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Understory vegetation accounts for the majority of plant species diversity and serves as a

driver of overstory succession and nutrient cycling in boreal forest ecosystems. However,

investigations of the underlying assembly processes of understory vegetation associated

with stand development following a wildfire disturbance are rare, particularly in Eurasian

boreal forests. In this study, we measured the phylogenetic and functional diversity and

trait dispersions of understory communities and tested how these patterns changed

with stand age in the Great Xing’an Mountains of Northeastern China. Contrary to our

expectation, we found that understory functional traits were phylogenetically convergent.

We found that random patterns of phylogenetic, functional, and trait dispersions were

dominant for most of our surveyed plots, indicating that stochastic processes may play

a crucial role in the determination of understory community assembly. Yet, there was

an evidence that understory community assembly was also determined by competitive

exclusion and environmental filtering to a certain degree, which was demonstrated by

the observed clustered phylogenetic and functional patterns in some plots. Our results

showed that phylogenetic diversity significantly decreased, while functional diversity

increased with stand age. The observed shift trends in phylogenetic and functional

patterns between random to clustering along with stand age, which suggested that

understory community assembly shifted from stochasticity to competitive exclusion and

environmental filtering. Our study presented a difference to community assembly and

species coexistence theories insisted solely on deterministic processes. These findings

indicated that Eurasian boreal understory communities may be primarily regulated by

stochastic processes, providing complementary evidence that stochastic processes are

crucial in the determination of community assembly both in tropical and boreal forests.

Keywords: chronosequence, community assembly, environmental filtering, functional diversity, trait

conservatism, trait dispersion, phylogenetic diversity, overdispersion
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INTRODUCTION

Wildfires are common and widespread in ecosystems, serving as
a global “herbivore” in the determination of plant distribution,
and therefore, community composition (Bond and Keeley, 2005).

Wildfire is a potent evolutionary force for fire-tolerant and fire-
dependent plant species (Bond and Keeley, 2005). Functional
traits that enable rapid colonization and efficient post-fire
regeneration are crucial for the successful establishment and
persistence of fire-adaptive plant communities (Pausas et al.,
2004; Pausas and Keeley, 2014). Although global burned areas
have declined over the last two decades due to anthropogenic
activities (Andela et al., 2017), fire frequency and severity are

anticipated to increase in many ecosystems as a consequence of
projected climate change in the coming decades (Stephens et al.,
2013; Jolly et al., 2015). Thus, an understanding of how forest
communities are assembled following wildfire, is useful to land
managers in the preparation of post-fire strategies for vegetation
regeneration and future fuel management.

Two core processes have been proposed to explain vegetation

assembly following stand-replacing disturbances (e.g., wildfire,
wind, logging), namely stochastic processes and deterministic
processes. The stochastic class emphasizes the importance of
dispersal limitations and stochastic demographics in determining
community assembly (Bell, 2000; Hubbell, 2001). In contrast, the
deterministic class assumes that plant communities are generally
driven by two opposing forces: environmental filtering, which
gives rise to co-occurring species that are intimately related under
similar environmental conditions, and competitive exclusion
that decreases the similarity of co-occurring species (Weiher
et al., 1998; Chesson, 2000; Cornwell et al., 2006). Previous
studies have suggested that stochastic processes are dominant
in the determination of community assembly in tropical forests
(Condit et al., 2002; Chase, 2010), while niche based deterministic
processes are predominant in mid-latitude temperate regions
(Clark and McLachlan, 2003; Gilbert and Lechowicz, 2004).

Over the last two decades, phylogenetic- and functional
trait-based approaches were increasingly adopted for studies of
tropical and temperate forest community assembly; however,
there have been few for boreal forests (Kraft and Ackerly, 2010;
Swenson et al., 2012a; Wang et al., 2015). Phylogenetic and
functional patterns could reflect different ecological processes
acting on community assembly (e.g., environmental filtering and
competitive exclusion) with diversified evolution of functional
traits (Figure 1). Studies have shown that determining the
evolutionary patterns of functional traits is the prerequisite to
interpreting the mechanisms of community phylogenetic and
functional structure (Uriarte et al., 2010; Bennett et al., 2013;
Fritschie et al., 2014). When functional traits are phylogenetically
conserved (i.e., closely related species are ecologically similar
with traits being a legacy from their ancestors), environmental
filtering generally results in phylogenetic and functional
clustering (Figure 1A); while competitive exclusion results in
phylogenetic and functional overdispersion (Figure 1B) (Webb
et al., 2002; Cavender-Bares et al., 2004; Kembel, 2009). In
addition, environmental filtering will drive functional traits
of co-occurring species to be more similar than expected by

chance, namely trait convergence (Weiher et al., 1998; Cornwell
et al., 2006; Grime, 2006) (Figure 1A). Conversely, competitive
exclusion will drive functional traits of co-occurring species to
be less similar than expected by chance, namely trait divergence
(Figure 1B) (Chesson et al., 2004; Wilson, 2007; Wilson and
Stubbs, 2012). When functional traits are phylogenetically
convergent (i.e., species presented in different lineages have
similar functional traits), environmental filtering would generate
phylogenetic overdispersion, functional clustering and trait
convergence (Figure 1C), while competitive exclusion will
generate phylogenetic clustering, functional overdispersion and
trait divergence (Figure 1D) (Cavender-Bares et al., 2004;
Kembel, 2009; Uriarte et al., 2010; Bennett et al., 2013; Fritschie
et al., 2014).

