-22 R package
(Goudet and Jombart, 2015). Considering the hierarchical
structure of our sampling design, we also performed an analysis
of molecular variance (AMOVA) with 9999 permutations, using
GeneAlEx 6.5 (Peakall and Smouse, 2012) to contrast the results
of the hierarchical Fst analysis.

We searched for genetic clusters across spatial scales by
performing a Discriminant Analysis of Principal Components
(DAPC) (Jombart et al., 2010) as implemented in adegenet R
package (Jombart, 2008). In DAPC, discriminant functions are
linear combinations of the variables (principal components of
PCA) which optimize the separation of individuals into pre-
defined groups (Jombart and Ahmed, 2012) determined using the
K-means clustering algorithm. We used the find.clusters function
(adagenet R package) to study the optimal number of clusters
regarding the maximum drop in BIC values. We used the a-score
to set the number of PCs retained in the DAPC to control the
possible overfit, which is a measure of the trade-off between
power of discrimination and over-fitting the model (Jombart and
Ahmed, 2012).

We also applied a Bayesian clustering method as implemented
in STRUCTURE v 2.3.4 (Pritchard et al., 2000). We performed
ten independent runs for each possible number of K clusters from
one to nine. Each run assumed a burn-in period of 106 iterations,
followed by 107 MCMC iterations considering the model of
correlation frequencies and admixture origin. To elucidate the
most plausible value of K, we followed the approach described
in Evanno et al. (2005) implemented in Structure Harvester (Earl
and vonHoldt, 2012). Then, we used Clumpp v. 1.1.2 (Jakobsson
and Rosenberg, 2007) to obtain the permuted membership
coefficient of each individual assigned to each cluster, joining the
results of the 10 independents runs. The output from Clumpp was
visualized by Distruct v 1.1 (Rosenberg, 2004).

A Geneland analysis (Guillot et al., 2005) was also developed
considering five runs of 106 MCMC iterations after a burning
process of 105 simulations, sampling each 1000 steps, ranging
K values between 1 and 10 and applying spatial and null
alleles corrections, to confirm analysis made with DAPC and
STRUCTURE.

Geographic and Environmental Drivers of Genetic
Structure: Mantel and Partial Mantel Test
We wanted to elucidate whether the observed genetic structure
was caused by geographical distance (IBD), environmental
conditions (IBE), geographical conformation of the landscape
(IBR) or a combination of these factors. To achieve this, we first
obtained four different types of distance matrices:

(i) Genetic distance matrix, calculated as pairwise Fst distance
between the nine populations using FreeNA (Chapuis and
Estoup, 2007) to correct for the presence of null alleles;
(ii) Geographic distance matrix, based on Euclidean distances
between populations. Genetic and Euclidean distance matrices
were transformed [Fst/(1-Fst)] and log(Euclidean distance),
respectively, to linearize their relationship (Rousset, 1997); (iii)
The environmental distance matrices were created with 200-
meter resolution data from the Atlas Climático de la Península
Ibérica (Ninyerola et al., 2005). As annual maximum and
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minimum temperatures (Tmax and Tmin, respectively) have
been proposed as reference variables of environmental gradients
in alpine ecosystems (Totland, 1999; Totland and Alatalo, 2002;
Körner, 2003, 2007), we selected Tmax and Tmin as proxies of
the environmental gradients of the study territory. We previously
tested them for collinearity by checking if the variance inflation
factor (VIF) was below 2 (Chatterjee and Hadi, 2015); and (iv)
Least-cost distance matrix between each pair of populations was
calculated in terms of the cost of effective migration from one
population to another, using a digital elevation model (DEM)
with 200-m spatial resolution (Ninyerola et al., 2005) as a proxy.
Taking into account the biological features of this alpine species,
effective gene flow was only considered to be possible along
the areas of the Sistema Central with the highest elevations.
Thus, 1280 m a.s.l. was selected as the threshold below which
the species could not migrate. The selected threshold ensures
connectivity among the three mountain ranges. Least-cost values
were determinate by determined for each pair of populations
as the accumulated cost value of all cells to be crossed. Cell
cost values express cumulative cost of movement in terms of
distance equivalence. Distances were measured according to
the minimum amount of friction that must be accumulated
to move from one population to another target population.
Movements were allowed for the standard eight directions from
any cell. Least-cost distances were calculated in IDRISI Selva V.
17 (Eastman, 2012).

