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Whole genome sequencing offers genome wide, unbiased markers, and inexpensive
library preparation. With the cost of sequencing decreasing rapidly, many plant genomes
of modest size are amenable to skim whole genome resequencing (skim WGR). The
use of skim WGR in diverse sample sets without the use of imputation was evaluated
in silico in 149 canola samples representative of global diversity. Fastq files with an
average of 10x coverage of the reference genome were used to generate skim samples
representing 0.25x, 0.5x, 1x, 2x, 3x, 4x, and 5x sequencing coverage. Applying a pre-
defined list of SNPs versus de novo SNP discovery was evaluated. As skim WGR is
expected to result in some degree of insufficient allele sampling, all skim coverage
levels were filtered at a range of minimum read depths from a relaxed minimum read
depth of 2 to a stringent read depth of 5, resulting in 28 list-based SNP sets. As a
broad recommendation, genotyping pre-defined SNPs between 1x and 2x coverage
with relatively stringent depth filtering is appropriate for a diverse sample set of canola
due to a balance between marker number, sufficient accuracy, and sequencing cost,
but depends on the intended application. This was experimentally examined in two
sample sets with different genetic backgrounds: 1x coverage of 1,590 individuals from
84 Australian spring type four-parent crosses aimed at maximizing diversity as well as
one commercial F1 hybrid, and 2x coverage of 379 doubled haploids (DHs) derived from
a subset of the four-parent crosses. To determine optimal coverage in a simpler genetic
background, the DH sample sequence coverage was further down sampled in silico.
The flexible and cost-effective nature of the protocol makes it highly applicable across a
range of species and purposes.

Keywords: GBS, low coverage, Brassica napus, doubled haploid, plant

INTRODUCTION

Advances in next-generation sequencing have enabled the application of genomics for the
improvement of agronomically important crop species. Genomic selection (GS) and genome-wide
association studies (GWAS) have delivered considerable crop improvements and rely on high
density markers spread throughout the genome (Goddard and Hayes, 2007; Desta and Ortiz, 2014).
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Genotyping-by-sequencing (GBS) in the form of target capture
and complexity reduction methods have greatly facilitated the
use of genomics by cost-effectively providing dense SNP markers
(Mamanova et al., 2010; Davey et al., 2011; Hirsch et al.,
2014). Target capture methods have been mostly applied in the
form of SNP chips and although they can be cost-effective in
commonly studied species such as cattle, they are often expensive
or unavailable in crop species, are unable to identify novel loci,
and any genetic inferences made are influenced by the initial
SNP discovery method (Thomson, 2014; Rasheed et al., 2017).
Conversely, complexity reduction methods are generally cost-
effective and easy to implement with few prior genomic resources
required (Scheben et al., 2017). The Elshire et al. (2011) method
of GBS through restriction-site associated DNA (GBS-RAD) is
commonly used in crop species but results in high missing
data, often calls variants in a dominant manner due to the
presence-absence nature of enzymatic cut sites and struggles to
identify heterozygotes (Hirsch et al., 2014). The other complexity
reduction method, GBS-transcriptomics (Malmberg et al., 2018a)
relies on mRNA, which must be of high quality and only delivers
SNPs within the exome (Scheben et al., 2017).

While such methods can be cost-effective, especially in species
with large genomes, the modal genome size of plants is approx.
600 Mbp (Gregory, 2005), such that many species with a reference
genome can be cost-effectively genotyped by skim whole genome
re-sequencing (skim WGR). Although there is currently no
convention, we consider skim WGR to be anything less than
10x genome coverage. Skim WGR is a flexible, high-throughput,
high-density marker system with unbiased representation of
the whole genome, and cheaper sample preparation than other
popular GBS methods (Huang X. et al., 2009; Rowan et al., 2015).
A substantial advantage of the system is the ability to control
marker density by altering sequencing depth, with sequencing
costs varying linearly. The balance of coverage versus sample
number needs to be considered when choosing an appropriate
sequencing depth.

Skim WGR has been primarily adopted in rice since the
introduction of the method by Huang X. et al. (2009) for linkage
mapping in rice recombinant inbred lines (RILs) sequenced
to an ultra-low coverage of 0.02x. Due to the pitfalls of low-
coverage sequencing, SNP calling between the deeply sequenced
parental genomes and a sliding window method were used
to collectively determine the genotypes of the low-coverage
sequences. Since then a parent-independent inference method for
use in biparental breeding populations has been developed in a
rice RIL population (Xie et al., 2010). Numerous other studies
have applied skim WGR in biparental plant populations, with
various bioinformatics methods and at a range of sequencing
coverage (0.055x–4x), including rice (Gao et al., 2013; Ma et al.,
2016; Zhou et al., 2016; Jiang et al., 2017; Zhang et al., 2017),
sorghum (Zou et al., 2012), foxtail millet (Ni et al., 2017),
chickpea (Bayer et al., 2015; Kale et al., 2015), safflower (Bowers
et al., 2016), pea (Boutet et al., 2016), soybean (Xu et al., 2013;
Karthikeyan et al., 2017; Lu et al., 2017), Arabidopsis thaliana
(Rowan et al., 2015), melon (Hu et al., 2018), potato (Marand
et al., 2017), and a doubled haploid (DH) mapping population
of canola (Bayer et al., 2015). Other applications of skim WGR

include the improvement of the foxtail millet reference genome
(Ni et al., 2017) and the B. napus Darmor-bzh reference genome
(Bayer et al., 2017). It is also possible to call SNPs from low-
coverage sequences in diverse sample sets. Huang et al. (2010)
performed de novo SNP discovery in 517 rice varieties sequenced
to approx. 1x coverage. Comparison with 4 deeply sequenced
cultivars found genotype call accuracy above 99.9%, with 20.1%
of SNPs from the deeply sequenced individual re-called in the
same individual sequenced to 1x coverage. Skim WGR of diverse
samples has been applied in rice (Huang et al., 2012a,b; Chen
et al., 2014, 2018; Wang et al., 2016; Dong et al., 2018), foxtail
millet (Jia et al., 2013), maize (Jiao et al., 2012), B. oleracea and
was evaluated using a computational simulation approach in
B. rapa (Fu et al., 2016).

As skim WGR results in missing data in the form of absent
markers and incomplete allele recovery, the above-mentioned
studies have often employed some form of specialized SNP
discovery and genotyping method. Many studies have been able
to exploit the ability to make assumptions based on biparental
population structure, and even in diverse sample sets, efforts
have been made to improve SNP genotyping. Having sequenced
533 diverse rice varieties, Chen et al. (2014) used 950 1x
coverage sequences from Huang et al. (2012b) to improve SNP
genotyping and imputation in their own samples. Fu et al.
(2016) used a pooled mapping approach to call SNPs in B. rapa
and B. oleracea, before genotyping these SNPs in individuals.
Restricting genotype calling to a list of previously validated
SNPs would significantly ease SNP genotyping in low-coverage
samples, and simply require the removal of SNPs which are not
informative in the sample set of interest, due to low minor allele
frequency (MAF) or high missing data. As such the importance
of high quality genomic resources shared by crop communities
becomes increasingly important and applicable.

