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Arbuscular mycorrhizal (AM) fungi establish probably one of the oldest mutualistic
relationships with the roots of most plants on earth. The wide distribution of these
fungi in almost all soil ecotypes and the broad range of host plant species demonstrate
their strong plasticity to cope with various environmental conditions. AM fungi elaborate
fine-tuned molecular interactions with plants that determine their spread within root
cortical tissues. Interactions with endomycorrhizal fungi can bring various benefits to
plants, such as improved nutritional status, higher photosynthesis, protection against
biotic and abiotic stresses based on regulation of many physiological processes which
participate in promoting plant performances. In turn, host plants provide a specific
habitat as physical support and a favorable metabolic frame, allowing uptake and
assimilation of compounds required for the life cycle completion of these obligate
biotrophic fungi. The search for formal and direct evidences of fungal energetic needs
raised strong motivated projects since decades, but the impossibility to produce AM
fungi under axenic conditions remains a deep enigma and still feeds numerous debates.
Here, we review and discuss the initial favorable and non-favorable metabolic plant
context that may fate the mycorrhizal behavior, with a focus on hormone interplays
and their links with mitochondrial respiration, carbon partitioning and plant defense
system, structured according to the action of phosphorus as a main limiting factor for
mycorrhizal symbiosis. Then, we provide with models and discuss their significances to
propose metabolic targets that could allow to develop innovations for the production
and application of AM fungal inocula.

Keywords: carbon partitioning, mycorrhizal fungi, phosphorus, physiology, phytohormones, plant defense, plant
priming, signaling

INTRODUCTION

Plant hormones, also called phytohormones, are organic compounds other than nutrients that
are naturally produced by plant tissues in response to specific stimuli. They act spatially
and temporally as endogenous signals able to organize all plant developmental stages (seed
dormancy, seed germination, plant growth, flowering, etc.) by regulating at a very low dose
various physiological functions. Plant hormones belong to the class of plant growth regulators,
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which group both natural and synthetic compounds that can
regulate plant development (Sajjad et al., 2017). In addition
to developmental regulation, they also play important roles in
abiotic and biotic stress responses and in mutualistic interactions
between plants and other organisms. Each of the plant hormones
or plant growth regulators possesses specific functions, but they
interact with each other antagonistically or cooperatively by
complex crosstalks.

One of the most ancient and widespread mutualistic
association concerns the endomycorrhizal symbiosis, in which
particular soil fungi, called arbuscular mycorrhizal (AM) fungi,
colonize the root of most (74%) plant families on earth (van der
Heijden et al., 2015). These fungi belong to the Glomeromycotina
(among the phylum Mucoromycota), regrouping at least 313
characterized species1. They were extensively studied for more
than 60 years, as it was shown that they are key components
of soil fertility. Many examples suggest to exploit AM fungi
for promoting plant performances (growth, survival, and
tolerance) as they can enhance nutrition (water and minerals),
photosynthesis, protection against biotic and abiotic stresses,
regulation of developmental processes (flowering, fruit and seed
formation, rooting, etc.) and take part in soil structuration (Smith
and Read, 2008). However, the wider use of mycorrhizal inocula
in agricultural fields remains challenging, due to their cost,
variability in term of quality and responses on plants as well as
incompatibility with high available phosphorus (P) levels in soils
(Vosátka et al., 2008; Ijdo et al., 2011; Berruti et al., 2016).

Arbuscular mycorrhizal fungi are obligate biotrophs, the
completion of their life cycle requires the absolute presence of
host plants that provide a specific habitat (as a physical support
and a favorable metabolic frame) allowing fungal uptake and
assimilation of likely several energy sources (sugars, probably
lipids and maybe other unknown compounds) (Pfeffer et al.,
1999; Helber et al., 2011; Rich et al., 2017). This definition
remains vague because a formal demonstration of AM fungi
development and production under axenic conditions is still
lacking, feeding numerous debates within the mycorrhizologist
community but illustrating a gap of knowledge in plant and
fungal physiology. Consequently, the biology of AM fungi is
probably among the most complex and difficult field of research
in plant science and clues obtained are mostly indirect due to
the presence of the host plant. Nevertheless, it can be confidently
stated that P concentration as well as plant hormones, as signals
targeting numerous biochemical reactions and gene regulation,
can finally generate or not a favorable root tissue environment,
driving the completion of the AM life cycle. Therefore, most
approaches that create a range of conditions concerning P and
phytohormones can represent valuable tools for understanding
the regulation of AM fungi development in planta or in vitro.

Negatively correlated responses between P concentration
in soil and mycorrhizal phenotype and function are
well investigated (Smith and Read, 2008). However, the
comprehensive action of P through plant metabolism beyond
hormonal interplays is still not well understood. In recent years,
there have been more studies published about the AM fungi

1http://glomeromycota.wixsite.com/lbmicorrizas/copia-informacoes-gerais-lista

responses to hormones. Evidence has shown that AM fungi
are sensitive to plant hormones (in planta but also in vitro, in
presence or not of plant, respectively, monoxenic and axenic
conditions) and that they are able to produce at least some of
them (see section “Phytohormones Influence the Mycorrhizal
Symbiosis”). However, phytohormones represent only part of
the signaling in AM symbioses and their concret translations on
plant metabolic pathways, especially those involved in energetic
partitioning (glycolysis, fermentation, REDOX potentials, lipid
metabolism, TCA or mitochondrial respiration), remain poorly
discussed. To fill in the knowledge gap of the definition of
favorable or non-favorable plant metabolic framework for AM
fungi is a major step toward understanding fungal needs, and can
then provide insights about the mode of action of some elements
such as phosphorus, as well as clues to artificially promote
mycorrhizal performances (root colonization and AM responses
on plants).

The use of mutant plants or hormonal plant pretreatments
(discussed in sections below) suggests that the AM behavior
within roots is consequently driven by the metabolic interplay
initially set in the plant. The aim of this review is to provide
a detailed theoretical picture, based on available knowledge,
connecting plant hormones, plant metabolic pathways involved
in cell energy, plant defense and AM development and growth.
The key point is to define the physiological basis of the plant
susceptibility to mycorrhiza prior to inoculation with AM fungi
or AM root contact.

The first section reviews the impact of 9 plant hormones,
strigolactones (SL), abscisic acid (ABA), ethylene (ET),
gibberellins (GA), salicylic acid (SA), jasmonate (JA),
auxins (AUX), cytokinins (CK), and brassinosteroids (BR),
on mycorrhizal behavior (root colonization, arbuscule formation
and functionality). In the second section, we debate about the
links between plant defense systems, compounds that induce
a primed state (elicitors), plant hormone interplay, and AM
fungal development. In the third section, we illustrate the impact
of hormone interplay on plant energetic system [including
photosynthesis, glycolysis, fermentation, lipid metabolism,
tricarboxylic acid cycle (TCA), mitochondrial respiration, and
REDOX potential]. As P represents a crucial criterion for the
development and functionality of AM fungi, we describe here
metabolic interplays under two hypothetic contrasting situations,
low and high P, and we discuss whether the role of hormones and
regulations within cells can be driven by P concentrations. Then,
in a last section, we propose models that integrate signaling
and plant energetic systems in mycorrhizal development, and
strategies in which specific plant priming could be exploited as a
tool to promote mycorrhizal performances (Figure 1).

PHYTOHORMONES INFLUENCE THE
MYCORRHIZAL SYMBIOSIS

The knowledge of hormonal interplay in AM symbiosis is
progressing for the past decade, but some phytohormones
have been investigated more extensively than others. Up to
now, SL and ET seem to be the most studied phytohormones,
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FIGURE 1 | Overview of the metabolic crosstalk directions discussed in this
review. Solid lines indicate state of the art according to the bibliographic
survey. Dashed lines indicate perspectives based on interpretation of the
metabolic crosstalk. P, phosphorus; H, plant hormone; E, energetic system
(carbon partitioning, respiration, and REDOX potential); AMF, arbuscular
mycorrhizal fungi.

while SA and BR are the least investigated (Figure 2A).
Overall most experiments use ex vitro (greenhouse/growth
chambers) conditions (Figure 2B), and few trials were done
in presence of various phosphorus concentrations (Figure 2C).
Three main methodological approaches are classically used
(Figures 2D,E): (i) exogenous application of hormones, (ii)
use of mutant plants (deficient, overproducing, insensitive and
hypersensitive), and (iii) application of hormone inhibitors.
A list of a hundred references (non-exhaustive) surveyed for this
review is available in a table (see Supplementary Material), in
which we considered most AM fungal phenotypic parameters
at different stages of the AM symbiosis development: (i)
asymbiosis: propagule germination, but considering only AM
spores and not mycorrhizal root fragments used as inoculum
(studied in Gryndler et al., 1998), (ii) presymbiosis: hyphal
growth and branching, and (iii) symbiotic stages: hyphopodium
formation, root colonization, sporulation, arbuscule abundance
and morphology (Figure 2F). The effects of phytohormones
and their interplays on AM fungi and symbiosis were already
described in several reviews (Foo et al., 2013a; Bucher et al.,
2014; Fusconi, 2014; Gutjahr, 2014; Miransari et al., 2014; Pozo
et al., 2015). Moreover, the regulation of the signaling between the
symbionts and the molecular mechanisms beyond were detailed
in a recent review (Liao et al., 2018). Therefore, we only briefly
summarize actions of each hormone in the sub-sections below.

Abscisic Acid (ABA)
Abscisic acid is a stress phytohormone belonging to the class of
sesquiterpenes. It regulates negatively plant growth and controls
stomatal closure, limiting water loss by transpiration (Świa̧tek

et al., 2004; Cutler et al., 2010). ABA also plays a role in
interactions with phytopathogens by modulating tissue invasion
depending on type of microorganism, site and time of infection
(Ton et al., 2009).

Abscisic acid can play a role in all phases of AM symbiosis:
exogenous ABA application promotes root colonization and
arbuscule formation during the early symbiotic stage, but is also
able to maintain spore dormancy during the asymbiotic phase
(Herrera-Medina et al., 2007; Martín-Rodríguez et al., 2010,
2011, 2016; Mercy et al., 2017). Effects of soil applications of
ABA seem dose dependent: in Medicago truncatula, low ABA
concentration (5 × 10−5 M) promotes AM fungi development,
arbuscule branching and abundance, while higher concentration
(5 × 10−4 M) reduces the level of colonization (Charpentier
et al., 2014). In vitro plant pre-treatment with ABA (applied in
the culture medium) resulted in higher root colonization and
arbuscule abundance (Mercy et al., 2017), which indicates that
ABA creates a favorable metabolic context before contact with
and colonization by AM fungi.