Since the adequacy of simple Mantel tests has been
considerably criticized in the past for its proneness to type I
error (e.g., Manel and Holderegger, 2013) we used reciprocal
causal modeling (RCM) to control for Mantel test proneness
to spurious correlations (Cushman and Landguth, 2010) and to
assess the relevance IBD, IBE and IBR patterns in our study case.
We followed the methodology proposed by Cushman et al. (2006,
2013b) and applied by Ruiz-Gonzalez et al. (2015).

Reciprocal causal modeling uses pairs of reciprocal partial
Mantel tests to study the relative support of alternative genetic
configuration hypotheses (IBD, IBE, IBR). First, the partial
Mantel correlation between one of the hypothesis (e.g., IBD)
and the genetic distance (G.Dist), controlling for the effect of
a second hypothesis (e.g., IBR) was calculated using partial
Mantel test (G.Dist∼ IBD| IBR). Second, a second partial Mantel
test was developed but calculating the correlation between the
genetic distance and the second hypothesis, controlling for the
effect of the first hypothesis (G.Dist ∼ IBR| IBD). The relative
support for IBD (focal model) relative to IBR (alternative model)
is the difference between the partial correlations of the two
tests (IBD| IBR-IBR| IBD) and vice versa (Cushman et al.,
2013a,b). Thus, if IBD hypothesis is correct then IBD|IBR –
IBR|IBD should be positive and IBR|IBD – IBD|IBR zero or
negative, and, conversely, if IBR hypothesis is correct, then
IBD|IBR – IBR|IBD should be zero or negative and IBR|IBD –
IBD|IBR positive. Following this methodology a full matrix of all
the possible hypothesis comparisons was calculated (reciprocal
causal modeling matrix). If for a hypothesis all values in a column
are positive and all associated values in a row are negative, then
that model is fully supported and, thus, such hypothesis is the
best compared to all alternatives. For each of the Mantel tests

hypothesis combinations we also calculated the correlation values
and significance through corrected permutation tests with 9999
permutations. Analyses were carried out using adegenet (Jombart
and Ahmed, 2012), ade4 (Dray and Dufour, 2007), ecodist (Goslee
and Urban, 2007) and stats (Pritchard et al., 2000) R packages.

Geographic and Environmental Drivers of Genetic
Diversity: Spatially Explicit Mixed Models
To study the possible relationship between genetic diversity
estimators and geographical and environmental variables, we
also developed different geographically explicit generalized linear
mixed models (spatial GLMM’s) using genetic, geographical and
environmental information. The models were built using spaMM
R package (Rousset and Ferdy, 2014). We used different genetic
diversity estimators (Ho, He, Fis, Fi, A and PA) as dependent
variables and annual Tmax and Tmin as independent variables,
considering the geographical coordinates of the locations a
random factor. To account for non-linear responses of the
environmental variables, we also tested models including their
squared values. We tested for normality and homoscedasticity
of the model residuals and made the necessary transformations
when required. We also tested the possible spatial autocorrelation
of the residuals performing a Moran’s I test (Moran, 1950). For
each model developed, a P-value of an associated likelihood ratio
test (LRT) between the “full” model (including environmental
variables) and the “null” model (only with spatial random effect)
tested the effect of a given factor after applying the Bonferroni
correction. We also performed an AIC rank test to select the best
fitting model when more than one environmental variable had a
significant effect on a genetic diversity estimator and to ensure
the improvement of the “full” versus the “null” model.

RESULTS

Geographic Distribution of Genetic
Variation
Population Genetic Characterization
The eight microsatellites scored a total of 107 different
alleles across all individuals with an average of 5.2 alleles
per locus. Number of alleles per population (Na) varied
from 38 to 57 and number of alleles per locus from 4.30 to
6.05 (see Table 2). Populations from Guadarrama (MOR,
NAJ and PEN) had the lowest number of private alleles
(PA) compared to the populations from the other two
mountain ranges (Kruskal–Wallis test, P = 0.02). Observed
heterozygosity values (Ho) were lower than expected
heterozygosity values (He) for all populations except MOR
where Ho was higher than He. Populations NAJ and SES
had similar Ho and He values. All populations except NAJ
and PEN (GDM) departed from the H&W equilibrium,
and they showed a significant excess of homozygotes across
loci (Table 2). Inbreeding coefficients were significantly
higher than zero in all populations (P < 0.05) except MOR
(Fis = −0.08), NAJ (Fis = −0.01) and SES (Fis = −0.01), which
were not significantly different from zero (P > 0.05 in all
cases).
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TABLE 2 | Estimators of genetic diversity at the population level, fixation indexes, and Hardy-Weinberg exact tests in studied Silene ciliata populations.