Several studies, particularly those applying ultra-low
sequencing coverage (<1x) have relied on imputation to achieve
sufficient SNPs for linkage mapping and GWAS. The ability to
impute from low marker density to high, whether from low to
high density array based SNPs or some form of low-coverage
GBS, has been widely investigated, particularly in human and
livestock studies, which found benefits in sequencing a large
number of individuals at low coverage for the application of
GS and GWAS (Li et al., 2011; Huang et al., 2012c; Buerkle and
Gompert, 2013; Druet et al., 2014; Gorjanc et al., 2015; VanRaden
et al., 2015). Skim WGR studies performed in mammals were
a 2.9x coverage of bulls for the detection of copy number
variation (Keel et al., 2016) and a 0.15x coverage of mice for QTL
analysis (Nicod et al., 2016). In contrast to most plant studies,
human studies are largely concerned with the ability to detect
rare variants causing disease (Li et al., 2011; Pasaniuc et al.,
2012; Spiliopoulou et al., 2017), and genotypic imputation in
humans and livestock is often bolstered by significant pedigree
information. In plants, the accuracy of imputation can vary
substantially based on genetic complexity such that imputation
in rice, which is almost fully homozygous and has a reference,
outperforms imputation in alfalfa, which has heterozygotes
and used the genome of closely related species as a reference
(Nazzicari et al., 2016). As such, imputation is a valuable
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and highly accurate tool where the genetics or parentage is
known, but is prone to increased errors with novel samples,
presenting substantial obstacles for accurate imputation in plant
breeding programs. In such cases, the application of skim WGR
without the use of additional imputation may be preferable.
For applications which require low levels of missing data, it has
been shown that 50% missing data in hexaploid wheat leads to
sufficiently accurate imputation (Rutkoski et al., 2013). Even
when imputed up from up to 80% missing data, GS performed in
wheat outperformed phenotypic selection (Rutkoski et al., 2015).

Despite successful application in numerous plant species,
skim WGR has not yet been fully exploited in amenable crop
species with relatively small genomes as a routine genotyping
tool outside of biparental population studies. Cao et al. (2016)
sequenced 129 peach accessions to an average coverage of 4.21x,
and imputed SNPs for QTL identification. Two studies used 5x
coverage of the cotton genome to perform population genetics
analyses (Fang et al., 2017a) and GWAS for fiber quality and
yield traits (Fang et al., 2017b). Both the peach genome and the
cotton genome are smaller than 1 Gbp (Verde et al., 2013; Zhang
et al., 2015) and would benefit from the application of skim WGR
at lower coverage, sequencing more individuals at a similar cost
to increase the power of association studies. Other crop species
with genomes smaller than 1 Gbp as well as a reference or draft
genome, and so would be ideal candidates for skim WGR include,
cassava (Bredeson et al., 2016), cucumber (Huang S. et al., 2009),
sugar beet (Dohm et al., 2014), apple (Velasco et al., 2010;
Daccord et al., 2017), common bean (Schmutz et al., 2014),
flax (Wang et al., 2012), and tomato (The Tomato Genome
Consortium, 2012). Even in the absence of a reference genome,
deep sequencing of a single individual has been shown to be
sufficient to produce a draft genome, and subsequent production
of a linkage map in a population of safflower RILs (Bowers et al.,
2016). Several plant species which have already applied some
form of skim WGR have genomes larger than 1 Gbp (soybean,
safflower, pea and maize), such that even plant species with large
genomes can apply this technique. As the cost of sequencing
continues to decrease, more species will become amenable to
skim WGR and existing protocols will become cheaper, allowing
for the production of higher quality data at the same cost by
increasing sequencing coverage and/or the number of samples.

The aim of the current study was to determine the effect
of sequencing coverage, minimum read depth and maximum
missing data filtering on SNP genotyping, and apply the method
in a range of genetic backgrounds of varying complexity,
to determine the applicability of skim WGR as a routine
genotyping tool in canola, a highly duplicated allotetraploid with
a genome size of 1.13 Gbp, of which 850 Mbp is covered in
the Darmor-bzh reference genome (Chalhoub et al., 2014). Skim
WGR was evaluated in a global diversity panel of 149 canola
samples, at seven levels of sequencing coverage (0.25x, 0.5x,
1x–5x), without the use of imputation to exemplify working
with novel uncharacterized germplasm and demonstrate in a
conservative manner the outputs of the method. As insufficient
read sampling is expected to have a significant effect, a range
of depth filtering was evaluated (dp 5, dp 4, dp 3 and dp 2),
as well as the use of a list of previously validated SNP loci

versus de novo SNP discovery. Skim WGR was experimentally
validated in two populations representing different levels of
complexity: first in a highly heterozygous set of 1,590 individuals
derived from 84 Australian spring type four-parent crosses
aimed at maximizing diversity as well as one commercial F1
hybrid, to exemplify the applicability of this method in a
complex genetic background. However, as such a diverse set
is currently unlikely to be routinely genotyped in canola, 379
DHs derived from 19 of the four parent inter-crosses and
which have inter-relationships, were sequenced to 2x coverage
and further computationally sub-setted to determine whether
a lower level of skim WGR is feasible in a simpler genetic
background.

MATERIALS AND METHODS

Global Diversity Panel
In silico Generation of Fastq Files
The fastq files of 149 canola samples sequenced by Malmberg
et al. (2018b): available at NCBI BioProject accession number
PRJNA435647) were used to produce skim WGR sequences
in silico, for analysis of the method. The original fastq files
had an average of 10x coverage of the Darmor-bzh reference
genome (Chalhoub et al., 2014) and regardless of actual coverage,
each sample was assumed to have 10x coverage and was
computationally sub-setted based on the number of reads to
produce skim WGR fastq files representing 0.25x, 0.5x, 1x,
2x, 3x, 4x, and 5x coverage of the reference (Supplementary
Figure S1). Using this method, there is a range in coverage
between samples such as would be experienced in a real data
set, more accurately representing the applicability of skim WGR
by incorporating the variability in coverage produced by pooled
sequencing.