Previous studies have reported that stand age imparts potent
influences on plant community assembly, due to the time
required for colonization, and changes in resource availability
as the stand develops (Hart and Chen, 2006; Verdú and
Pausas, 2007; Kumar et al., 2017). According to the observed
temporal changes in phylogenetic or functional patterns,
successional studies have demonstrated that community
assembly processes are altered as stands develop following
stand-replacing disturbances (Norden et al., 2012; Purschke
et al., 2013; Li et al., 2015; Muscarella et al., 2016). Stands at early
successional stages are typically dominated by shade intolerant,
nutrient demanding, and fast growing species, which results in
phylogenetic and functional clustering, due to the availability
of abundant resources subsequent to a disturbance (Verdú
et al., 2009; Letcher et al., 2012). In contrast, late-successional
communities are more often dominated by shade tolerant,
slow growing and distantly related species with dissimilar
functional traits, which are characterized by phylogenetic and
functional over dispersion caused by competitive exclusion as
resources become limited (Verdú et al., 2009; Letcher et al.,
2012). Such transformation has been generally attributed to
shifts in community assembly processes, from environmental
filtering to competitive exclusion (Purschke et al., 2013).

To date, much research has primarily focused on overstory
tree community assembly (Kooyman et al., 2011; Whitfeld
et al., 2012), yet little empirical work exists for understory
species (Azeria et al., 2011). In boreal region, forest understory
communities constitutes the majority of plant diversity, serving
as a critical driver for nutrient cycling and overstory succession
(Nilsson and Wardle, 2005; Hart and Chen, 2006). Therefore,
understanding the underlying mechanisms of understory
community assembly may provide complementary information
toward the elucidation of community assembly mechanisms
following disturbances in boreal forest ecosystems. Here,
we attempted to infer understory assembly processes from
the temporal trends of phylogenetic and functional patterns
coupling with trait dispersion in boreal forest. We surveyed
understory species abundance and measured key functional
traits over a chronosequence of 200 years following wildfire
in a larch forest of Northeastern China. Specially, we tested
phylogenetic trait conservatism to determine how understory
functional traits evolved through quantifying phylogenetic
signal and expected that understory functional traits were
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FIGURE 1 | Environmental filtering and competitive exclusion give rise to opposite expectations about the phylogenetic, functional and trait patterns. Which ecological

force can be invoked to explain a given phylogenetic, functional and trait patterns depends on whether trait evolution is conserved or convergent. When functional

traits are phylogenetically conserved, environmental filtering drives clustering patterns (A) and competitive exclusion drives overdispersion patterns (B). When

functional traits are phylogenetically convergent, competitive exclusion drives phylogenetic clustering, functional overdispersion and trait divergence patterns (C), and

environmental filtering drives phylogenetic overdispersion, functional clustering and trait convergence patterns (D). In each figure, there are three communities

represented by rectangles. Within each community, colored circles represent species. Black lines represent the source of species from phylogenetic tree for each

community. Colored lines with different length represent traits with different values. Figure adapted from Webb et al. (2002), Cavender-Bares et al. (2004), Kembel

(2009), and Bernard-Verdier et al. (2012).

Frontiers in Plant Science | www.frontiersin.org 3 December 2018 | Volume 9 | Article 1854

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. Understory Community Assembly Following Wildfire

phylogenetically conserved. We tested the effects of stand age
(years since fire) on understory phylogenetic and functional
diversity and trait dispersion. We expected that phylogenetic
and functional diversity and trait dispersion would change with
stand age due to its strong control in the shifting of understory
species composition (Hart and Chen, 2008; Kumar et al., 2017).
By comparing the phylogenetic and functional patterns and trait
dispersion of understory vegetation, we assessed the changes in
relative importance of environmental filtering and competitive
exclusion with stand development. We hypothesized that
increasing stand age would promote phylogenetic and functional
overdispersion and trait divergence as a result of increasing
competitive exclusion (Spasojevic and Suding, 2012; Purschke
et al., 2013).