Pop ID N Na A Ho He P(HWE) Fis Fi Fi_low Fi_high

NAJ 20 44 (2) 4.86 0.66 0.65 0.083 (0) −0.01 0.03 0.00 0.08

MOR 20 47 (2) 5.10 0.74 0.68 0.000 (4) −0.08 0.02 0.00 0.07

PEN 20 38 (0) 4.30 0.48 0.54 0.063 (2) 0.10 0.06 0.02 0.14

SES 20 50 (4) 5.46 0.71 0.70 0.000 (5) −0.01 0.06 0.04 0.09

CAM 20 48 (3) 5.19 0.57 0.68 0.000 (5) 0.16 0.15 0.00 0.32

ZON 20 41 (3) 4.42 0.65 0.67 0.000 (5) 0.03 0.03 0.00 0.10

RUI 20 55 (5) 5.80 0.60 0.72 0.000 (7) 0.17 0.31 0.29 0.34

AGI 20 57 (7) 6.05 0.54 0.76 0.000 (7) 0.29 0.31 0.16 0.45

NEG 20 53 (5) 5.59 0.45 0.72 0.000 (4) 0.37 0.37 0.18 0.48

Pop ID, identification of each population as indicated in Table 1; N, number of genotyped samples; Na, total number of alleles per population with number of private
alleles in parentheses; A, mean number of alleles per locus; Ho and He, observed and expected heterozygosity; P(HWE), p-value from Fisher’s exact test and number of
loci out of H&W equilibrium in parentheses (P < 0.05); FIs, multilocus fixation index calculated as 1-(Ho/He); FI, multilocus fixation index as the probability that two alleles
at a locus are identical by descent following the definition of Malécot and Blaringhem (1948).

Genetic Structure and Differentiation Among
Populations
When testing for population structure, hierarchical Fst analysis
showed that genetic differentiation was higher among individuals
within populations (FInd/Pop) (Mean [CI]: 0.26 [0.11, 0.41])
than among populations (FPop/T) (0.09 [0.06, 0.15]), although
both were significant. The Fst hierarchical structure analyses
of population nested within mountain ranges showed that all
levels contributed to the hierarchical genetic structure with
different magnitudes. Mountain range (FMt/T) (0.05 [0.006, 0.11])
and population nested within mountain range (FPop/Mt) (0.06
[0.04, 0.08]) showed a small but significant value. Individuals
within populations showed the greatest genetic divergence
(FInd/Pop/Mt) (0.26 [0.10, 0.42]). The Fst hierarchical structure
analyses of population nested within environment found no
significant effect of environment (FEnv/T) (0.0 [−0.02, 0.02]) and
a small significant value for population nested in environment
(FPop/Env) (0.09 [0.06, 0.15]). As in the Fst hierarchical structure
analyses, individuals within populations had the greatest genetic
divergence values (FInd/Pop/Env) (0.26 [0.11, 0.40]). Results are
summarized in Table 3. AMOVA results showed very similar
patterns of molecular variance partition (see Supplementary
Table S1).

In the DAPC clustering analysis, we selected K = 2 and K = 3
structures based on the BIC curve which represents the plausible
number of clusters in the data (Supplementary Figure S1) and

the biological meaning of our study case. In the K = 2 partition,
individuals were neatly classified into two groups; one mainly
composed of individuals from the GDM mountain range and the
other of individuals from GRD and BJR (Figures 2A,B). K = 3
genetic data partition showed one group mostly composed of
individuals from the three populations of the GDM mountain
range. The other two groups were essentially a mixture of
individuals from populations of the GRD and BJR mountain
ranges (Figures 3A,B).

STRUCTURE showed that K = 2 best explained the
genetic structure of the study data set (Supplementary
Figure S2), separating individuals from the GDM mountain
range and individuals from the GRD and BJR mountain
ranges (Figure 2C). These results agree with those obtained
in DAPC. The second most plausible structuring of the
data was K = 3, with one group corresponding to each
mountain range (GDM, BJR and GRD) (Figure 3C). Geneland
results were consistent with the genetic structure founded
with DAPC and STRUCTURE analysis (Supplementary
Figure S3).