Bioinformatics Analysis
All skim fastq files were quality and adaptor trimmed,
then aligned to the B. napus Darmor-bzh whole genome
reference (Chalhoub et al., 2014) using BWA and the MEM
algorithm (v0.7.12: Li, 2013) to produce BAM files. Reads
were also filtered for a minimum mapping quality of 30 to
remove reads aligning to multiple locations in the reference
genome. SNPs were called using SAMtools mpileup (v0.1.19-
44428cd: Li et al., 2009) with a lenient list of approx. 9.4
million SNPs to capture as much of the variation present as
possible (Malmberg et al., 2018b), and converted to a VCF
file of biallelic SNPs using BCFtools view (v0.1.19-44428cd:
Li et al., 2009) and VCFtools (v0.1.12a: Danecek et al.,
2011).

Filtering on the resulting VCF files, in all instances, was
performed in R (v3.1.2: R Development Core Team, 2012) after
conversion to genotype and depth matrices. To assess the effect
of sequencing depth, a range of minimum read depths including
a minimum read depth of 5, 4, 3 and 2 were applied to each of the
skim levels, resulting in 28 list-based SNP sets (Supplementary
Figure S1). All list-based SNP sets were additionally filtered
for maximum missing data of 0.5, minimum MAF of 0.05
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[calculated separately for spring and remaining diverse global
samples as suggested by Malmberg et al. (2018a)] and maximum
heterozygosity of 0.1. In all instances, each of the resulting
skim SNP sets were compared to the original 10x sequencing
data to determine genotype accuracy. If the skim SNP set was
filtered to a minimum read depth of 2, the comparison was
made against the original 10x sequencing data filtered to a
minimum depth of 2, and so on for each skim sequencing
coverage level.

To assess the potential for de novo SNP discovery, the skim
BAM files were also processed for variant discovery with mpileup
omitting a SNP list, converted to VCF files, then genotype and
depth matrices, and filtered in R using the same parameters
as described above, resulting in 28 de novo SNP sets. Due to
the size of some of the VCF files resulting from de novo SNP
discovery, additional filtering for a minimum read depth of 2 and

maximum missing data of 0.5 was applied using VCFtools prior
to converting the VCF files to genotype and depth matrices and
performing all further filtering in R.

Experimental Demonstration of in silico
Predicted Optimal Skim WGR
Four Parent Crosses
An experimental validation was performed using 1,590
individuals, derived from 84 different four-parents crosses,
that used 97 Australian spring type canola varieties as well as
one commercial F1 hybrid, as the parent material. Libraries were
prepared using the method described by Malmberg et al. (2018b)
for WGR libraries. Samples were pooled and run on an Illumina
Hiseq 3000 to generate approx. 1 Gbp of sequencing data per
sample.

FIGURE 1 | The number of high-confidence SNPs in the global diversity panel for each skim coverage level (0.25x, 0.5x, 1x–5x) and minimum read depth (dp 5, dp
4, dp 3, and dp 2).

FIGURE 2 | Relative distribution of high-confidence SNPs across chromosomes in the global diversity panel skim SNP sets filtered to a minimum read depth of (A)
dp 5, (B) dp 4, (C) dp 3, and (D) dp 2. SNP density between chromosomes within each SNP set (skim coverage level and depth filter combination) was compared,
with the highest SNP density assigned a value of 1 and all other chromosomes assigned a value relative to this.

Frontiers in Plant Science | www.frontiersin.org 4 December 2018 | Volume 9 | Article 1809

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01809 December 5, 2018 Time: 12:36 # 5

Malmberg et al. Skim WGR in Brassica napus

BAM files were generated in the same way as described above.
SNP genotyping was performed by supplying the SAMtools
mpileup algorithm with a list of over four million high-
confidence SNPs, previously validated in Malmberg et al. (2018b),
before filtering for minimum read depths ranging from 2 to 5,
MAF of 0.01 and maximum missing data of 0.5.

Doubled Haploids
A second experimental evaluation was performed in 379
DH samples derived from 19 of the four-parent crosses.
Whole genome libraries were prepared using the method
for WGR libraries described by Malmberg et al. (2018b),
modified by substituting the REPLI-g mini kit for the
UltraFast REPLI-g Mini Kit (QIAGEN) and using the
JetSeq Flex DNA Library Preparation Kit (Bioline) from
the dA-tail step through to the final PCR amplification.
Samples were sequenced on an Illumina Hiseq 3000 aiming
to generate approx. 2.5 Gbp of raw sequencing data per
sample.

A range of skim coverage levels were evaluated in the DH
data set to determine the impact of sequencing coverage on

the number and accuracy of captured genotypes in a simpler
genetic background. The same method as described above for
the global diversity panel was applied to generate 0.25x, 0.5x, and
1x skim coverage fastq files for each of the DH samples. BAM
files were generated in the same way as described above. SNP
genotyping was performed by supplying the SAMtools mpileup
algorithm with the list of over four million high-confidence SNPs,
removing triallelic SNPs but retaining all other SNPs, regardless
of whether they were variant in the population. Finally, each
skim coverage level was filtered for minimum read depths of
1, 2, 3, 4, and 5, resulting in 15 skim DH genotype matrixes
(0.25x dp 1 to 5, 0.5x dp 1 to 5, 1x dp 1 to 5). Each of the
resulting skim DH genotype matrixes were compared to the
original 2x DH sequencing data to determine genotype accuracy.
If the skim DH set was filtered to a minimum read depth
of 1 or 2, the comparison was made against the original 2x
sequencing data filtered to a minimum depth of 2, and if the
skim DH set was filtered to a minimum read depth of 3, the
comparison was made against the original 2x sequencing data
filtered to a minimum depth of 3, and so on for each filtering
depth.

TABLE 1 | Cumulative number of SNPs (% accuracy of called genotypes) in 10% increments of maximum missing data accepted per SNP, for each sequencing
coverage level and minimum depth filter, in the skim global diversity panel.

Maximum missing data

Skim level Minimum read depth <10% <20% <30% <40% <50%

0.25x 5 39 (92.1) 54 (91.9) 65 (92.1) 84 (91.9) 127 (92.2)

4 42 (93.2) 63 (92.5) 76 (92.5) 129 (92.2) 206 (91.9)

3 50 (92.9) 79 (91.9) 132 (91.4) 264 (91.1) 529 (90.8)

2 70 (91.6) 180 (90.6) 496 (89.4) 1, 326 (88.3) 3, 137 (87.4)

0.5x 5 62 (93.2) 104 (92.9) 188 (92.9) 343 (92.6) 591 (92.5)

4 79 (92.5) 165 (92.4) 346 (92.2) 655 (91.8) 1, 263 (91.6)

3 128 (92.7) 327 (92.3) 749 (91.6) 1, 629 (91.1) 3, 293 (90.9)

2 288 (91.8) 1, 161 (90.3) 3, 217 (89.5) 7, 655 (89.0) 17, 533 (89.0)

1x 5 229 (92.8) 559 (93.0) 1, 180 (93.2) 2, 308 (93.3) 4, 165 (93.5)

4 347 (92.9) 1, 039 (93.0) 2, 415 (93.1) 4, 992 (93.2) 10, 268 (93.6)