Majority of studies on ABA were conducted by using
deficient or insensitive mutant plants. ABA-deficient sitiens
tomato mutant harbored a reduced mycorrhizal susceptibility,
with lower percentage of vesicules, arbuscules and fungal alkaline
phosphatase activity compared to the corresponding wild type
(Herrera-Medina et al., 2007; Aroca et al., 2008; García-Garrido
et al., 2010; Martín-Rodríguez et al., 2010, 2011, 2016; Fracetto
et al., 2017). The arbuscules were also not completely formed
and fewer branches were counted (Herrera-Medina et al.,
2007; Fracetto et al., 2017). Another ABA-deficient tomato
mutant (notabilis) was also used, but except for one study in
which mycorrhizal development and arbuscule intensity was
reduced (Xu et al., 2018), no particular response on mycorrhizal
colonization was noticed (Zsögön et al., 2008; Martín-Rodríguez
et al., 2010; Fracetto et al., 2017) probably because ABA levels in
the roots remained similar to the wild type (Martín-Rodríguez
et al., 2010). AM fungi are able to produce ABA (Esch et al., 1994),
and it was shown that AM fungi can increase endogenous ABA
content in plant during colonization (Ludwig-Müller, 2010).

Abscisic acid signaling establishes complex crosstalks with
other phytohormones, especially ET, SA, GA, and SL. Higher ET
levels were found in roots of the tomato mutant sitiens (Herrera-
Medina et al., 2007). Several studies described a negative effect
of ET on AM fungal colonization (see below), but ABA can
act independently of ET (Herrera-Medina et al., 2007; Martín-
Rodríguez et al., 2010), confirming a direct role of ABA in
AM fungi development. Furthermore, ABA levels in plants are
interconnected with GA that negatively regulate later stages of
AM fungi development in roots (see GA sub-chapter below; Foo
et al., 2013a; Martín-Rodríguez et al., 2016). ABA downregulates
gene expression involved in GA biosynthesis and increases GA
catabolism (Martín-Rodríguez et al., 2016), but also represses
biosynthesis and metabolic responses to ET and SA (Vlot et al.,
2009). It is well accepted that the antagonistic signaling between
ABA and GA targets specifically DELLA proteins, which belong
to the GRAS family of plant regulatory proteins. DELLA proteins
act as transcriptional suppressors in GAs signaling (Harberd,
2003) and are destabilized by GA (Silverstone et al., 2001)
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FIGURE 2 | Overview of the methodologies used and the fungal phenotypic parameters analyzed to investigate hormone response in endomycorrhizal symbiosis.
The percentage of publication studying each hormone (A) indicates that SL and ET are likely the most studied while SA and BR are the least investigated. Most of
assays were conducted in planta (in greenhouse or growth chambers), (B) but few works were conducted under contrasting P levels (C). The use of mutant plants is
the most common method, but pharmacological approaches were also done with hormones (mostly by application on soil/root, in presence of mycorrhizal
propagules) and inhibitors (D). Less studies were conducted under monoxenic conditions or by hormonal plant pretreatment (which allow to limit direct interaction
between hormones and AM inoculum) (D). Hormone deficient mutants are most often used while hypersensitive mutant plants are less exploited (E). Then, several
AM phenotypic parameters were investigated, mostly root colonization and arbuscule abundance, but less data are available regarding other structures, in particular
spore germination, extraradical hyphal growth and sporulation (F). ABA, abscisic acid; JA, jasmonate; GA, gibberellins; SA, salicylic acid; SL, strigolactones; ET,
ethylene; CK, cytokinins; IAA, auxins; BR, brassinosteroids. Note that more than one phytohormone was studied in some publications, creating redundancies which
were counted to calculate the percentages presented in the figures (see Supplementary Material).
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while ABA maintains DELLA integrity (Silverstone et al., 2001;
Achard et al., 2006). DELLA was demonstrated as a central
node connecting various signaling pathways activated during
AM formation and positively regulating arbuscule formation
(Floss et al., 2013; Foo et al., 2013a; Yu et al., 2014; Pimprikar
et al., 2016). ABA and SL biosynthesis and/or signaling are
probably connected because root contents of both hormones
were positively correlated when comparing wild type with ABA-
deficient mutant plants (sitiens, flacca, and to a lesser extent
notabilis, López-Ráez et al., 2010).

In summary, it is consensus that ABA plays an enhancing
role in the AM symbiosis, but we noticed that all the trials
were conducted under low P concentrations (less than 50 ppm
P) and no report evaluated the response of AM fungi to ABA
under higher P level. Moreover, no study was conducted in
order to connect natural endogenous ABA levels and mycorrhizal
susceptibility from various plant species and/or cultivars. It is
therefore not clear, if a dose dependence of ABA responses exists.

Jasmonate (JA)
Jasmonate and its derivatives belong to a diverse class of lipid
metabolites known as oxylipins (Wasternack, 2007; Mosblech
et al., 2009) and are mainly involved in plant responses to biotic
and abiotic stresses (Creelman and Mullet, 1997; Wasternack and
Hause, 2002). JA is part of a signal transduction pathway activated
by plant interaction with microorganisms (Pozo et al., 2004), leaf
wounding (Schilmiller and Howe, 2005), and generally by abiotic
stress conditions (Pedranzani et al., 2015). JA mediates higher
transport rates of photosynthates to the roots (Babst et al., 2005;
Schwachtje and Baldwin, 2008; Kaplan, 2012), and this might
explain some of the positive effects on AM fungal colonization
described below.

Exogenous application of JA has been shown to enhance
AM fungal colonization (Regvar et al., 1996; Tejeda-Sartorius
et al., 2008; Kiers et al., 2010; León-Morcillo et al., 2012) or to
reduce it (Ludwig-Müller et al., 2002; Vierheilig, 2004; Herrera-
Medina et al., 2008; Gutjahr et al., 2015). Repeated wounding
or various abiotic stresses induce endogenous JA accumulation,
and this was associated with higher AM fungal development
(Landgraf et al., 2012; Pedranzani et al., 2015). Tests with various
JA concentrations under contrasting P showed a strong dose
dependence of the AM fungal response: mycorrhizal colonization
is enhanced preferentially at 0.5 mM JA under high P (75 kg P
Ha−1 year−1) but decreased at 5 mM JA under low P (25 kg P
Ha−1 year−1; Kiers et al., 2010). However, no fungal phenotype
response from P levels was obtained in JA-deficient rice line cpm2
(Gutjahr et al., 2015). Presence of AM fungi was associated with
up-regulation of oxylipins biosynthesis, and JA-deficient tomato
lines spr-2 and def-1 showed reduced AM fungal colonization
(Tejeda-Sartorius et al., 2008; León-Morcillo et al., 2012; Song
et al., 2013, 2014, 2015). In particular, the genes encoding 9-
lipoxygenases (9-LOXs) involved in JA biosynthesis seem to
have a role in regulation of AM fungal development and in
restriction of pathogen spreading (Blée, 2002; Vellosillo et al.,
2007; Mosblech et al., 2009). A reduction of root colonization and
arbuscule abundance of Rhizoglomus irregulare in M. truncatula
was observed when a gene that encodes for allene oxidase cyclase

(AOC), which is involved in JA biosynthesis, was suppressed by
a root application of a MtAOC1antisense construct (Isayenkov
et al., 2005). Repeating this experiment in M. truncatula with
an AOC1 RNAi and an overexpression construct did not show
any impact on AM fungal colonization or on mycorrhiza-
induced resistance (Hilou et al., 2014). Moreover, a JA-signaling
perception mutant jai-1 (jasmonic acid insensitive 1) was shown
to be associated with higher AM fungal colonization and
arbuscule formation (Herrera-Medina et al., 2008), but this
response was not reproductible (Song et al., 2013).

Increased JA levels in roots of mycorrhizal plants were
observed several times in different species (Vierheilig and Piché,
2002; Meixner et al., 2005; Stumpe et al., 2005; Hause et al.,
2007). JA is also known to be linked with other phytohormones.
It especially induces ABA biosynthesis, but ABA as well as SL
are also required for JA production (Adie et al., 2007; Torres-
Vera et al., 2014; de Ollas et al., 2015; de Ollas and Dodd, 2016;
Haq et al., 2017). It is, moreover, well known that JA and SA are
antagonists (see sections “Relationship Between Plant Defense
Components and Mycorrhizal Symbiosis” and “Hormonal and
Energetic Regulation of Plant Metabolism Under Contrasting P
Conditions” below).

To conclude, JA effects are less clear but observations favor
the hypothesis that JA is a promoting regulator of the AM
symbiosis. Nevertheless, the contrasting data suggest that JA
response is strongly sensitive to its endogenous concentrations,
which can also modulate responses to exogenous JA application.
Moreover, environmental factors (such as P) can interfere with
JA perception, making interpretations quite delicate. This is well
illustrated by the lack of mycorrhizal responses when JA is applied
at low P, probably because endogenous JA levels are already high
(Khan et al., 2016), but plant performance improvement can be
observed at high P (Kiers et al., 2010). The effect of JA on AM
fungi has not been studied in vitro, and if AM fungi are able to
produce this phytohormone remains to be investigated.

Auxin (AUX)
Auxins are mainly formed from tryptophan and indole-3-acetic
acid (IAA) is the most abundant auxin. AUX regulate various
aspects of plant growth and development, such as phototropism,
geotropism and cell elongation and polarity (Benková et al.,
2003). IAA regulates the development of lateral and secondary
roots, which represent the preferential sites for AM fungal
colonization (Kaldorf and Ludwig-Müller, 2000; Yao et al., 2005).