Geographic and Environmental Drivers
of Genetic Structure: IBD, IBR and IBE
IDB arises as the strongest overall hypothesis regarding to
the relative support values of the RCM matrix (Table 4A),

TABLE 3 | Hierarchical Fst results.

(A) Populations (B) Mountains and Populations (C) Environments and Populations

Pop. Ind. Mt. Pop. Ind. Env. Pop. Ind.

Total 0.09 (FPop/T)∗ 0.32 (FInd/T) ∗ Total 0.05 (FMt/T)∗ 0.10 (FPop/T)∗ 0.33 (FInd/T)∗ Total 0.00 (Fenv/T) 0.09 (FPop/T)∗ 0.32 (FInd/T)∗

Pop. 0.00 0.25 (FInd/Pop)∗ Mt. 0.00 0.06 (FPop/Mt)∗ 0.30 (FInd/Mt)∗ Env. 0.00 0.09 (FPop/Env)∗ 0.32 (FInd/Env)∗

Pop. 0.00 0.00 0.25 (FInd/Pop/Mt)∗ Pop. 0.00 0.00 0.25 (FInd/Pop/Env)∗

The entire sample was used to analyze the genetic structure based on three hierarchical conformations: (A) only considering populations, (B) population nested within
mountain range and (C) population nested within environments. Pop., populations; Mt., mountain ranges; Env., environments; Ind., individuals. We show the F values for
each of the conformations represented in parentheses. For example, FMt/T represents the genetic variance among mountains, FPop/Mt genetic variation among populations
within mountains and FInd/Pop/Mt genetic variation among individuals within populations within mountains. Asterisks denote significant values tested by bootstrapping with
1000 randomizations.
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FIGURE 2 | Discriminate analysis of principal components (DAPC) and Bayesian analysis of population structure (STRUCTURE) for two clusters conformation
(K = 2). (A) Scatterplot of the first two principal components showing the differentiation between the two groups by colors. (B) DAPC composition plot (compoplot)
of each individual grouped by mountain ranges. Colors represent the same clusters as the scatterplot. (C) STRUCTURE composition plot (compoplot) of each
individual grouped by mountain ranges.

presenting positive values in the entire column and negative
values in the entire row. In a similar way, all partial Mantel
tests values relates with this variable showed a significant and
positive correlation between genetic and Euclidian distance
(Table 4B). Regarding to the IBR hypothesis, negative relative
support value arises when it was controlled by IBD hypothesis,
but positive values emerge when it was controlled by IBE
hypotheses (Table 4A). Weak and no significant correlation
was found when partial Mantel test related with this variable
was controlled by the Euclidean distance (Table 4B). Both
IBE hypotheses are the ones with less support regarding to
the RCM matrix and with none significant Mantel correlation
values.

Geographic and Environmental Drivers
of Genetic Diversity
Spatially explicit mixed models found a positive linear
relationship between annual minimum temperatures (Tmin) and
Ho (β = 0.009, df = 4.3, P < 0.05) and He (β = 0.004, df = 6.3,
p < 0.05) and a quadratic relationship between Tmin and mean
number of alleles per locus (A) (β =−0.0003, df = 4.6, P < 0.001)

(Figure 4 and Table 5). Notably, intermediate levels of Tmin
exhibited the highest levels of A. Maximum annual temperature
(Tmax) was not related to Ho, He or A. The addition of Tmin as
an explanatory variable significantly improved AIC values in the
models compared to the “null” models (Table 5). No relationship
was found between any of the environmental variables and Fi,
Fis or PA. No significant spatial autocorrelation of the residuals
was found.

DISCUSSION

Results depict a complex scenario in which geographical
and environmental factors influence the genetic structure and
diversity of S. ciliata in the Central System of the Iberian
Peninsula. S. ciliata presented a marked genetic structure, and
IBD was the main factor shaping genetic patterns. No genetic
structure was found between populations from optimal and
marginal habitats suggesting no isolation effects related to
environmental differences. However, a significant relationship
was found between environmental variables and genetic diversity.
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FIGURE 3 | Discriminate analysis of principal components (DAPC) and Bayesian analysis of population structure (STRUCTURE) for K = 3 clusters. (A) Scatter plot of
the first two principal components showing the differentiation between the three groups by colors and inertia ellipses. Dots, squares and triangles represent
individuals of each cluster. (B) DAPC composition plot (compoplot) of each individual grouped by mountain ranges. Colors represent the same clusters as the
scatterplot (C) STRUCTURE composition plot (compoplot) of each individual grouped by mountain ranges.