3 617 (92.9) 2, 375 (92.9) 5, 834 (93.1) 14, 012 (93.3) 33, 158 (93.6)

2 1, 968 (92.4) 8, 868 (92.3) 26, 345 (92.5) 73, 089 (92.5) 181, 106 (92.5)

2x 5 1, 511 (94.5) 4, 900 (95.2) 11, 761 (95.8) 27, 759 (96.3) 60, 939 (96.6)

4 2, 834 (94.8) 10, 654 (95.5) 29, 677 (96.1) 74, 253 (96.3) 165, 322 (96.4)

3 6, 193 (95.2) 29, 664 (95.8) 88, 594 (95.8) 219, 662 (95.7) 459, 008 (95.6)

2 22, 865 (95.3) 121, 324 (95.0) 332, 147 (94.7) 697, 586 (94.4) 1, 193, 368 (94.2)

3x 5 6, 191 (96.0) 24, 883 (96.9) 65, 784 (97.3) 149, 552 (97.4) 298, 103 (97.5)

4 12, 760 (96.5) 58, 138 (97.0) 157, 952 (97.1) 348, 461 (97.1) 655, 669 (97.0)

3 32, 584 (96.7) 155, 568 (96.7) 399, 127 (96.5) 796, 368 (96.3) 1, 333, 089 (96.2)

2 117, 715 (96.3) 480, 069 (95.8) 996, 611 (95.4) 1, 616, 262 (95.2) 2, 229, 034 (95.1)

4x 5 19, 832 (97.2) 83, 871 (97.7) 209, 245 (97.8) 423, 721 (97.8) 741, 998 (97.8)

4 42, 843 (97.5) 184, 749 (97.6) 439, 851 (97.6) 832, 678 (97.5) 1, 349, 178 (97.4)

3 106, 892 (97.4) 427, 994 (97.1) 914, 746 (96.9) 1, 539, 505 (96.8) 2, 223, 904 (96.7)

2 323, 132 (96.8) 1, 004, 739 (96.3) 1, 719, 151 (96.1) 2, 397, 603 (95.9) 2, 929, 725 (95.8)

5x 5 51, 017 (97.9) 200, 955 (98.1) 451, 492 (98.1) 817, 461 (98.1) 1, 286, 027 (98.1)

4 106, 435 (97.9) 401, 047 (97.9) 836, 977 (97.9) 1, 400, 574 (97.8) 2, 038, 444 (97.8)

3 243, 287 (97.7) 805, 789 (97.5) 1, 488, 739 (97.3) 2, 227, 176 (97.2) 2, 935, 573 (97.1)

2 618, 121 (97.2) 1, 545, 888 (96.8) 2, 329, 718 (96.6) 2, 959, 233 (96.5) 3, 305, 828 (96.5)
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RESULTS

In silico Evaluation of Skim WGR in
Diverse Canola Varieties
Average Genome Coverage and List-Based
High-Confidence SNP Markers
The BAM files generated from the original 10x sequences had an
actual average genome coverage of 9.27x. The average reference
genome coverage of the in silico skim BAM files aiming for
0.25x, 0.5x, 1x, 2x, 3x, 4x, and 5x were 0.19x, 0.38x, 0.77x,
1.54x, 2.31x, 3.08x, and 3.85x, respectively, with a varying range
of depth around the mean (coefficient of variation of 0.27 for
all skim coverages), more representative of an actual pooled
sequenced data set. Increasing sequence coverage resulted in
an exponential increase (R2 = 0.9289–0.9998) in SNPs and
relaxing the stringency of depth filtering also significantly
increased the total number of SNPs for each of the skim levels
(Figure 1).

Relative SNP density was compared between chromosomes
to determine the effect of skim coverage and filtering stringency
on marker spread. For the ultra-low skim coverage levels

(0.25x and 0.5x), stringent depth filtering resulted in highly
variable SNP density, with some chromosomes having one
or no SNPs (Figure 2A and Supplementary Figure S2).
Relaxing depth filtering improved marker spread, resulting
in more even coverage of chromosomes (Figures 2B–D and
Supplementary Figure S2). Relative SNP density was similar
between the higher skim coverage levels (1x–5x), with a
higher SNP density found on the A genome chromosomes,
and marginal improvement in marker spread for relaxed
depth filtering (Figures 2A–D and Supplementary Figure S2).
This suggests that beyond 1x sequencing coverage, SNP
markers are being evenly sampled across the genome. Sampled
SNP distribution largely matches the distribution of the
nine million markers in the SNP list as confirmed by
heatmap plots of SNP density in 1 Mbp bins (Supplementary
Figure S2).

Accuracy of Genotype Calls Compared to Original
10x Data Set
As low sequencing depth is expected to impact the accuracy of
genotype calls, a comparison was made between the original 10x

TABLE 2 | Number of filtered SNPs generated through de novo SNP discovery in the skim global diversity panel.

Skim
level

Minimum read
depth

No. of SNPs in
de novo skim

sets

% of list-based
SNPs identified

by de novo
discovery

Fold increase
in SNP no.

Increase in
SNP no.

0.25x 5 5,591 100 44.0 5,464

4 7,573 100 36.8 7,367

3 10,310 100 19.5 9,781

2 16,674 99.94 5.3 13,537

0.5x 5 11,224 100 19.0 10,633

4 14,659 99.92 11.6 13,396

3 20,245 99.97 6.1 16,952

2 39,520 99.99 2.3 21,987

1x 5 23,157 99.95 5.6 18,992

4 33,985 99.98 3.3 23,717

3 63,924 99.99 1.9 30,766

2 225,924 99.998 1.2 44,818

2x 5 100,028 99.98 1.6 39,089

4 220,638 99.99 1.3 55,316

3 541,071 99.997 1.2 82,063

2 1,309,224 99.999 1.1 115,856

3x 5 354,623 97.28 1.2 56,520

4 732,973 97.72 1.1 77,304

3 1,429,815 97.81 1.1 96,726

2 2,354,165 98.34 1.1 125,131

4x 5 825,813 97.59 1.1 83,815

4 1,456,258 97.83 1.1 107,080

3 2,348,359 97.92 1.1 124,455

2 3,121,869 98.50 1.1 192,144

5x 5 1,394,073 97.65 1.1 108,046

4 2,167,536 97.80 1.1 129,092

3 3,080,766 97.9 1.0 145,193

2 3,650,078 98.59 1.1 344,248
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FIGURE 3 | Accuracy of genotype calls in the (A) in silico skim global diversity panel compared to the original 10x sequencing data and (B) DH skim data sets
compared to the original 2x DH sequencing data. The percentage of genotypes across the whole genotype matrix (each SNP in each individual) within each skim
SNP set is represented. Green bars represent genotype calls which are consistent with the corresponding full sequencing data, orange bars represent genotype calls
which do not match, and the gray/black bars indicate missing genotypes in the (A) in silico skim global diversity panel and (B) genotypes present in the DH skim
data but which could not be evaluated for accuracy due to insufficient read depth in the original 2x data.
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data set and the skim data in each of the 28 list-based high-
confidence SNP sets: 0.25x, 0.5x, 1x–5x, each filtered to a depth
of 2, 3, 4, and 5. This relies on the assumption that the genotypes
are correct in the full 10x data.