Observation in planta indicated that applications of various
auxins (IAA, indole-3-butyric acid, 2,4-dichlorophenoxyacetic
acid and 1-naphthaleneacetic acid) are able to promote AM
fungal spread and arbuscule abundance (Dutra et al., 1996;
Niranjan et al., 2007; Etemadi et al., 2014; Liu et al.,
2016). In axenic conditions, it was also shown that IAA
decreased both spore germination and subsequent hyphal germ
tube growth (Fernández Suárez et al., 2015). The use of
P-chlorophenoxyisobutyric acid, an IAA inhibitor, negatively
affects the number of fungal entry points and further intraradical
AM fungal development (Liu et al., 2014). AUX effects were also
studied under monoxenic conditions. Mohan Raj et al. (2016)
tested various indole-3-butyric acid and IAA concentrations
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(alone and combined) with Daucus carota transformed roots
(in vitro) inoculated with R. irregulare, and shown a slight
decrease in both root colonization and spore numbers.

Studies with the auxin (IAA)-deficient bushy mutant (Symons
et al., 1999, 2002) is associated with a reduction in the AM
fungal colonization but without further alteration of AM fungal
structures inside the roots (Foo, 2013). Moreover, tomato auxin-
resistant diageotropica (dgt) mutant shows lower AM fungal
development in both monoxenic and ex vitro conditions (Hanlon
and Coenen, 2011), although this was not always reproducible
(Zsögön et al., 2008). The AM fungal response to auxin
appears even more complex, as the auxin hyper-transporting
polycotyledon (pct) mutant fails to generate an AM symbiosis
monoxenically with root organ culture, but shows increased
colonization in ex vitro plants, and authors suggested the
existence of shoot-derived factors that modulate auxin action
(Hanlon and Coenen, 2011). In another approach, microRNAs
were used, which are non-coding RNAs that target particular
genes and impair their expression. In this way, suppression
of auxin-related signaling was achieved by overexpression of
microRNA393, known to post-transcriptionally modulate the
expression of the auxin receptors TIR1 and several AFBs
(Navarro et al., 2006, 2008; Parry et al., 2009; Vidal et al., 2010).
This strongly inhibited AM fungal colonization and arbuscule
abundance and morphology in several plant species (Etemadi
et al., 2014).

Regarding the interaction with other hormones, it has been
proposed that auxins regulate positively SL biosynthesis genes
(Foo et al., 2005; Johnson et al., 2006; Agusti et al., 2011),
thereby participating in mycorrhizal development (Foo et al.,
2013b). Moreover, auxin/cytokinins antagonism in root is very
well known (Moubayidin et al., 2009), and a recent publication
demonstrated that CK produced in roots are detrimental for AM
fungi development (Cosme et al., 2016).

Several authors described increased IAA levels in mycorrhizal
roots (Meixner et al., 2005; Ludwig-Müller and Güther, 2007;
Fiorilli et al., 2009; Hanlon and Coenen, 2011; Liu et al., 2018)
suggesting an involvement of IAA signaling in the first stages
of colonization. Moreover, auxin-like molecules or IAA were
found in small quantities in AM fungal spores (Barea and Azcón-
Aguilar, 1982; Barea, 1986; Ludwig-Müller et al., 1997), but AUX
were not detected in hyphae (Jentschel et al., 2007). Recent
survey of the R. irregularis genome indicates that typical auxin
biosynthesis genes are lacking (Tisserant et al., 2013), which may
interrogate the (plant?) origin of AUX found in mycorrhizal
structures, shown in previous publications.

To conclude, a positive effect of AUX seems to dominate, and
is therefore classified as an AM-promoting hormone.

Strigolactone (SL)
Strigolactones are terpenoid lactones derived from carotenoids
which were originally discovered in root exudates, as they
stimulate seed germination of parasitic plants like Striga
(Mangnus and Zwanenburg, 1992). It turned later out that
they also induce hyphal branching of AM fungal hyphae by
affecting different molecular and cellular processes (Akiyama
et al., 2005; Besserer et al., 2006). Despite SL being a recently

discovered phytohormone, it is probably the most studied one in
endomycorrhiza (Figure 2).

In planta, exogenous application of GR24 (a synthetic analog
of SL) promotes mycorrhizal development in wild-type but
also in SL-deficient plant mutants (Gomez-Roldan et al., 2007;
Breuillin et al., 2010; Balzergue et al., 2011; Illana et al., 2011;
Yoshida et al., 2012; Foo et al., 2013b). However, this induction
appears to occur only under low P concentrations (Breuillin et al.,
2010; Balzergue et al., 2011). SL application is unable to trigger
mycorrhizal development in non-host plants such as Arabidopsis
thaliana, Spinacia oleracea, Lupinus polyphyllus, or Fagopyrum
esculentum (Illana et al., 2011). In vitro studies showed that SLs
increase fungal metabolism, as application of synthetic analogs
(GR24 and GR7) under axenic conditions was shown to activate
mitochondrial differentiation, number and activity toward fungal
cytochrome oxidase (COX) pathway with an increase in NADH
and ATP during the pre-symbiotic phase in hyphea, and goes
concomitantly with higher hyphal branching (Akiyama et al.,
2005, 2010; Besserer et al., 2006, 2008; Balzergue et al., 2011;
Kretzschmar et al., 2012). Moreover, spores in contact with SLs
harbor higher germination rates in a shorter time (Besserer et al.,
2006, 2008). In another work, Genre et al. (2013) demonstrated
that GR24 is also able to stimulate production and release of Myc
factors from spore exudates, which in turn induce Ca2+-spiking
in the plant.

Strigolactone-deficient mutants or transgenic lines harboring
constructs for RNAi-mediated silencing of genes participating
in SL biosynthesis or signaling showed lower mycorrhizal
colonization levels than the corresponding controls in tomato,
rice, pea and petunia (Gomez-Roldan et al., 2008; Breuillin et al.,
2010; Koltai et al., 2010; López-Ráez et al., 2010; Vogel et al.,
2010; Illana et al., 2011; Kohlen et al., 2012; Kretzschmar et al.,
2012; Yoshida et al., 2012; Foo et al., 2013b; Guillotin et al.,
2017; Kobae et al., 2018). SL-insensitive mutant plants possess
reduced to neutral responses on mycorrhizal rate, depending of
the mutant type and plant variety (Yoshida et al., 2012).

Strigolactone interplays displayed positive crosstalk with ABA
and AUX (see section above), and both of them have been
recognized to stimulate mycorrhizal growth. The consensus for
the role of SLs in mycorrhiza is clear, and can be confidently
classified as promoter. However, the production of SL by AM
fungi is not known.

Brassinosteroid (BR)
Brassinosteroids represent a class of phytohormones defined as
growth promoters (Kosová et al., 2012). They modulate plant
development through important processes like cell elongation,
cell division and cell differentiation. Furthermore, they are
involved in defense against pathogens and abiotic stresses (Zhu
et al., 2013).

Foliar application of epibrassinolid was shown to enhance
slightly mycorrhizal colonization (Tofighi et al., 2017).
Inoculation of the brassinosteroid-deficient pea mutant lk
(Reid and Potts, 1986; Ross et al., 1989), which shows a strong
reduction in BR content (Nomura et al., 2004), resulted in a
strongly reduced total root colonization and a lower amount of
arbuscules compared to the wild type (Foo et al., 2016). Tomato
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mutants defective in BR biosynthesis were analyzed with respect
to mycorrhizal symbiosis and showed decreased mycorrhization
(Bitterlich et al., 2014a,b). However, the leaky brassinosteroid-
deficient lkb mutant pea did not induce a similar depressed
fungal spread within roots (Foo et al., 2013a) suggesting that
the reduction of BR levels must be severe to impact the AM
symbiosis.

It is known that BRs can antagonize the plant innate immune
response (Bajguz and Hayat, 2009; De Vleesschauwer et al., 2012;
Nahar et al., 2013), and act together with other phytohormones
in the case of interactions with biotrophs/necrotrophs (Saini
et al., 2015). The later seems to be true also in the case
of mycorrhizal interactions. The model proposed by Foo
et al. (2016) suggested indeed that BR interacts negatively
with ET in regulation of mycorrhizal behavior. However, how
BR can interact with other hormones within mycorrhizal
symbiosis remains to be elucidated. BRs also interact with the
carbohydrate metabolism, and it was supposed that improvement
of mycorrhizal development by BRs is based on a physical
interaction between proteins involved in BR biosynthesis and
signaling and a sucrose transporter (Bitterlich et al., 2014a,b).

In conclusion, BR is still poorly studied with respect to the
AM symbiosis, but first data suggest that it acts as a promoter of
mycorrhizal colonization. Nevertheless, more investigations are
needed like, e.g., the impact of exogenous application of BR on
the mycorrhizal symbiosis under in vitro and ex vitro conditions
and the ability of AM fungi to synthetize BRs.

Ethylene (ET)
Ethylene is a gaseous plant hormone; it plays an important role
in plant signaling with fundamental effects on plant growth and
development (fruit ripening, stem and root elongation inhibition,
flowering, seed germination and leave senescence) as well as
defense (van Loon et al., 2006a; Lei et al., 2011).

Exogenous soil and foliar treatments with ET or its
commercial analogous ethephon have been shown to impair
mycorrhizal colonization (Azcón-Aguilar et al., 1981; Morandi,
1989; Geil et al., 2001; Geil and Guinel, 2002; Foo et al., 2016)
and to reduce arbuscule abundance (Geil et al., 2001; Geil
and Guinel, 2002; Foo et al., 2016) with effects on arbuscule
branching (Geil et al., 2001; Geil and Guinel, 2002). Interestingly,
ET applied in specific amounts is able to promote mycorrhizal
development under high P (Torres de Los Santos et al., 2016).
Dose dependency was also shown under axenic conditions, where
ET promoted hyphal growth and spore germination at low
dosage, but inhibited it at a dosage higher than 0.2 ppm (Ishii
et al., 1996).