TABLE 4 | Reciprocal causal modeling results.

IBD IBR IBE

Eu.Dist. Cost.Dist. Tmax.Dist. Tmin.Dist.

(A) Reciprocal causal modeling matrix

IBD Eu.Dist. 0 −0.4 −0.7 −0.5

IBR Cost.Dist. 0.4 0 −0.6 −0.4

IBE Tmax.Dist 0.7 0.6 0 −0.2

Tmin.Dist 0.5 0.4 0.2 0

(B) Mantel correlation models matrix

IBD Eu.Dist. 0.7∗∗ 0.06 0.02 0.2

IBR Cost.Dist. 0.4∗∗ 0.6∗∗
−0.03 0.2

IBE Tmax.Dist 0.7∗∗ 0.6∗ 0.1 0.09

Tmin.Dist 0.7∗∗ 0.6∗∗ 0.3 0.1
∗∗ < 0.002, ∗ < 0.01

(A) Reciprocal causal modeling matrix for IBD, IBR and two IBE hypothesis. Columns indicate focal models (e.g., IBD|IBR), and rows indicate alternative models (e.g.,
IBR|IBD). Each value represents the relative support of the focal model (e.g., IBD|IBR – IBR|IBD). (B) Partial Mantel correlation matrix summarizes the r values of the model
defined with the column variable controlling by the row variable. The diagonal values are the simple Mantel test r of a variable. IBD, isolation by distance; IBR, isolation
by resistance; IBE, isolation by environment; Eu.Dist., Euclidean distance; Cost.Dist., cost distance; Tmax.Dist., environmental distance related with annual maximal
temperature; Tmin.Dist., environmental distance related with annual minimum temperature. Bold values represents positive correlation values (section A) and significant
correlations (section B).
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FIGURE 4 | Significant relationships between the different genetic diversity estimators and the environmental variables used in the models. (A) Ho, observed
heterozygosity; (B) He, expected heterozygosity; (C) A, mean allelic richness per locus (average number of alleles per locus). Tmin; minimum annual temperature.
Dots represent populations classified as “marginal” and triangles populations classified as “optimal.”

TABLE 5 | Mixed effect models fitted to test the effect of environmental factors (fixed factors) in determining different estimates of genetic diversity across populations.

Response variable Tested model P-value Bonferroni (LRT) β [CI] Lambda () DF mAIC

Ho

Model1 Ho ∼ Tmin + (1|longitude + latitude) <0.05 0.009 [0.00004, 0.02] 0.004 4.3 −8.8

Null Model Ho ∼ 1 + (1|longitude + latitude) −6.9

He

Model2 He ∼ Tmin + (1|longitude + latitude) <0.05 0.004 [0.001, 0.07] 0.002 6.1 −26.1

Null Model He ∼ 1 + (1|longitude + latitude) −16.5

A

Model3 A ∼ Tmin2
+ (1|longitude + latitude) <0.001 −0.0003 [−0.0004, −0.0002] 0.24 4.6 5.6

Null Model A ∼ 1 + (1|longitude + latitude) 19.7

The spatial location of each population is accommodated as a random factor. For each model the P-values of an associated likelihood ratio test (LRT) analyze the effect of
a given factor after applying the Bonferroni correction. Ho, observed heterozygosity; He, expected heterozygosity; A, mean allelic richness per locus (average number of
alleles per locus); Tmin, annual minimum temperature; β, model estimator; CI, confidence interval; DF, degrees of freedom; lambda, dispersion parameter; mAIC, Akaike
information criteria value.