In all list-based SNP sets the majority of genotype calls
were correct, with matching genotype calls ranging from 53.3–
74.9%, while the number of false genotype calls was low (<8%),
decreasing as sequencing coverage increases (Figure 3A and
Supplementary Table S1). Most of the differentiation from the
10x genotype calls was due to an increase in missing data,
ranging from 22.3–39.6%. Disregarding missing data points,
the proportion of correct genotype calls ranged from 87.4–
98.1% with a corresponding range of false genotype calls
from 1.9–12.6%. There are three factors to consider when
determining overall genotyping accuracy: correct, missing and
false genotype calls. Applying a more stringent filtering depth
results in significantly fewer SNPs but for those SNPs that
are called, there was generally increased overall accuracy with
fewer false calls, less missing data and more correct calls, with
the exception of sequencing coverage 2x and above. While
increasing the stringency of depth filtering still resulted in
fewer false genotype calls at 2x and above, a large proportion
of accurate genotypes are also removed, with a corresponding
increase in missing data (Figure 3A and Supplementary
Table S1). This is likely because SNP calling software uses
all available reads to call genotypes and actual sequencing
coverage of skim sets of 2x and above is greater than the
minimum 2 read cut off, unlike 1x and below data sets
where filtering depth is greater than or equal to expected
coverage.

As the acceptable amount of missing data within a genotype
matrix will vary between studies depending on the intended
application, the number of SNPs and corresponding accuracy
of genotype calls has been examined in cumulative increments
of 10% missing data (Table 1). In this way, an appropriate
level of sequencing coverage and minimum depth filtering
requirement can be chosen by balancing the total number of
informative markers and potential associated loss in accuracy
against sequencing requirements. Total marker number behaves
as expected, increasing as sequencing coverage and maximum
missing data increases, and as filtering depth is relaxed. The
variation in overall accuracy within a sequencing coverage
level (e.g., 1x) is minimal when coverage ≥1x (1.4–2.4%)
but is higher at ultra-low coverages (4.2–5.8%). At ultra-low
sequencing coverages, overall accuracy is increased both as
filtering depth stringency is increased and less missing data
is accepted. Although this strategy will improve accuracy, it
results in a significant decrease in SNP markers. At 1x coverage,
accuracy is highest when up to 50% missing data is accepted,
by a small margin across all filtering depths. At sequencing
coverage of 2x and above, accuracy is highest at dp 5 and
50% missing data but is lowest at dp 2 and 50% missing
data, suggesting that as depth filtering is relaxed at sequencing
coverage >2x, it is beneficial to select markers with less
missing data. This strategy is likely favorable as relaxing depth
filtering also substantially increased the number of SNP markers
available.

De novo SNP Discovery
All skim BAM files also underwent de novo SNP discovery and
filtering, resulting in 28 de novo SNP sets. In all instances, de
novo SNP discovery increased the total number of SNPs (Table 2)
compared to the corresponding list-based SNP set. The most
significant increase in the total number of SNP markers was
observed at ultra-low coverages and relatively stringent depth
filtering, with a 44-fold, 37-fold, 19-fold, and 19-fold increase
(0.25x dp 5, 0.25x dp 4, 0.25x dp 3, and 0.5x dp 5, respectively),
and all other de novo SNP sets generated between 13,396 and
344,248 additional SNPs. In all instances, the majority of loci
retained in the list-based SNP sets were re-identified, with more
than 97% of list-based SNPs identified in the de novo discovery
exercise (Table 2).

The genotypes of SNPs identified in the 1x and 5x de
novo exercise, but which were absent from the corresponding
list-based SNP set, were examined in the original 10x data
to determine why they did not pass quality filtering in the
original 10x sequences. A comparison of genotype calls found the
majority to be consistent (64.5–69.9%), a moderate percentage
were missing (26.3–32.9%) and a small proportion were incorrect
genotype calls (2.6–5.8%) in the de novo skim sets. An overall
increase in mean missing data and some degree of insufficient
allele sampling caused by skim sequencing coverage seems to
account for the inclusion of novel SNP loci in the 1x and 5x
skim de novo SNP sets, with the vast majority removed from the
original 10x data set during MAF filtering.

Experimental Demonstration of in silico
Predicted Optimal Skim WGR
Four Parent Crosses
Actual average genome coverage was 0.93x with a coefficient
of variation of 0.34. Due to the heterozygous nature of these
samples, the more lenient SNP list (approx. 9.4M SNPs) applied
in the global diversity panel could not be used, as resulting SNPs
need to be further filtered on excess heterozygosity caused by
misalignment. Instead, a list of over four million high-confidence
SNPs which have been previously validated and filtered on excess
heterozygosity was used. As the data set is large (1,590 samples),
the relatively high proportion of absent genotypes resulted in
the need to remove a large proportion of SNPs due to excess
missing data. A range of filtering depths was considered to
balance the total number of markers and the ability to accurately
call heterozygous loci. A minimum of 5 reads resulted in only

TABLE 3 | SNPs remaining from the 4M SNP list, in the four parent crosses after
filtering for MAF of 0.01 and maximum missing data of 0.5 for each minimum read
depth of 2, 3, 4, and 5.

Minimum read
depth

No. of
SNPs

% residual
missing data

Total data
points (SNPs∗

individuals)

No. of missing
genotypes

5 8,538 33.9 13,575,420 4,607,124

4 19,073 36.5 30,326,070 11,060,070

3 43,799 38.6 69,640,410 26,852,967

2 264,952 39.9 421,273,680 168,083,777
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TABLE 4 | The average, minimum, and maximum number of SNPs genotyped in
individuals in the DH samples for each sequencing coverage level and filtering
depth.

No. of SNPs genotyped in individuals

Skim level Minimum read depth Average Minimum Maximum

0.25x 5 24,144 666 47,800

4 56,014 1,531 104,674

3 82,229 2,030 154,165

2 243,102 13,850 404,436

1 426,370 31,188 700,290

0.5x 5 62,917 1,216 128,273

4 127,748 2,957 241,270

3 189,495 4,062 360,101

2 460,405 26,899 740,728

1 755,794 60,435 1,192,737

1x 5 173,476 2,294 358,718

4 299,618 5,920 553,618

3 429,318 8,738 787,243

2 836,761 53,316 1,292,317

1 1,254,796 117,965 1,860,615

2x 5 511,008 6,083 983,954

4 736,420 14,846 1,281,324

3 969,265 23,991 1,611,694

2 1,489,570 118,138 2,144,288

8,538 SNPs, too few for association studies, while a minimum of 4
reads resulted in 19,073 SNPs (Table 3), an acceptable number of
markers while still being stringent enough to prevent insufficient
allele sampling. Overall, increasing depth filtering stringency
results in a smaller percentage of residual missing data within
the data set as a whole, but also reduces the total number of data
points.