Several studies using mutants have been conducted to
determine the ET effect on AM symbiosis, but results were
contradictive. In ET-overproducing tomato plants (epinastic),
mycorrhizal colonization and arbuscule abundance were
impaired at low P (Zsögön et al., 2008; Torres de Los Santos et al.,
2011, 2016; Fracetto et al., 2013, 2017), but increased at higher
P (Torres de Los Santos et al., 2016). In ET-insensitive mutant
plants (tomato never ripe, tobacco etr1 and pea ein2 mutants),
mycorrhizal colonization was found to be repressed (Zsögön
et al., 2008), improved (Penmetsa et al., 2008; Martín-Rodríguez

et al., 2011) or remained constant (Riedel et al., 2008; Fracetto
et al., 2013; Foo et al., 2016; Torres de Los Santos et al., 2016).
Similar inconsistent observations were found with ET-deficient
tomato plants, with inhibited (Martín-Rodríguez et al., 2011),
enhanced (Torres de Los Santos et al., 2011, 2016) or without
effect on mycorrhizal root growth compared to wild-type plants
(Riedel et al., 2008). No changes were recorded in the mycorrhizal
development within an ET-hypersensitive tomato line (Martín-
Rodríguez et al., 2011). Conflicting observations were also found
for effects on biomass. In ET-deficient tomato, plant root growth
was reduced (Martín-Rodríguez et al., 2011), enhanced (Torres
de Los Santos et al., 2011, 2016) or remained unaffected by
mycorrhization. Mycorrhizal development remained unaffected
in ET-deficient (silencing of coi1) and ET-insensitive (etr1)
tobacco plants, but mycorrhizal growth responses were strongly
enhanced in both mutants (Riedel et al., 2008).

The relationship between endogenous ET level in roots and
the mycorrhizal behavior is also not always clear: (i) negative
correlation was observed within pea E107 (brz) (Resendes
et al., 2001; Morales Vela et al., 2007) or in ABA-deficient
notabilis and sitiens tomato mutant plants (Herrera-Medina
et al., 2007; Martín-Rodríguez et al., 2010); and (ii) even
more confusing, a positive correlation between endogenous ET
root content and mycorrhization was noticed in both, ET-
overproducing (epinastic) and ET-deficient (rin) tomato mutants,
while harboring curiously, respectively, lower and higher ET
content compared to the wild type (Torres de Los Santos et al.,
2016).

Interactions between ET and other phytohormones was
demonstrated. ABA-deficient notabilis and sitiens mutant plants
harbor elevated ET levels in roots and an impaired mycorrhizal
development, while exogenous ABA application reduced ET
concentrations (Sharp et al., 2000; Herrera-Medina et al., 2007;
Martín-Rodríguez et al., 2011; Fracetto et al., 2017). This suggests
an antagonistic interaction between ABA and ET. ET was also
shown to be negatively regulated by BR (Morales Vela et al.,
2007), and ET-insensitive ein2 mutant harbored reduced GA but
elevated IAA levels (Foo et al., 2016). This corresponds with
another study showing that application of 1-aminocyclopropane
carboxylic acid (ACC), a precursor of ET, decreases free IAA
content in roots (Negi et al., 2010).

Ethylene is likely the most problematic hormone to study
as illustrated by the conflicting reports. Discrepancies with the
use of mutant plants are likely due to the plant species or to
the experimental conditions, which consequently limit formal
interpretation. It was also suggested that ET has to reach a
threshold before it influences AM fungal colonization and might
explain why the mutants did not always show the same outcomes
(Foo et al., 2016). The difficulties to interprete ET responses
may also be due to the gaseous nature of ET. Its synthesis
is stoichiometrically correlated with HCN by-production in
plants (Peiser et al., 1984; Grossmann, 2003) and exogenous
ET application stimulates endogenous ET biosynthesis. Versatile
responses may be therefore attributed to the action of both,
ET and HCN and the fine-tuning of their concentrations. Even
though HCN is usually detoxified rapidly by plants (Miller and
Conn, 1980), high local concentrations (up to 350 µM) can occur
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(Mizutani et al., 1988), with known impact on mitochondrial
respiration (Siegień and Bogatek, 2006). Considering the aerobic
nature of AM fungi, it is possible that high HCN concentrations
are detrimental for fungal spread in roots but may promote
locally arbuscule formation and functionality as it was observed
with KCN application (Mercy et al., 2017). Moreover, HCN can
elicit responses similar to ET when applied at low concentrations
(McMahon Smith and Arteca, 2000). ET production by AM fungi
remains unknown. Therefore, to understand the role of ET in the
mycorrhizal symbiosis appears very challenging. In summary, we
here state (with a risk) that ET negatively affects the mycorrhizal
symbiosis.

Cytokinin (CK)
Cytokinins are a class of diverse phytohormones formed by N6-
substituted purine derivatives. CKs regulate several aspects of
plant development such as shoot cell division and development
and mineral uptake of roots (Werner and Schmülling, 2009;
Kieber and Schaller, 2014).

Few studies investigated the response of AM to CK
application: kinetin/kinetin riboside did not impact mycorrhizal
development (Xie et al., 1998; Rabie, 2005) while 6-
benzylaminopurine decreased it (Bompadre et al., 2015).
Application of kinetin riboside on Glomus clarum spores (axenic
conditions) promoted spore germination and germ tube growth
(Fernández Suárez et al., 2015). AM fungi seems able to produce
CK or CK-like hormones (Barea and Azcón-Aguilar, 1982).
Many publications reported changes of endogenous CK content
(ranging most often from increase to sometimes decrease)
following AM fungi inoculation (Cosme et al., 2016).

Experiments with the CK-insensitive bushy root (Zsögön et al.,
2008) or the CK receptor mutant cre1 (Laffont et al., 2015)
showed no impact on AM fungal colonization patterns. Laffont
et al. (2015), however, stated that this is consistent with the
limited transcriptional response of CK-regulated genes in roots.
A tobacco transgenic line with low CK production showed
increased AM colonization (Cosme and Wurst, 2013), but this
effect was not reproducible. Indeed, when those plants were
inoculated with two other AM fungal strains, the lower CK
content was associated with impaired mycorrhizal colonization
(Cosme et al., 2016). This was supported by another study, where
increased colonization has been observed in a CK-overproducing
pea mutant E151 (Jones et al., 2015).

There exist antagonistic interplays between CK and ABA,
as exogenous application of ABA can reduce CK content and
perception (Werner et al., 2006; Tran et al., 2007; Großkinsky
et al., 2014) and vise-versa (El-Showk et al., 2013; Guan
et al., 2014). CKs also act synergetically with SA and GA,
with consequences for the systemic acquired resistance (SAR,
Großkinsky et al., 2014). CK perception and content is also
regulated by P, and was shown to be repressed under P starvation
(Salama and Wareing, 1979; Horgan and Wareing, 1980; Franco-
Zorrilla et al., 2002, 2005; Rouached et al., 2010). Moreover,
CKs act antagonistically to auxins in control of lateral root
development (Moubayidin et al., 2009). Taking these findings
into account, cytokinin biosynthesis seems not to be part
of favorable condition frame (P level) and physical support

(lateral roots) for possessing a positive influence on mycorrhizal
development.

Formal interpretation of CK impact on mycorrhizal symbioses
from existing literature remains delicate due to the low number
of trials, different plant species and P concentration used in
these tests, and the ability of AM fungi to produce this hormone
(Supplementary Material). To conclude, the consensus of
this phytohormone is not obvious but data suggest that CK
does not play a major role in endomycorrhizal symbiosis but
may act negatively mostly indirectly, via its impact on root
system, its crosstalks with other hormones and its interplay with
carbohydrate metabolism.

Gibberellin (GA)
Gibberellins are a class of phytohormones synthesized from
geranylgeranyl diphosphate. They move relatively free from
shoots to roots promoting plant growth including stem
elongation, flowering and inhibit leaf and fruit senescence (Swain
et al., 2005; Wang and Irving, 2011; Claeys et al., 2014).

Many studies show that soil or leaf applications of GA reduce
colonization and/or arbuscule abundance in several plant species
(El Ghachtouli et al., 1996; Floss et al., 2013; Foo et al., 2013a;
Yu et al., 2014; Martín-Rodríguez et al., 2015, 2016; Takeda
et al., 2015; Khalloufi et al., 2017). In accordance, application of
the GA biosynthesis inhibitor prohexadione calcium promotes
mycorrhizal development (Martín-Rodríguez et al., 2015, 2016).
GA seems able to promote spore germination under axenic
conditions (Mercy et al., 2017) and AM fungi can produce this
phytohormone (Barea and Azcón-Aguilar, 1982; Strzelczyk and
Pokojska-Burdziej, 1984).

Several studies with overexpressing or deficient mutant plants
for GA-biosynthesis and GA-signaling indicated a negative role
of GA for arbuscule formation and development, emphasizing a
negative impact on late stage of development (Floss et al., 2013;
Foo et al., 2013a; Martín-Rodríguez et al., 2015, 2016). Growth
regulator interconnection converges toward the stabilization
status of DELLA proteins, which are integrated in abiotic and
biotic stress (Zentella et al., 2007; Davière and Achard, 2013;
Yu et al., 2014). GA was demonstrated as reciprocal antagonist
with ABA and JA (Brenner et al., 2005; Greenboim-Wainberg
et al., 2005; Razem et al., 2006; Yang et al., 2012; Heinrich
et al., 2013; Shu et al., 2018) in almost all plant physiology
aspects (plant defense reaction, seed dormancy and germination,
growth, etc.). It appears that DELLA proteins negatively control
all GA responses, and the degree of its stability in cell depends
on the GA/ABA-JA ratio. Thus, ABA (Achard et al., 2006)
and JA (Yang et al., 2012; Wild and Achard, 2013) stabilize
or promote the DELLA complex, positively associated with
arbuscule formation, while GA induces its ubiquitin-proteasome
degradation associated with collapsed arbuscules (Floss et al.,
2013; Bucher et al., 2014; Yu et al., 2014; Martín-Rodríguez
et al., 2015). Moreover, GA-induced degradation of DELLA
proteins enhances SA signaling, increasing plant resistance to
biotrophic microorganisms (Navarro et al., 2008; Wasternack
and Hause, 2013) like AM fungi. The consensus for GA is
therefore well defined as a negative regulator of the mycorrhizal
symbiosis.
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Salicylic Acid (SA)
Salicylic acid is a phenolic compound classified as plant hormone
a decade ago (Eraslan et al., 2008; Shi et al., 2009). It regulates
many aspects of plant physiology, such as growth, ion uptake
and chlorophyll content (Singh and Usha, 2003; Eraslan et al.,
2008; Belkhadi et al., 2010). Furthermore, SA has long been
known to play a major role in reducing plant stress, increasing
the antioxidant activity (Shi et al., 2009) and promoting
activation and modulation of plant defense responses, especially
in interaction with biotrophic pathogens (Beckers and Spoel,
2006; Lu, 2009).