Geographic Distribution of Genetic
Variation
Hierarchical analyses showed that most of the genetic diversity
resided within populations. This is probably due to the species’
breeding system which favors allogamous crossings (Giménez-
Benavides et al., 2007b). It also reflects the presence of
significant within-population genetic structure due to limited
gene flow (Lara-Romero et al., 2016b), which is shaped by
limited effective pollen and seed dispersal distances (Lara-
Romero et al., 2014, 2016a,b). A significant genetic variation
component between populations within mountain ranges was
also observed, but no genetic differentiation was found when
we contrasted populations inhabiting optimal and marginal
habitats across mountain ranges. This suggests that genetic
differentiation between populations within mountain ranges
is found between marginal habitats. Hierarchical Fst found
significant differentiation between mountain ranges of similar
magnitude to that between populations within mountain ranges,
which was further supported by clustering analyses. GDM was

more differentiated than the other two mountain ranges (BEJ
and GRE) as shown by the K = 2 conformation in the clustering
analysis. On the other hand, the K = 3 conformation was clearly
related to the three mountain ranges in STRUCTURE, and with
an admixture between BEJ and GRE in DAPC. These results show
the relevance of the spatial configuration of the landscape at the
mountain range level on the genetic structure. This could be
related with the colonization pattern of the species along the East-
West oriented axis of the Sistema Central (see Figure 1). Patterns
of genetic variation across landscapes in alpine ecosystems
are diverse and context dependent. Geng et al. (2009) found
short-distance genetic structure patterns related to limited gene
dispersal along with substantial levels of gene flow and slow rates
of genetic drift between topographically separated populations.
Many other authors reported genetic structure at larger landscape
scales (e.g., Aægisdóttir et al., 2009; Lega et al., 2014) related to
natural barriers to gene flow. In our case, we detected both coarse-
scale mountain range clustering and finer-scale short distance
population differentiation. Our results suggest a prevalence of
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gene flow limitation between mountain ranges, with considerable
genetic differentiation among populations and mountain ranges.

Geographic and Environmental Drivers
on Genetic Structure: IBD, IBR, and IBE
The significant relationship between geographical distance and
genetic differentiation based on RCM and Mantel correlations
suggested an IBD pattern between S. ciliata populations. IBD is
the most common pattern of genetic differentiation in landscape
genetics studies (Jenkins et al., 2010; Cushman et al., 2015),
including alpine plants (e.g., Stöcklin et al., 2009; Wu et al.,
2015). Nevertheless, the IBD hypothesis cannot be generalized
in alpine ecosystems (Frei et al., 2012a,b). When we considered
the topography of the study territory, we also found an IBR
pattern showing a significant effect of cost distances in the
genetic differentiation, although weaker than the IBD. This is not
surprising since the IBR calculated based on the DEM includes a
distance effect. The East-West alignment of the mountain ranges
which conforms the Sistema Central (see Figure 1) includes
passages of lower elevation that connect the mountain ranges
and act as topographic barriers. This effect works in the same
direction as the isolation effect imposed by the Euclidean distance
(IBD). Thus, the East-West orientation of the mountain ranges
and the associated barriers seem to be important drivers of the
genetic structure at the landscape scale in our study.

No genetic structure associated to environmental
differentiation was detected using RCM and partial Mantel
correlations, or the genetic structure clustering and hierarchical
Fst analyses approaches. Previous S. ciliata field studies carried
out in similar areas found evidence of local adaptation in
marginal populations, i.e., seed germination success and
survival compared to optimal populations (Giménez-Benavides
et al., 2007a,b). They also inferred a putative genetic isolation
pattern between optimal and marginal populations because of
mismatched flowering periods (Giménez-Benavides et al., 2007b,
2011b), measured under field conditions. Restriction of gene
flow due to phenological mismatches, and possible differential
selection along gradients, may cause genetic differentiation
(Hirao and Kudo, 2004). However, a subsequent genetic study
carried out in GDM populations (García-Fernández et al., 2012b)
found significant gene flow along an elevational gradient and low
genetic differentiation. Using AFPLs, Manel et al. (2012) showed
that environmental variables are drivers of plant adaptation at
the scale of a whole biome for a large number of alpine species.
Furthermore, several studies in mountain ecosystems have found
adaptive variation patterns using genomic approaches (e.g.,
Poncet et al., 2010; Mosca et al., 2012, 2014; Di Pierro et al.,
2017). These previous results in our and other alpine species put
us on the track of adaptive divergence between populations. The
lack of an environmental signature in the genetic differentiation
found in our study may result from the low number of neutral
molecular markers used and does not preclude environmentally
induced genetic signals in other areas of the S. ciliata genome.
IBE patterns can be detected using neutral markers because
the signature of selection extends to genome areas beyond the
genes that are under selection (Shafer and Wolf, 2013; Sexton

et al., 2014; Kern and Hahn, 2018), but they are certainly more
difficult to find when the number of loci used is low. Further
research using genomic and quantitative genetic approaches is
needed in Mediterranean alpine ecosystems to provide insight
into the identification of genetic differentiation patterns related
to adaptation along environmental gradients.