Doubled Haploids
Average genome coverage of the original DH sequencing data was
2.1x, with a resulting average coverage of 0.22x, 0.45x, and 0.89x
for the 0.25x, 0.5x, and 1x in silico skim data sets, respectively,
with a coefficient of variation of 0.17 in all skim sets.

This DH set was derived from 19 of the 1,590 four-parent
cross samples genotyped and described earlier, with between 1
and 83 DHs generated from each of the 19 source plants. As the
intention of this DH set was not to determine the number of
informative SNPs, but rather to examine overall accuracy of skim
genotype calls in a simpler and more breeding relevant genetic
background, all genotype calls from the list of over four million
high-confidence SNPs were retained unless the SNP was triallelic,
in which case it was changed to missing.

As expected, the average number of genotypes captured in an
individual increased with sequencing depth and as depth filtering
was relaxed (Table 4), such that in any genetic background,
increasing sequencing depth and/or relaxing depth filtering will
result in an increase in captured genotypes. Of the genotype
positions which had sequencing data available, the majority (dp
1: 80.2–82.7% and dp 2 or greater: 95.2–97.7%) were found
to match the corresponding genotype call in the full 2x DH

sequencing data, with a small proportion of incongruous calls
(2.1–4.8%), even in the skim data sets only requiring a single
sequencing read (Figure 3B). However, a number of genotypes
in the skim sets, particularly for minimum read depth of
1, could not be compared to the full 2x sequences due to
insufficient read depth such that their accuracy is unknown.
Furthermore, heterozygous calls were considered to be correct
if they matched the corresponding genotype call in the 2x DH
sequences, however, in a DH background, heterozygous genotype
calls are indicative of error such as read misalignment. The total
percentage of called genotypes which were heterozygous was low
across all DH skim data sets, but were present and ranged from
3.1 to 6.8%.

DISCUSSION

The present study has found skim WGR to be applicable in
canola, an allotetraploid with a relatively modest genome size,
in a range of genetic backgrounds. The application of skim
WGR is significantly eased in canola due to the availability of a
reference genome, covering c. 850 Mbp of the 1.13 Gbp genome
(Chalhoub et al., 2014), and a list of previously validated SNPs
(Malmberg et al., 2018b). It should be noted that the SNP list used
here was developed in 149 whole genome sequences (Malmberg
et al., 2018b), which were also used for the in silico creation
of the global diversity panel skim fastq files used in this study.
The application of a SNP list developed outside the sample set
of interest may reduce the total number of informative SNPs,
highlighting the benefit of further developing SNP resources
for canola. Throughout, this study has referred to the expected
rather than realized genome coverage based on the proportion
of 10x whole genome sequences used to create the skim files.
However, in all skim sets, this fell below expectation such that
a minimum realized coverage of 1x (between the 1x and 2x sets
described here which had a realized coverage of 0.77x and 1.54x,
respectively), is likely to be appropriate for most genomics-based
studies in canola. Additionally, in an attempt to mitigate the
effect of insufficient allele sampling, a range of minimum read
depths were used in this study. Often this resulted in selecting
SNPs with higher than expected coverage, particularly for ultra-
low skim sets. Sequencing depth varies across the genome even
with only uniquely aligned reads and has been attributed in part
to reference collapse, presence/absence between individuals and
minor GC bias but the primary cause of this variance has not
been established (Beissinger et al., 2013). As such, the range
of minimum read depth examined in this study may result
in the selection of some proportion of genetic artifacts being
incorporated at low sequencing coverage, but as these markers
were genotyped based on a SNP list developed in the set of 10x
sequences filtered using an appropriate minimum read depth of
5, this is likely to represent a small portion of SNPs. Furthermore,
this is an issue which is likely to affect many GBS systems in a
similar way.

As expected, the number of list-based SNPs retained in
the global diversity panel skim sets increased exponentially
with sequencing coverage and substantially as minimum read
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depth filtering was relaxed. Similar results have been found
in other studies (Nazzicari et al., 2016; Wickland et al., 2017;
Abed et al., 2018). The required number of markers will vary
significantly between studies and intended application. For
example, association studies require the genome to be sufficiently
saturated with markers to ensure markers and causal variants
are in linkage disequilibrium (LD), which varies significantly
between species and populations. As such, LD information of
populations can be used to inform on expected required marker
density if known. Three list-based SNP sets, 0.5x dp 2, 1x dp
3, and 2x dp 5 resulted in 17K, 33K, and 60K SNP markers,
respectively, comparable to or greater than the number of
markers typically captured in canola using the Brassica 60K array
(Li et al., 2014; Qian et al., 2014; Wang et al., 2014; Fomeju et al.,
2015; Hatzig et al., 2015) or GBS-RAD methods (Chen et al., 2013;
Wu et al., 2016). Although all three sets could be deemed suitable
in terms of marker number, three factors should be considered
when selecting an optimal skim WGR strategy: the acceptable
level of missing data, the effect of genotype error on downstream
applications and cost efficiency.

The presence of missing data in skim WGR in the form
of absent genotypes often results in the need to perform
imputation prior to further downstream analysis. The ability
to impute missing data has been well characterized across
a range of germplasm types, with high accuracy relatively
easily achieved in simple genomes such as rice and biparental
populations where parentage is known (Huang et al., 2010,
2012a; Yu et al., 2011; Gao et al., 2013; Rowan et al., 2015;
Ma et al., 2016; Wang et al., 2016) and is generally more
difficult in complex genomes and for rare variants (Nazzicari
et al., 2016). Sufficiently high accuracy has been achieved
in the presence of up to 50% missing data in unordered
markers in hexaploid wheat, with ordered markers expected
to achieve higher accuracy (Rutkoski et al., 2013). Although
not significantly affected by missing rate of up to about
60%, imputation accuracy typically improves as missing data
decreases (Rutkoski et al., 2013; Bajgain et al., 2016; Nazzicari
et al., 2016; Elbasyoni et al., 2018), but benefits from a large
number of data points such that imputation in a data set
with more markers and higher missing data is preferable
to fewer markers with less missing data (Torkamaneh and
Belzile, 2015). Furthermore, if the genome is under-saturated
the inclusion of markers imputed from high missing data
(80%) is beneficial for association studies due to the increase
in marker density, despite any potential decrease in accuracy
(Rutkoski et al., 2013; Jarquin et al., 2014; Elbasyoni et al.,
2018). As low coverage sequencing methods such as GBS-RAD
gain popularity due to their cost-efficiency, more focus is being
given to imputation in low coverage samples, particularly in
plant species (Xie et al., 2010; Swarts et al., 2014; Fragoso
et al., 2016; Zheng et al., 2018), which often lack the well-
developed resources available in humans and livestock. However,
should it be necessary to avoid high missing data, the total
number of SNPs and accuracy of genotypes captured has
been provided cumulatively in 10% increments to aid with
selecting the best balance between acceptable missing data,

total number of markers and resulting accuracy for each
sequencing coverage level and minimum read depth requirement
(Table 1).