Exogenous applications of SA was shown to reduce
mycorrhizal development, at least during the first weeks
(Blilou et al., 2000; Costa et al., 2000; Özgönen et al., 2001; de
Román et al., 2011), but neutral responses were also observed
(Ludwig-Müller et al., 2002; Ansari et al., 2016). AM colonization
can also increase following soaking seeds with SA (Garg and
Bharti, 2018). Moreover, tobacco SA-overproducing mutant
CSA and SA-deficient nahG showed, respectively, reduced and
enhanced root colonization in the first days following fungal
penetration (Herrera-Medina et al., 2003). Similarly, the Myc−
pea mutant P2 was found to accumulate higher SA concentration
in roots (Blilou et al., 1999).

Salicylic acid seems to affect mycorrhizal development mainly
at early stages. This effect seems transitory, probably due to the
ability of the fungus to modulate the plant defense response
further (Dumas-Gaudot et al., 2000; Campos-Soriano et al., 2010;
de Román et al., 2011). Regulation of SA on other hormones
within mycorrhizal symbiosis remains to be elucidated, but some
connections can be found in relation with plant defense system
(discussed in sections below). However, it can be stated as
consensus that SA act as inhibitor of the mycorrhizal symbiosis.
It is not yet known if AM fungi can synthetize this hormone,
and effect of SA on mycorrhizal behavior under axenic conditions
remains to be investigated.

RELATIONSHIP BETWEEN PLANT
DEFENSE COMPONENTS AND
MYCORRHIZAL SYMBIOSIS

Hormone signaling is tightly linked with defense pathway
activation in planta (Bonneau et al., 2013). Contact with
pathogens, beneficial microorganisms, natural and synthetic
compounds or presence of abiotic stress trigger at various
physiological, transcriptional, metabolic and epigenetic levels an
unique plant state called “priming,” resulting in establishment
of induced defense mechanisms (Conrath et al., 2006; Mauch-
Mani et al., 2017). Usually, but non-exclusively, two main
antagonistic induced responses are engaged in plants, depending
on the priming signal (named elicitor): systemic acquired
resistance (SAR) and induced systemic resistance (ISR). The
SAR response is induced by biotrophic pathogens (Ton et al.,
2009; Thakur and Sohal, 2013) and involves SA accumulation,
which mediates the activation of pathogenesis-related (PR) genes
(Durrant and Dong, 2004). PR proteins are known especially

for their antifungal activity based mainly on the hydrolytic
capacity toward fungal cell wall components (Edreva, 2005).
The ISR response, instead, is induced by necrotrophs or plant
growth-promoting rhizobacteria (PGPRs) and involves JA and
ET signaling without modification of defense gene expression
(Pieterse et al., 1996, 2002). Specifically, ISR is based more on
enhanced sensitivity to these plant hormones rather than to an
increase in their production (Pieterse et al., 1998; Pieterse and
van Loon, 2004; De Vleesschauwer et al., 2006). The role of ET
remains somewhat difficult to define as a strict ISR component:
it was shown originally to be required in ISR (Pieterse et al.,
1998), but it contributes also to SAR by the induction of PR
genes during the hypersensitive response against tobacco mosaic
virus as one of the mobile signals, that SA is not in this case
(Kuć, 2006; van Loon et al., 2006b). The mode of action of ET
largely depends on the moment when it is produced, and ET
treatment of plants can lead to opposite effects (i.e., before or after
pathogen infections, van Loon et al., 2006b). Finally, many studies
showed that almost all the plant hormones could participate to
different extent in induced plant resistance (Pieterse et al., 2012).
For example, additionally to abiotic stresses, ABA has a role in
plant pathogen interactions (Fan et al., 2009; Cao et al., 2011).
Emerging evidences state importance of ABA in plant defense
system, with suppression of SAR induction and involvement in
SA-SAR-mediated signaling (Yasuda et al., 2008; Jiang et al., 2010;
Kusajima et al., 2010) but its potential role in ISR establishment is
less clear as it can also counteract JA/ET defense related pathways
(Cao et al., 2011).

Although the knowledge on plant pathogen interactions made
important progress in the last years, classification of many
important hormones involved as part of either ISR or SAR system
remains incomplete (Pieterse et al., 2012). Moreover, interactions
between plants and beneficial microorganisms partially exploit
the same defense related pathways. Firstly, as shown by Güimil
et al., 2005, there is a 40% overlap between genes responding
to AM fungi and pathogen agents in rice. Although these
responses are temporally and spatially limited in mycorrhizal
symbiosis compared to phytopathosystems, this suggests that
the plant defense system may play a role in the establishment
and control of the endomycorrhizal symbiosis (Dumas-Gaudot
et al., 1996; García-Garrido and Ocampo, 2002). Secondly,
several authors suggested that AM fungi implement ISR in
plant, during the first colonization stages (Pozo et al., 2002;
Hause and Fester, 2005; Hause et al., 2007; Pozo and Azcón-
Aguilar, 2007; Kapoor et al., 2008; Pieterse et al., 2014) but also
that PGPRs, known to elicit ISR, can increase the mycorrhizal
development (Alizadeh et al., 2013). By contrast, SAR system
seems to generate a non-favorable metabolic context for AM
fungi, since the use of SAR elicitors can lead to inhibition of
mycorrhizal development (Faessel et al., 2010; de Román et al.,
2011; Bedini et al., 2017) sharing therefore similarities with
biotrophic pathogens (Delaney et al., 1994). As a point, while
glycerol-3-phosphate is converted into glycerol and phosphate
under P-deficient conditions (Hammond et al., 2004), it probably
accumulates under P-sufficient plants increasing SAR stimulation
potentials via SA (Chanda et al., 2011; Shah and Zeier,
2013).
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HORMONAL AND ENERGETIC
REGULATION OF PLANT METABOLISM
UNDER CONTRASTING P CONDITIONS

Phytohormones act as messengers within the plant, which
syntheses are usually regulated by various stimuli. However, their
actions on mycorrhizal behavior should be connected to a specific
metabolic plant state, favoring or not mycorrhizal development
beyond their energetic needs. In this section, we discuss
the connection between the metabolic context and hormone
interplay under two contrasting situations of P level, supporting
(low P) and inhibiting (high P) mycorrhizal colonization.

Plants acquire P by two different pathways. The first one,
common for all plants, is called the direct pathway by which
P is collected directly via the surface plant roots. The second
one, called mycorrhizal pathway, is builded by the presence of
mycorrhizal fungi which are able to uptake and transfer the P
from soil to the root via the mycelium. In both cases, P uptake
and transfer involves an active translocation mediated by H+-
ATPases which create a proton motive force allowing P entering
the cell via Pi/H+ symporters localized in the rhizodermis or the
root hairs (direct pathway) or in the periarbuscular membrane at
the arbuscule branch domain (mycorrhizal pathway, Smith and
Smith, 2011b; Młodzińska and Zboińska, 2016).

Mycorrhizal Fungal Growth Has a
Preference for a Metabolic Context
Related to P Stressed Plants
Plant Respiration Under Low P
In this review, low available P is defined as a concentration
belonging or being close to plant P starvation, which favors
mycorrhizal development within roots (Smith and Read, 2008).
Frequently, natural soils have P concentrations below 1 µM.
Furthermore, P absorption by the roots results in a rapid
depletion zone due to the low mobility of this ion (Marschner,
1995). This consequently engenders plant P starvation. Plant
primary metabolism is then altered, as P stress induces a shift
in plant respiration with reduced plant capacity to produce
ATP (Theodorou and Plaxton, 1993; Plaxton and Tran, 2011)
and is associated with deficient photosynthesis (Fredeen et al.,
1990; Ghannoum and Conroy, 2007). Thus, plants undertake a
series of metabolic adaptations in order to conserve the use of
P, such as reduction of cell energetic potentials associated with
plant growth depression, increased efficiency in P utilization,
and remobilization of internal P and mitochondrial bypass
P-requiring steps (Schachtman et al., 1998; Plaxton and Carswell,
1999; Raghothama, 1999; Uhde-Stone et al., 2003a,b; Plaxton and
Tran, 2011).

One of the first adjustments at P deficiency is the re-
organization of the electron chain transport within plant
mitochondria. In the last steps of respiration, electrons
provided by the TCA cycle are typically transported along
the mitochondrial complexes I, II, III, and complex IV, the
cytochrome oxidase pathway (COX). Complexes I, III, and IV
constitute proton pumps during the electron transport, leading
to the formation of a proton gradient between the mitochondrial

matrix and the intermembrane space (Alberts et al., 2008). The
gradient generated by the complexes is then used by ATP-
synthases to produce ATP (Nakamoto et al., 2008). In cases
of stress like P starvation, electrons are redirected to another
terminal oxidase that is part of the alternative oxidase pathway
(AOX). This pathway, present in plants and fungi, is sited
between complexes II and III and catalyzes the reduction of
oxygen into water, resulting in a lower intermembrane proton
gradient and reduced ATP yield (Sluse and Jarmuszkiewicz,
1998). AOX pathway has been described as a pivotal element
able to maintain the cell metabolic homeostasis, participating
to the carbon metabolism flexibility (Gomez-Casanovas et al.,
2007; Gandin et al., 2009; Leakey et al., 2009; Vanlerberghe,
2013). For this reason, it has been proposed as an important
marker for plant acclimatization to stress conditions (Arnholdt-
Schmitt et al., 2006; Clifton et al., 2006). Finally, AOX pathway
was also proposed to play a role in AM spore dormancy and
germination, as well as, AM fungal behavior in planta, influencing
both colonization and arbuscules functionality (Besserer et al.,
2009; Campos et al., 2015; Mercy et al., 2017).

P starvation directly inhibits both COX activity and the ATP
synthase, resulting in low ATP/ADP ratios, while it promotes
AOX activity, associated with higher NADH+H+/NAD+ ratios.
This was demonstrated in Phaseolus vulgaris (Rychter and
Mikulska, 1990; Rychter et al., 1992), Catharanthus roseus
(Hoefnagels et al., 1993), Chlamydomonas reinhardtii (Weger and
Dasgupta, 1993), Lupinus albus (Florez-Sarasa et al., 2014), and
tobacco cell cultures (Parsons et al., 1999). The electron flow
directed to the AOX pathway allows conserving the intercellular
P pool (Theodorou et al., 1991; Parsons et al., 1999; Juszczuk
et al., 2001; Juszczuk and Rychter, 2003; Day et al., 2004) but
also allows NADH oxidation, produced during citrate synthesis,
to maintain continuation of TCA cycle reactions (Vanlerberghe
and McIntosh, 1996; Shane et al., 2004; Gupta et al., 2012; Florez-
Sarasa et al., 2014). Moreover, under P limitation, AOX activity
in roots seems positively correlated with synthesis and release
of carboxylates (citrate and malate, López-Bucio et al., 2000;
Veneklaas et al., 2003; Del-Saz et al., 2018).