Geographic and Environmental Drivers
on Genetic Diversity
In contrast with the lack of an environmental signature on
genetic differentiation, we found a significant relationship
between environmental variables and genetic diversity. Under
an ecological niche perspective of the central-marginal model,
optimal environmental conditions in the central areas allow
larger and more stable populations with greater genetic diversity
(Kawecki, 2008; Sexton et al., 2009). Conversely, populations
in marginal habitats tend to be small and fluctuating in size
and, therefore, prone to suffer bottleneck processes that causes
genetic diversity erosion (Glémin et al., 2003; Whitlock, 2004;
Kawecki, 2008). Consequently, genetic diversity is expected to be
higher in optimal populations (Eckert et al., 2008; Pironon et al.,
2015).

Contrary to our expectations, the lower Tmin values
which entail optimal conditions for the species (Giménez-
Benavides et al., 2007a, 2011a; Lara-Romero et al., 2014)
were related to lower genetic diversity values. This apparent
contradiction may be partially explained by a historical signature
of genetic diversity patterns that overrides the effects of
current conditions. The effects of glacial cycles have often
been used to explain distributional shifts of species, as well as
the contraction, fragmentation and connectivity of mountain
populations (Marques et al., 2016). Thus, glacial pulses would
have been responsible for shifting S. ciliata populations to lower
elevations, allowing populations from nearby mountains to be
connected (Hewitt, 2001; García-Fernández et al., 2013). As a
result, these lower areas would have increased their genetic
diversity and acted as a genetic reservoir for the species (Knowles,
2001; Tzedakis et al., 2002; Holderegger and Thiel-Egenter, 2009).
Postglacial recolonization of higher altitudes from lower areas
(Dechaine and Martin, 2004) would have originated a front
advancing population edge by a subsample of the population with
lower genetic diversity.

Ho and He values were the highest in the marginal populations
at the lowest elevations, but allelic richness decreased sharply
compared to populations at intermediate elevations and lower
annual minimum temperatures fitting a quadratic response. The
low population size and possible bottlenecks experienced by the
most marginal populations, potentially associated with current
high annual minimum temperatures may be responsible for this.
This mismatch between allelic richness and heterozygosity values
could be related to the impact of population bottlenecks on allelic
diversity which is often greater and faster than on heterozygosity
(Frankham et al., 2002).

We, thus, suggest that the observed genetic diversity pattern
is a combination of present and past climatic factors and events.
Present marginal conditions associated with lower elevations
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resulting from altitudinal shifts and climate warming may overlay
a genetic diversity pattern that stems from the glacial pulses of
the past involving both environmental and geographic factors. In
the central-marginal model context, associated genetic diversity
patterns can be highly context and scale dependent (Hampe
and Petit, 2005; Hardie and Hutchings, 2010). Geographical,
ecological and historical gradients act in conjunction creating
diverse patterns that cannot be homogenized under a common
rule (Sagarin and Gaines, 2002; Eckert et al., 2008; Duncan et al.,
2015; Pironon et al., 2017).

CONCLUSION

Our results highlight the complexity of the patterns shaping the
spatial distribution of genetic variation of plants inhabiting high
mountain ecosystems. IBD arises as the main pattern shaping
genetic structure in mountain ecosystems. In addition, IBR
emerged as another important pattern shaping genetic structure
although weaker than IBD when geographical distance and
barriers works in the same direction. IBE should be considered
as an important force in shaping genetic variation, especially
in steep environmental ecosystems like mountainous regions.
Present and past changes in environmental conditions inside
distribution ranges strongly affect genetic diversity in alpine
species.

The results of this study can be useful in a future
comparison using populations inhabiting similar environmental
gradients in other areas of the species distribution not
represented here. This would warrant a more thorough
perspective of the main drivers shaping plant populations
genetics in widespread Mediterranean Alpine plants. Additional
research using genomics and quantitative genetics arise as the
path to further understand the variation patterns linked to
Mediterranean alpine environments.
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