As well as absent genotypes, low coverage sequencing is
expected to result in some degree of insufficient allele sampling,
causing heterozygous genotypes to appear homozygous, such
that highly heterozygous populations will be more affected.
In addition, sequencing error and other noise which would
typically be drowned out by deeper sequencing depth may
become incorporated into the genotype matrix. In all list-
based global diversity panel skim sets, most genotype calls
were correct, with increased missing data and a relatively
small percentage (1.2–7.7%) of erroneous genotype calls, which
decreased with sequencing coverage and more stringent depth
filtering. Although genotype errors were low, the total number
of data points varied significantly between SNP sets. For
example, relaxing depth filtering from 5 reads to 2 reads
in the 2x data increases the total number of data points
generated (individuals∗SNPs) from 9 million to over 177 million.
While the percentage of false genotype calls only increases
from 2.1 to 3.7%, the total number of erroneous data points
increases from 190K to 6.5 million (Supplementary Table
S1). Additionally, more erroneous genotypes may cause false
SNPs to be included if de novo SNP discovery is used, which
will be necessary in species without previously validated high-
confidence SNP positions available. As the deeply sequenced
genomes of the global diversity panel were available, it was
possible to characterize the errors associated with de novo
SNP discovery in skim WGR. Most legitimate SNPs present
in the population should already be incorporated in the SNP
list, particularly as a lenient list of over nine million SNPs
(Malmberg et al., 2018b) was used. In all instances, de novo
SNP discovery increased the number of markers, particularly
for ultra-low coverage sequencing, while still identifying the
majority of SNPs retained in the corresponding list-based SNP
set and so is capable of capturing high-confidence SNPs. An
overall increase in missing data and false genotype calls in
the skim sequences were found to account for new SNPs
identified during de novo SNP discovery, having been removed
from the original 10x data during filtering, but will have
less impact on association studies due to a lower average
MAF compared to high-confidence list-based SNPs. Of course,
this analysis is based on a single SNP discovery software
and using different software has been found to affect total
number of SNPs discovered, missing data, genotype accuracy
and proportion of heterozygotes, with relatively few SNPs
common between software (Yu and Sun, 2013; Clevenger et al.,
2015; Torkamaneh et al., 2016; Wickland et al., 2017). Studies
employing skim WGR and de novo SNP discovery should be
aware of the potential impact of an increase in erroneous
SNPs.

An increase in error has been found to reduce the accuracy
and filling rate of imputation (Huang et al., 2010), while the
effect of increased error, whether from insufficient allele sampling
or imputation errors, on downstream applications needs to be
considered. For genetic mapping, the incorporation of false
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genotype calls has been found to artificially inflate genome
size (Bajgain et al., 2016). For GWAS, a small degree of error
is likely to be preferable to inadequate marker density as
incorporating more markers despite higher error rates results
in greater association power (Torkamaneh and Belzile, 2015;
Wang et al., 2016), though studies using this approach should
be mindful of inflated association. Very low coverage levels have
poor association power to detect rare variants and results in
more false-positive associations in GWAS (Bajgain et al., 2016;
Xu et al., 2017), which could be an effect of errors or inadequate
marker density. Nonetheless, at genotype accuracies >98% in
rice, it was found that 1x coverage matched 20x in terms of
mapping power and ability to detect causal variants (Wang
et al., 2014). Genomic selection is more robust to variations
in overall error rate, with the choice of imputation method
having little effect despite differences in accuracy (Poland et al.,
2012; Rutkoski et al., 2013; Jarquin et al., 2014; Elbasyoni
et al., 2018), and simulations have shown that unless error is
substantial (>10%), GS accuracy is not substantially affected
(Perez-Enciso et al., 2015). The lack of effect on GS accuracy
may be because most imputation errors affect low frequency
variants, although this means the ability to detect rare variants
will be diminished (Perez-Enciso et al., 2015). Inability to capture
heterozygous genotypes is potentially more problematic as it
is essential to capture all variation present for accurate GS
(Ashraf et al., 2014, 2016; Gorjanc et al., 2017). Simulations
found insufficient allele sampling associated with low coverage
sequencing was detrimental to GS at very low coverage levels,
but GS became increasingly robust to these errors as marker
density increased (Gorjanc et al., 2015), and if higher marker
density is achieved through deeper sequencing coverage, it
can be expected that any associated insufficient allele sampling
will diminish as well. Although increasing genotype accuracy
does benefit GS accuracy (Gorjanc et al., 2015), ultimately,
sample size both in terms of total markers and individuals
sequenced will have a bigger effect on GS performance than
the incorporation of a small proportion of erroneous genotypes,
as numerous studies have found benefit in sequencing more
individuals at lower coverage and quality (Li et al., 2011; Pasaniuc
et al., 2012; Buerkle and Gompert, 2013; Ashraf et al., 2014;
Druet et al., 2014; Gorjanc et al., 2015; Xu et al., 2017).
The majority of studies agree that ultra-low sequencing is
often problematic, likely due to high error coupled with low
marker density (Gorjanc et al., 2015; Ashraf et al., 2016; Xu
et al., 2017; Abed et al., 2018), such that ultra-low sequencing
may only ever be appropriate in biparental populations or
individuals inbred to the degree that they behave as haploids
(Wang et al., 2016), and employing specialized SNP genotyping
techniques (Huang X. et al., 2009; Huang et al., 2010; Xie et al.,
2010).