The metabolic role of AOX remains unclear given the non-
conserving energy of this pathway (Vanlerberghe, 2013). Other
metabolic functions could be involved to sustain the basal
metabolic process mainly based on a specific redox status
(NAD(P)+/NAD(P)H+H+ cell pool). It has been also proposed
that, concomitantly with AOX pathway, energy demand for plant
metabolism is provided by fermentative activity (Mercy et al.,
2017). AOX activity is promoted by accumulation of pyruvate,
NADH+H+ and CO2 (Gonzàlez-Meler et al., 1996; Siedow and
Umbach, 2000; Vanlerberghe, 2013), whose contents in roots are
higher under low P (Juszczuk and Rychter, 2003). These three
molecules can also favor fermentation activity (both lactic and
alcoholic) while CO2 inhibites the COX pathway (Gonzàlez-
Meler et al., 1996). Furthermore, malic enzyme converts malate to
pyruvate, NADH+H+ and CO2, supplying fermentation pathway
with suited substrates. It was shown that up-regulation of
malic enzyme activity is associated with fermentation (Sakano,
2001), and is part of the alternative glycolytic pathway that is
enhanced in P-deficient conditions (Schachtman et al., 1998;
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Plaxton and Carswell, 1999; Raghothama, 1999; Uhde-Stone
et al., 2003a,b; Plaxton and Tran, 2011). Under P-deficient
conditions, significant induction of fermentative related genes as
alcohol dehydrogenase (Massonneau et al., 2001; Wu and Yang,
2003; Manan, 2012) and formate dehydrogenase (Herbik et al.,
1996; Suzuki et al., 1998; Uhde-Stone et al., 2003b) has been
shown, allowing the regeneration of NAD+ pool which avoids
glycolysis inhibition (Tadege et al., 1999). Finally, increased
ethanol concentration is observed with the application of COX
inhibitors (Solomos and Laties, 1976; Kato-Noguchi, 2000), or
antisense-induction of AOX genes in Arabidopsis under aerobic
conditions (Potter et al., 2001). In mycorrhizal symbioses, the role
of plant fermentation is not known but may contribute to fungal
fitness as part of the favorable plant metabolism driven under
low P.

Carbon Fluxes and Root Exudation Under Low P
Low P sensing in planta drives changes in carbon partitioning
between shoots and roots. Sucrose is reallocated to the root where
it participates to a rise in glucose concentration (Hammond
and White, 2011; Lemoine et al., 2013), increasing availability
of carbon sources for AM fungal uptake. Contents in many
sugars, organic acids and several aminoacids are increased
within roots and are released in the rhizosphere under P
starvation, derived from blocked glycolysis and TCA cycle
(Hoffland et al., 1992; Dakora and Phillips, 2002; Hernández
et al., 2007; Yamakawa and Hakata, 2010; Carvalhais et al.,
2011; Gupta et al., 2012). Such compounds can modulate AM
spores germination and can mediate plant-AM fungi interactions
at presymbiotic phases (Ratnayake et al., 1978; Graham et al.,
1981; Hepper and Jakobsen, 1983; Gachomo et al., 2009). Many
other compounds synthetized and released by plants under
abiotic stress (notably low P) have known stimulatory impacts
on mycorrhizal development: it is the case for H2O2 (Liu et al.,
2012), for polyamines (El Ghachtouli et al., 1995; Wu et al., 2012),
for certain flavonoids (Nair et al., 1997; Davies et al., 1999; Davies
et al., 2005; Scervino et al., 2005) and other phenolic compounds
(Fries et al., 1997) and probably most importantly strigolactones
(Sun et al., 2014). Such molecules can also stimulate the
release of diffusible factors from spore exudates, among which
lipochitooligosaccharides and chitooligosaccharides (LCOs and
COs), were characterized as so-called “Myc factors” (Nadal and
Paszkowski, 2013; Schmitz and Harrison, 2014).

Plant-derived ET and diffusible factors present in germinating
spore exudate (GSE) act antagonistically: compounds isolated
from GSE (such as Myc factors) can stimulate mycorrhizal
plant susceptibility, while ET inhibits GSE-induced symbiotic
gene expression (Maillet et al., 2011; Mukherjee and Ané,
2011). Interestingly, pure LCO compounds extracted from
Bradyrhizobium japonicum (similar to Myc factor found in
GSE) applied to soybean leaves were shown to induce host
stress response, activating AOX and repressing hormone-related
components belong to GA signaling (Wang et al., 2012).
Moreover, although composition of root exudates can vary
depending on soil pH, plant species and plant age (Vierheilig
et al., 2003; Badri and Vivanco, 2009; Tahat and Sijam, 2012;
Balzergue et al., 2013), many of them released under low

P (plant hormones as in particular SL, phenolic compounds,
hydroxy fatty acids, glucosamine, specific aminoacids and sugars)
were shown to act at pre-symbiotic stages (promoting spore
germination, hyphal growth, hyphal branching), thus supporting
the mycorrhizal symbiosis (Tamasloukht et al., 2003; Besserer
et al., 2006, 2008; Nagahashi et al., 2010; Tawaraya et al., 2013;
Nadal et al., 2017).

Hormone Interplay and Action Under Low P
Recognition and adaptation of plants to external metabolic
stimuli is often mediated by phytohormone signaling. In
particular, P starvation is associated with ABA accumulation
(Mizrahi and Richmond, 1972; Vysotskaya et al., 2008), but also
BRs (Nibau et al., 2008; Wang et al., 2014), IAA (Nacry et al.,
2005), SL (Akiyama et al., 2005; Besserer et al., 2006, 2008;
Foo et al., 2013b), and JA (Khan et al., 2016). As first well
described hormonal regulation, plant mineral nutrition sensing
is considered as the main driver modulating SL production
(Umehara et al., 2010; Yoneyama et al., 2012) which is
consistently promoted at P and nitrogen starvation (Bonneau
et al., 2013; Foo et al., 2013b). For this reason, SL production
at low P is considered as a plant strategy to recruit AM fungi
for improving P uptake (Gu et al., 2011). P deficiency is also
well correlated with low ET and reduced bioactive GA levels in
roots, linked with an accumulation of DELLA proteins (Drew
et al., 1989; Borch et al., 1999; Wu et al., 2003; Jiang et al., 2007;
Kim et al., 2008; Devaiah et al., 2009; Hammond and White,
2011), although ET contributes to primary and adventitious
root elongation (Nagarajan and Smith, 2012). The involvement
of ABA signaling is linked with a positive cross-talk with JA
and SL (López-Ráez et al., 2010; Lackman et al., 2011). JA and
ABA can antagonize GA signaling via stabilization of DELLA
proteins (Fu and Harberd, 2003; Yang et al., 2012) and can also
negatively regulate SA signaling (Proietti et al., 2013; Manohar
et al., 2017). Moreover, P starvation is known to decrease the
synthesis of bioactive CKs, and some reports suggested that
ABA participates to this inhibition (Pieterse and van Loon, 2004;
Rouached et al., 2010; Nishiyama et al., 2011; Ha and Tran, 2014).
It is well recognized that ABA regulates AOX gene expression and
activity in plants (Finkelstein et al., 1998; Choi et al., 2000; Rook
et al., 2006; Giraud et al., 2009; Lynch et al., 2012; Wind et al.,
2012). In the work of Shen et al. (2003), abiotic stress and ABA
were proposed to increase cytosolic levels of NADH+H+, which
stimulate ROS production but also participate in the conversion
of dihydroxyacetone phosphate to glycerol-3-phosphate, which
then converts FAD to FADH2, providing electron flow toward
the AOX pathway. Compelling evidence also demonstrates the
role of ROS as a signal occurring in most abiotic and biotic
stresses but also in symbiosis (Puppo et al., 2013; Ghosh and
Xu, 2014) and in potentiating the ABA pathway (Kwak et al.,
2003). Nutrient starvation (as low P) is usually associated with
overproduction of H2O2 in roots (Shin and Schachtman, 2004;
Shin et al., 2005; Cheeseman, 2007) able to upregulate AOX gene
expression, protein content and activity (Juszczuk and Rychter,
2003; Yamaguchi-Shinozaki and Shinozaki, 2005; Ho et al., 2008;
Wang et al., 2010). H2O2 originates mainly from NADPH oxidase
and polyamine oxidase activities, both of which are induced
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by ABA (Wang, 2008; Liu et al., 2012). In particular, H2O2 is
produced in arbuscules (Fester and Hause, 2005) and the use of
scavengers (ascorbic acid or salicylhydroxamic acid) reduce both
H2O2 and mycorrhizal development (Liu et al., 2012). Both ABA
and ROS induce the production of JA (Howe, 2004; Yang et al.,
2012) which plays an important role in plant defense.

The Existential Problem of Mycorrhizal
Fungi Under High Available P
The second condition that we describe is the situation of
high available P, which is defined as concentrations known
to inhibit mycorrhizal colonization in plants (Graham et al.,
1981; Thomson et al., 1986; Balzergue et al., 2011) but also
create the optimal state for plant growth in absence of
AM fungi. Excluding the mycorrhizal context, several studies
regarding plant physiology have been conducted under high
(or optimal for the plant partner) P availability, and the
metabolic frame is therefore relatively well known. In absence
of stress, plant metabolism, especially photosynthesis, flows
optimally, maximizing the energy yield (Nátr, 1992), associated
with COX activity resulting in a high ATP/ADP ratio (Sluse
and Jarmuszkiewicz, 1998; Day et al., 2004). This constant
energy flux enables a steady state of metabolism (Kouchi and
Yoneyama, 1984; Rontein et al., 2002). This steady state is an
approximation that is always subjected to the so called “carbon
economy” (Poorter et al., 1990) where the carbon accumulation,
redistribution and utilization is continuously adjusted. However,
a situation close to the steady state allows the plant to optimize
many pathways involved in primary metabolism, providing
important intermediates for other reactions (Krebs and Johnson,
1937). Part of the fixed carbon pass through the respiration while
a fraction is then stored in lipid form in oil bodies (Napier et al.,
1996).