Along with the ability to avoid the ascertainment bias present
in many SNP chips and the potential to capture causal variants
(Meuwissen and Goddard, 2010; Poland et al., 2012; Druet et al.,
2014; Bajgain et al., 2016; Elbasyoni et al., 2018), a skim WGR
approach is highly cost efficient and sequencing resources can be
allocated in a flexible manner. Skim WGR library preparation is
among the most cost-effective for GBS systems (Huang X. et al.,

2009; Rowan et al., 2015) and is a fixed cost per sample, while
sequencing costs increase linearly with sequencing coverage such
that under current cost structures, assuming $12 per sample
library preparation and $30 per Gb of sequencing data on an
Illumina Hiseq system, 100 individuals sequenced to 1x coverage
will cost $4,200 and 5x will cost $16,200. As the cost of sequencing
diminishes, skim WGR as well as other GBS methods, will
become increasingly cost efficient at higher sequencing coverages.
Conversely, at a fixed available cost of $50,000, 1,190 individuals
can be sequenced to 1x or 309 individuals can be sequenced to 5x.
If deeper sequencing efforts can be invested, it is better to deeply
sequence the training population and sequence more individuals
in the testing population at lower coverage (Weigel et al., 2010;
Pasaniuc et al., 2012; Gorjanc et al., 2015; Xu et al., 2017).
Additionally, when working with biparental populations, deeply
sequencing the parental lines, if available, is highly beneficial,
allowing for ultra-low coverage of the offspring (Huang X.
et al., 2009; Gao et al., 2013; Bayer et al., 2015; Boutet et al.,
2016).

Ultimately the selected skim sequencing approach needs
to be tailored to the population of interest. For this reason,
the 1,590 highly diverse and heterozygous four parent crosses
examined in this study were sequenced to an average of 1x
coverage primarily due to cost efficiency, avoiding ultra-low
sequencing due to issues with low expected marker density and
high error rate. As high heterozygosity rates were expected within
this population, filtering on excess heterozygosity as typically
performed in canola was avoided, and instead a restricted SNP
list already filtered on heterozygosity was used, as well as a
relatively stringent minimum read depth (dp 4) in attempt to
prevent insufficient allele sampling, while balancing the total
number of informative markers (19,073). For association studies
in heterozygous samples, avoiding insufficient allele sampling
and providing sufficient markers is more important than the
proportion of missing data (Ashraf et al., 2014, 2016). Canola
varieties and breeding lines are typically highly homozygous due
to the use of DHs in breeding programs and may be able to
use relaxed depth filtering without significantly impacting the
accuracy of genotype calls.

The use of skim WGR in DHs was expected to result in
a significant improvement in overall genotype accuracy, due
to the simpler genetic background. With the exception of
the dp 1 skim sets, the majority of called genotypes were
accurate (95.2–97.7%) across DH SNP sets, an improvement
at ultra-low coverage compared to the global diversity panel
skim SNP sets when missing data is ignored (87.4–98.1%).
There were fewer false calls in the DHs (2.1–4.6%) compared
to the global diversity panel skims (1.9–12.6%), suggesting
an improvement of accuracy in a DH background at some
coverage levels, and that ultra-low skim WGR may be feasible in
DHs. However, a significant number of loci were heterozygous
(3.8–5.1%), decreasing as more stringent depth filtering was
applied but not significantly affected by sequencing coverage.
This suggests consistent misalignment of short reads, which
has been found to occur at a local level in canola (Malmberg
et al., 2018a), and emphasizes the need to eliminate these
false-positive SNPs by using methods such as filtering on
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mapping quality and excessive heterozygosity where possible.
Ultimately, long read technology is expected to improve
alignment, extending far enough to uniquely align to the genome,
and as the sequencing accuracy of long read technology improves,
may become the optimal GBS method in highly duplicated
genomes.

Alternatively, genotype accuracy can be improved in skim
WGR through the application of more advanced bioinformatics
techniques. A GBS-RAD study in barley using a range of
coverage between 16 and 4 average reads per SNP and minimum
read depth of 2, achieved genotype accuracies of 99, 97,
and 95% at maximum missing data of 15, 50, and 80%,
respectively (Abed et al., 2018), similar to the current study
where an increase of missing data from 10 to 50% resulted
in a 1 and 0.7% drop in accuracy at 4x dp 2 and 5x dp
2, respectively. GBS-RAD studies in soybean, which has a
similar genome to canola in terms of size, duplication and
expected heterozygosity, have achieved high genotyping accuracy
at >98%, with little variation around maximum missing data
(Torkamaneh and Belzile, 2015) and, between 95.55% and
>99% primarily depending on the GBS pipeline implemented
(Wickland et al., 2017). It seems likely that the implementation
of the Fast-GBS pipeline (Torkamaneh et al., 2017) employed
by each of the abovementioned studies is responsible for
the high genotype accuracies achieved, as Fast-GBS involves
haplotype construction to improve variant calling. In addition,
methods such as the sliding window and inference approach
commonly employed in rice studies (Huang X. et al., 2009;
Xie et al., 2010), the selection of representative SNPs based
on LD and naïve recalling of genotypes in DHs based on
allelic proportions, are likely to be of great benefit to skim
WGR studies. Although this manuscript aims to establish the
effect of sequencing coverage and depth filtering on genotype
quality in the absence of such measures, the implementation
of appropriate genotype calling methods is advised. For this
reason, the computational and bioinformatics requirements
associated with skim WGR is greater than SNP chips, but is
still likely to be preferable in many species due to the absence
of commercially available SNP arrays, significant cost savings,
potential for greater marker density, increased association
power from capturing causal variants and avoiding SNP array
bias.

CONCLUSION

This study has demonstrated the applicability of skim WGR
outside of biparental segregating populations, in a highly
duplicated genome of 1.13 Gbp in size, across a range of
genetic backgrounds. The inherent flexibility in marker density
and the cost-effective, high-throughput nature of skim WGR
provides substantial advantages, allowing more samples to
be sequenced for the same cost as other traditional GBS
methods, increasing the power of association studies. As a
broad recommendation, a realized coverage between 1x and
2x with relatively stringent depth filtering is suggested for the
application of skim WGR in canola. Crop species including

soybean, safflower and tomato have genomes of a similar size
to canola and so could use 1x coverage as a starting point
for skim WGR under current sequencing cost structures, but
this needs to be evaluated on a case-by-case basis taking
into consideration sample diversity, expected heterozygosity
and available resources. While skim WGR has been applied
in some plant species with large genomes, for example pea,
to achieve 1x coverage in this species requires 4.3 Gbp of
sequencing per sample. As such there are still substantial
challenges present for the implementation of skim WGR in
large genomes, and ultra-low skim WGR (<1x coverage) will
likely remain most suitable in biparental populations. However,
as sequencing technology advances and costs continue to fall,
more and more species will become amenable to the method.
The presence of a reference genome, and a list of pre-validated
SNPs eases the implementation of skim WGR in canola,
although de novo SNP discovery can be performed provided a
certain degree of error can be accepted. Importantly, the DHs
demonstrated the difficulty of accurately genotyping canola due
to homoeologous misalignment. In future, the cost-structure and
accuracy of long-read sequencing may be such that it will be the
preferred method for routine genotyping in highly duplicated
genomes. Whole genome sequencing, whether based on short
or long reads, is likely to become the GBS method that will
predominate in all species due its stable, flexible and transferable
nature.
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