Under high P, content and perception of some hormones is
increased in roots such as ET, CK, GA, and SA (Drew et al., 1989;
McArthur and Knowles, 1992; Jiang et al., 2007; Devaiah et al.,
2009) and all can regulate positively photosynthetic pathways
(Khan, 2004, 2006; Yaronskaya et al., 2006; Tholen et al., 2008;
Rivas-San Vicente and Plasencia, 2011; Xie et al., 2016). GA
controls sucrose synthesis by positively regulating fructose-1,6-
bisphosphatase and sucrose phosphate synthase (Zamski and
Schaffer, 1996) while SA promotes rubisco activity, chloroplastic
structure (reviewed by Rivas-San Vicente and Plasencia, 2011)
and net increase of CO2 assimilation (Fariduddin et al., 2003).
GA and SA are known to have a reciprocal stimulation and
it seems that both are involved in DELLA loss-of-function
(Alonso-Ramírez et al., 2009a,b). A recent study indicated that
GA signaling downregulates endogenous SL levels (Ito et al.,
2017). High levels of GA, SA and ET repress synthesis and
signaling of ABA and JA (Vlot et al., 2009). SL content in non-
mycorrhizal roots is reduced under high P, and decreases also
when P concentration increases locally (in arbuscocytes) after
colonization is established (Foo et al., 2013b; Fusconi, 2014).
GA biosynthesis and signaling is coupled with active COX
pathway and both are key components to promote plant growth.
Arabidopsis CYTc deficient mutant plant contains less bioactive

GA, less ATP but elevated DELLA protein levels and similar
observation was noticed when mitochondrial (COX pathway)
inhibitors is applied in wild type (Racca et al., 2018). GA
can upregulate cytochrome C gene expression involved in the
COX pathway (Yang and Komatsu, 2004) and GA biosynthesis
inhibitor mimicks the effect of CYTc deficiency (Racca et al.,
2018). GA promotes respiration in Amaranthus while this effect
is prevented by KCN (Loo et al., 1960). Robinson and Wellburn
(1981) found that GA application increased the rate of NADH-
dependant ATP formation, which is highly inhibited by cyanide
(Cunningham, 1963) and can promote growth and lipogenesis
(Yu et al., 2016). Then, SA was reported in many papers as
promotor of AOX expression associated with increased protein
levels, but it has actually no influence on its activity (Lennon
et al., 1997; Simons et al., 1999). Instead, whole-cell tobacco
respiration rate is enhanced when SA is applied at less than 1 mM
(Norman et al., 2004). Finally, CKs may also act in mitochondria,
by blocking the AOX pathway (Musgrave, 1994).

The negative influence of high P on mycorrhizal fungi is
systematic and systemic as it was shown that foliar application of
P can lead to the same depression phenomena (Breuillin et al.,
2010). Knowledge of mechanisms involved in P inhibition on
mycorrhiza remains fragmented, but deserves attention. Indeed,
this element limits mycorrhizal inoculum performances under
field conditions, where soils usually contain high amounts of
available P (due to high application of P fertilization – Tóth
et al., 2014). The statement that plants that are able to uptake
P via the direct pathway do not need to establish mycorrhizal
symbiosis appears simplistic, but underestimates the complex
regulations that lead to AM inhibition. Actually, the hormonal
composition (SA, GA and ET), enhanced under high P, creates
an inhibitory context for mycorrhizal development, as detailed
in section Phytohormones Influence the Mycorrhizal Symbiosis.
From another point of view, the lack of mycorrhizal colonization
was generally described as an economic determinism, so called
“cost-benefit” trade between P uptake for plant and carbon
delivery for AM fungi (Smith et al., 2011). From this perspective,
it is recognized that plants usually adapt resource allocation to
organ involved in mineral acquisition in order to stimulate their
growth, where more energy is translocated from shoot to root
under mineral shortage (such as sucrose, polyols such as mannitol
and sorbitol and other oligosaccharides from raffinose family),
but is linked with an impaired photosynthesis (Lemoine et al.,
2013). By opposition, the source (shoot)-sink (root) balance is
modified under high P: carbon sources become less available
surrounding the mycorrhizal structures in roots, which may
participate to reduce AM fungal growth and interface formation
(arbuscules), thus repressing fungal P delivery to the plant. This
goes also along with lower release of various molecules (sugars,
amino acids, as well as some hormones such as SL) which can
be recognized by mycorrhizal hyphae. Such lower release would
limit root-fungus interactions. In addition to plant physiology,
high P was also shown to inhibit directly spore germination and
mycelium development in vitro (de Miranda and Harris, 1994;
Olsson et al., 2002), limiting soil exploration and contact to the
plant roots. However, it is not yet known, at the best of our
knowledge, if AM fungi exudation of Myc factors is directly
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negatively affected under high P, like it is described for plant
exudates. Importantly, AM fungi are partly aerobic organisms:
this would mean that the processing of fungal energy from carbon
sources must go concomitantly with higher O2 consumption to
allow formation of ATP orientated by higher flow of electron
toward the COX pathway. As a result, the inhibition of the
COX pathway induced by application of KCN is associated
with reduced mycorrhizal development under low P (Mercy
et al., 2017). It can be questioned whether high P may induce a
stronger source-sink (or competition) for oxygen, favoring plant
cell energy which consequently becomes less accessible for the
fungus.

P affects also the functionality of the symbiosis as mycorrhizal
responses have been shown to be negatively correlated with
increased P concentration (Smith and Smith, 2011a). This
phenomena is not necessarily due to a decrease of carbon delivery
to the fungus but more to a shift of P uptake between the
direct and the mycorrhizal pathway. The current hypothesis
states that AM fungi impair the direct pathway while the
mycorrhizal P pathway does not compensate, probably due to
a lower functional P transfer under high P (Smith and Smith,
2011b). To support part of this hypothesis, the down-regulation
of the mycorrhiza-inducible P transporter genes PT4 have been
described in several works for different plant species following
application of high P concentration (Drissner et al., 2007;
Breuillin et al., 2010). Moreover, it is possible that AM fungi try to
prime a specific propitious plant metabolism (notably ISR based
plant context, see section “Relationship Between Plant Defense
Components and Mycorrhizal Symbiosis” above) but the full
completion of this system permanently fails (leading therefore to
persistent plant growth depression) due to the continuous and
paradoxical responses from plant sensing and signaling under
high available P.

CONCLUSION AND PERSPECTIVES

Drawing Links Between AM Fungi, Plant
Respiration, Phytohormones, Carbon
Partitioning, and Plant Defense Upon
Available P Concentration
Physiological Models of Plant Susceptibility to
Mycorrhiza
Studying phytohormone interrelationships is always delicate,
since there exist fine and complex regulations which depend
on tissues and the plant physiological stage. Nevertheless, we
propose two models (Figures 3, 4) that sum up two antagonistic
metabolic situations according to P levels. This allows to
distinguish two groups of acting hormones: (i) a first group (JA,
ABA, IAA, SL, and BR) is involved in signaling under low P
(Figure 3), has known overall promoting activities toward AM
fungi development and seems to be linked potentially to the
ISR system. The metabolic state comprises higher fermentation
activities, increased free cytosolic amounts and root release
of sugars, aminoacids and carboxylate acids, promotion of
lipid catabolism, higher cytosolic reductive potential and the

involvement of AOX pathway; (ii) a second group of hormones
(GA, SA, ET, and potentially CK) is active under high P
(Figure 4), has inhibitory impacts on AM fungi development
and seems to be linked to the SAR system. It involves repression
of fermentation, implementation of lipid anabolism, a higher
cytosolic oxidative potential and the involvement of the COX
pathway.

Consequently, the processing (uptake and metabolic
assimilation) by AM fungi of the energy sources provided
by the plant (sugars, lipids and maybe other compounds as
products of fermentation) may depend on the presence of
a surrounding metabolic context that integrates favorable
signaling (partly mediated by hormones and reductive potential,
upon likely available oxygen fluxes). Our literature survey
suggests that plant AOX pathway may play one central role
in the implementation of a specific metabolism, which occurs
consequently to environmental stimuli (stress). Obviously,
phytohormone regulations and electron flow partitioning
between AOX and COX is dynamic in time and space and this
must be taken into account during mycorrhizal development
under normal conditions. The AOX pathway coupled with
fermentative processes is probably a main component during the
first stages of mycorrhizal development, explaining perhaps the
well known stunt phenomenon which follows plant inoculation.
Successively, electron route to AOX pathway and the related
plant metabolism is very likely shifted toward the COX pathway
(Del-Saz et al., 2017), as a consequence of increasing level of P
delivered by the mycorrhizal pathway. Therefore, the metabolic
context occurring at later stages of the mycorrhizal symbiosis
may shift partly toward the model described in the Figure 4.
This would fit with the known increased photosynthetic activity,
reduced root exudation of compounds and electron partitioning
through the COX pathway, as responses that AM fungi trigger
in plant. This shift might also participate in the autoregulation
of mycorrhization, a mechanism which prevents subsequent
mycorrhizal development following a first plant inoculation with
AM fungi (Vierheilig et al., 2000). ABA and JA seem not to take
part in this phenomenon, while AUX and CK might be involved
(Meixner et al., 2005; Wang et al., 2018), but the role of other
AM-inhibiting hormones remain to be studied.

Gaps and Limits of Hormonal Studies in Mycorrhiza
We attempted to link pieces of the puzzle that shows fragments
of the final picture but does not allow yet full understanding of
the whole composition. Many efforts are still needed to deeply
investigate the role of phytohormones with respect to AM fungi
and plant metabolic adaptation. To date, the use of different
plant species, their related mutants, and the different application
ways of phytohormones create sometime discrepancies in the
final outcomes. It is not trivial to interprete phenotypic and
molecular data only related to the specific mutation which
requires several internal controls. When mutant plants are able
to survive, general metabolic and/or signaling pathways are likely
differentially adapted surrounding the deleted or overexpressed
targeted gene(s), thus participating at a whole on the responses
on the mycorrhizal behavior. It appears also that some methods
might create biases. For example, soil hormone application can
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FIGURE 3 | Plant metabolic orientation of hormone interplay, carbon partitioning and responses on mycorrhizal development under low available P. Box and arrow
color indicate repression (red), or promotion (green). Orange boxes and black arrows are used for uncertain conditions. Based on the literature survey, mycorrhizal
colonization is enhanced under low available P which goes together with the action of AM-promoting hormones (such as ABA, SL, and JA). This hormonal interplay
is connected to a favorable metabolic frame which involves lower phytosynthetic activity, higher translocation of photosynthetats from shoots to roots, accumulation
of sugars (reduced glycolysis flow and enhanced lipid oxidation), enhanced plant fermentation activity, cytosolic reductive potential (elevated NADH pool), electron
partitioning which is orientated toward the alternative oxidase pathway, reduced ATP formation and ISR implementation. Root exudation of several sugars,
aminoacids, some carboxylic acids and hormones (such as SL) participate to the molecular dialog with mycorrhizal fungi present in the rhizosphere. This can support
physical contact with the root by stimulating hyphal branching and to induce plant responses by promoting Myc factor release from germative spore exudates. It is
questioned if this metabolic flux is accompanied by lower oxygen consumption by plant cells, which may become more available for the fungus (as aerobic
organism) under low P. ABA, abscisic acid; JA, jasmonate; GA, gibberellins; SA, salicylic acid; SL, strigolactones; ET, ethylene; CK, cytokinins; IAA, auxins; BR,
brassinosteroids; PR, pathogenesis related protein; ISR, induced systemic response; SAR, systemic acquired resistance; AOX, alternative oxidase; COX,
cytochrome oxidase; CytC, cytochrome C; TCA, Krebs cycle; NADPH ox., NADPH oxydase; polyamine ox., polyamine oxydase; GSE, germinative spore exudate;
G3P, Glycerol 3-phosphate.

Frontiers in Plant Science | www.frontiersin.org 14 December 2018 | Volume 9 | Article 1800

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01800 December 13, 2018 Time: 17:31 # 15

Bedini et al. Plant Metabolic Interplay in Endomycorrhizal

FIGURE 4 | Plant metabolic orientation of hormone interplay, carbon partitioning and responses on mycorrhizal development under high available P. Box and arrow
color indicate repression (red), or promotion (green). Orange boxes and black arrows are used for uncertain conditions. Based on the literature survey, high available
P affects mycorrhizal performances mainly due to the activity of mycorrhiza-inhibiting hormones (such as GA, SA, and ET), and in which SAR is potentialized. This
goes together with a non-favorable metabolic frame which seems connected to an enhanced photosynthesis activity, lower translocation of photosynthetats from
shoots to roots, a continuous flow of sugars processed via glycolysis, lipogenesis, and TCA, but also reduced fermentation activity and higher oxidative potential
(reduced NADH+H+ cytosolic pool). In this system, lower free amounts of compounds (sugars, aminoacids, SL, and carboxylate acids) are released in the root
exudate, thus reducing possible molecular dialog between AM fungi and plant root. In addition, high P favors electron partitioning toward the plant COX pathway,
thus participating to ATP formation. It is questioned if this metabolic flux is accompanied by higher oxygen consumption by plant cells, which may become less
available for the fungus (as aerobic organism) under high P. ABA, abscisic acid; JA, jasmonate; GA, gibberellins; SA, salicylic acid; SL, strigolactones; ET, ethylene;
CK, cytokinins; IAA, auxins; BR, brassinosteroids; PR, pathogenesis related protein; ISR, induced systemic response; SAR, systemic acquired resistance; AOX,
alternative oxidase; COX, cytochrome oxidase; CytC, cytochrome C; TCA, Krebs cycle; NADPH ox., NADPH oxydase; polyamine ox., polyamine oxydase; GSE,
germinative spore exudate; G3P, Glycerol 3-phosphate.
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already affect the mycorrhizal propagules during pre-symbiotic
phase, and the eventual release of hormones by AM fungi could
interfer with phenotypic responses of mutant plants. Production
of several hormones (as SL, ET, JA, SA, and BR) by AM fungi
remains unknown, while they may potentially participate in
fungal spread within roots like pathogenic fungi (Chanclud and
Morel, 2016). For example (but not exclusively), although SL
biosynthesis seemed never investigated in any other organism
than plants, it would be interesting to check the eventual ability
of AM fungi to secrete this hormone. This might explain why
arbuscules are still well formed within different SL deficient
mutant plants (Kobae et al., 2018). In addition, data are sparse
regarding influence of hormones on mycorrhizal behavior (pre-
symbiotic and symbiotic stages) under in vitro conditions, and
reports seem lacking for some of them (such as JA, SA, or BR).
Moreover, most of the studies conducted with phytohormones
within endomycorrhizal systems were set under low P, as it
represents suitable conditions to investigate fungal phenotypes.
Nonetheless, we recommand to perform more assays with
different P concentrations (but also with other elements), in
order to better define the mode of action of each hormone.
Then, it could be interesting to report mycorrhizal phenotype
traits under axenic and monoxenic systems that combine a given
hormone in presence of various carbon sources. Despite several
sugar transporters were localized in arbuscules but also in hyphae
of the extraradical mycelium (Helber et al., 2011), assimilation
and processing of carbon sources could require specific signals
for generating efficiently fungal energetic fluxes, thus supporting
growth and sporulation. In the future, the creation of a
shared study platform would be useful, where application of
all phytohormones are standardized under common conditions,
taking care to evaluate not only the mycorrhizal phenotypic traits,
but also metabolic plant adaptation.

Some aspects were not addressed in this review. This concerns
the sporulation process, because the metabolic context that drives
this specific fungal developmental step belongs to physiological
changes that take place following root colonization at late
stage. Moreover, the relationship between hormone interplay
and mycorrhizal spore formation is only poorly investigated,
despite this structure could reflect the energy status of the fungus
(Supplementary Material). Information about the importance of
fatty acid transfer as source of energy from plant to AM fungi did
not find much space in our scheme, despite recent findings about
its potential role (Keymer et al., 2017; Luginbuehl et al., 2017;
Roth and Paszkowski, 2017). This field of research can represent
a breakthrough in the understanding of AM symbiosis, but to
date, almost no information is available regarding AM fungal
phenotypes related to regulations between plant lipid energetic
metabolism, hormone interplays and P levels, at the best of
our knowledge. Plant RAM1, RAM2, FatM, and STR/STR2 were
proposed to act as operational unit to synthetize and deliver fatty
acid to AM fungi (Keymer et al., 2017). In particular, reduced
mycorrhizal development was demonstrated in ram1/2 deficient
mutant plants (Gobbato et al., 2012; Keymer et al., 2017). To
illustrate first links toward lipid pathway in relation with fungal
energetic needs, it was shown that application of Myc factors can
upregulate RAM1/2 expressions (Jiang et al., 2018), while GA

(inhibiting mycorrhizal development) can downregulate RAM2
expression (Takeda et al., 2015). However, a question raises
whether the reduced mycorrhizal colonization in ram2 mutant
plants is due to the specific mutation, or due to a side effect from
mycorrhizal inhibiting hormones (such as GA), that might be
overexpressed as part of a signaling adaptation.

We are aware that hormonal interplays and regulations at
different environmental conditions and in various plant species
are much more complex than our models suggest, which remain
largely incomplete. Therefore, next steps should attempt to
validate or reject some of the hypotheses deduced from the
models with further investigations. The effort that we made
was an attempt to define a consensus, but also to propose
several research topics aiming to elucidate some fundamental
aspects of the endosymbiotic relationship which are still not fully
understood and exploited.

Perspectives for Application: The
Induction Methods for Mycorrhiza
According to our model, AM fungi development in planta seems
to be promoted by the occurrence of ISR and its related signaling,
prior to AM fungi contact. The induction of ISR or SAR system
can be primed by application of specific elicitors for one or the
other system. The use of specific molecules able to generate a
favorable metabolic context to promote an effective colonization
can therefore be proposed to master mycorrhizal inoculum
applications under practical field condition or other research area
as degraded land restauration. In this view and among those
stimulatory molecules, potential affordable strategies exist from
the application at low doses (seen as signal) of oligosaccharides
on plants. Interestingly, oligosaccharides were shown since some
decades to act as elicitors and therefore implement specific plant
defense responses against biotic but also abiotic stress (Trouvelot
et al., 2014). Oligosaccharides possess several advantages, such as
being cheap and available, non-toxic, biodegradable, easy to use
and not classified as phytohormones (whose field application is

FIGURE 5 | Theoretical scheme of the oligosaccharides signaling on
alternative oxydase pathway, via ABA-dependant and independent regulation.
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highly restricted in Europe). Linking plant respiration and plant
priming, the idea consists to induce a specific transient plant
stress, by targeting the AOX pathway and its related metabolism,
as it was shown to play a crucial role in arbuscule formation
and positive mycorrhizal response (Mercy et al., 2017). Sugar
signaling can promote AOX pathway directly (Li et al., 2006)
or indirectly via the ABA signaling. In this last case, sugar
recognition by the hexokinase 1 (Ramon et al., 2008), present
on the outer mitochondrial membrane, initiates ABA synthesis
(Cheng et al., 2002) and then stimulates the AOX gene expression
via transcription factors (Finkelstein et al., 1998; Rook et al., 2006;
Ho et al., 2008; Giraud et al., 2009; Millar et al., 2011). Although
this signaling scheme (illustrated Figure 5) remains hypothetical,
first trials using application (soil or on leaves) of low dose of
oligosaccharides (such as glucose, fructose, and xylose) show
possibilities to improve mycorrhizal development and responses
under various P concentrations and in several plant and AM
fungal species (Lucic and Mercy, 2014 – Patent application
EP2982241A1; Bedini et al., 2017; Lucic-Mercy et al., 2017). Since
the same compounds were termed initially as elicitors, related
to the implementation of plant defense upon pathosystems but
can also promote mycorrhizal performances, we propose to
use rather the appellation “inducer” (or Mycorrhizal Helper
Signaling Molecules), which defines signaling molecules that are
intended to act specifically as stimulants in endomycorrhizal
systems. In the same way, it would be also interesting to check
if the mycorrhizal susceptibility is connected with plant species
and cultivars that harbor naturally preferential mitochondrial
electron partitioning toward the AOX pathway (as one metabolic

selection trait). Such an approach may allow then to define
interesting strategies for breeders, in order to orientate the
plant selection in view to optimize mycorrhizal interactions in
crops.
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