MATERIALS AND METHODS

Study Area
The present study was conducted at the southern margin
of the Eurasian boreal forest, which is located in the Great
Xing’an Mountains of Northeastern China. This study area is a
mountainous region with elevations that range from 239m in the
Northeast, to 1,488m in the Southwest. The climate in this region
is typical terrestrial monsoon with a mean annual temperature
of −4.4◦C, ranging from −2.7◦C to −5.3◦C, and average annual
precipitation ∼500mm. Fire comprises the primary natural
disturbance, with a mean fire return interval of approximately
120–150 years (Chang et al., 2007). The typical vegetation type of
this region belongs to the cool temperate coniferous forest (Zhou,
1991). The most dominant species is larch (Larix gmelini (Rupr.)
Kuzen.), which is widely distributed in this region; typically
forming pure stands. Birch (Betula platyphylla Suk.) is the widely
distributed broadleaf species that intersperses in the larch forests
at xeric sites. Pine (Pinus sylvestris L. var.mongolica Litv.), spruce
(Picea koraiensisNakai), aspen (Populus davidianaDode, Populus
suaveolens Fisch.) and willow (Chosenia arbutifolia (Pall.) A.
Skv.) are also interspersed in larch forests, with a small area of
distribution (<2%). The most diverse component of the boreal
forests is the understory vegetation, where common understory
plants include Betula fruticosa Pall., Rhododendron dauricum
L., Vaccinium uliginosum L., Carex schmidtii, and Chamerion
angustifolium.

Sampling Design
To examine the effects of stand age on understory vegetation,
stands originating subsequent to wildfire were selected using
a chronosequence approach. The chronosequence approach is
recommended for the investigation of successional processes,
over decadal to millennial time scales (Walker et al., 2010). Based
on available fire-originating stands within the study area, we
selected seven age classes of fire-originating stands, representing
early stand initiation (4-year), late stand initiation (14-year),
early stem exclusion (27-year), late stem exclusion (55-year),
early canopy transition (76-year), late canopy transition (98-
year), and gap dynamic (203-year) stages of stand development
(Chen and Popadiouk, 2002). All stands were sampled on well-
drained brown coniferous forest soil, which is the dominant soil

type in this region (Gong, 2001). The selected stands were visually
homogeneous in terms of stem density and composition within
each stand age.

For the sampling of stands ≤50 years old, time since last fire
was determined according to the fire occurrence records, which
have been reported since 1965 (Liu et al., 2012). For the sampling
of stands >50 years old, we confirmed fire to be the primary
disturbance factor based on the black carbon in soil and the
burned stump for forest stands over 50 years old. The stands we
selected had cohorts of overstory seedlings and trees with similar
age. Stand ages were determined through dendrochronology
analysis (Chen et al., 2013). We selected larch to determine the
time since fire for all sampled stands. For each stand, three to
five trees were selected, and a core was extracted at breast height
(1.3m above root collar) from each tree. The cores collected in
the field were stored and transported in plastic straws. In the
laboratory, the cores were mounted on grooved, wooden core
strips and sanded to make the growth rings visible. Subsequently,
we counted the tree rings using a hand-held magnifier until the
same number was obtained following three successive counts.
In order to precisely represent stand age, we corrected the tree
ages by adding 8 years to the ring counts made at breast height,
accounting for the number of years required by trees to grow to
breast height.

Field Survey
A field survey was conducted during the peak vegetation cover
from July to August. For each sampled stand, we randomly
established a 400 m2 square plot for all measurements. In order
to ensure accessibility and to avoid edge effects, each plot was
selected within a walking distance of 50–2,000m from a road.
For stands of >4 years, the diameters at breast height (1.3m
above root collar) of all trees within the plot were measured and
recorded. Tree and sapling density and basal area were summed
to the plot level and calculated per hectare (Table S1). For stands
in the 4-year age class, seedling basal areas were not reported here
due to negligible values.

According to previous studies (Chipman and Johnson, 2002;
Hart and Chen, 2008), the understory vegetation was surveyed
in four randomly allocated 1 × 1m quadrats. The percentage
of cover for each shrub and herb species <1.3m in height
within each quadrat was visually estimated (Mueller Dombois
and Ellenberg, 1974). Specimens of any unidentified species
were collected in the field and transferred to the Herbarium
of Northeast China for identification. Species nomenclature
followed the Flora Republicae Popularis Sinicae (http://frps.
eflora.cn) and Flora of China databases (http://foc.eflora.cn/).

Trait Selection and Measurements
Six morphological functional traits were selected to characterize
the vegetative phase of understory vegetation according to Pérez-
Harguindeguy et al. (2013). Leaf area (LA, mm2) is a major
determinant of the ability of a species to sequester light resource,
which can affect the photosynthetic rate. Leaf carbon content
(LCC, %) and leaf dry matter content (LDMC, %) are related
to physical plant resistance, leaf life span, and relative growth
rate. Leaf nitrogen content (LNC, %) is a key foliar trait, which
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is strongly correlated with nutritional quality, the photosynthetic
rate, and productivity. Plant height (PH, cm) is employed to
quantify the light that is available for capture by understory
plants. Specific leaf area (SLA, cm2/g) represents strategies for
plant growth and survival, such as structural investment, leaf
life spans, and photosynthetic rates. Functional trait values
were determined following the new handbook for worldwide
functional traits measurement (Pérez-Harguindeguy et al., 2013).
We sampled at least five individuals for each observed species
in each plot. The individuals we selected were reproductively
mature and visually healthy. Followingmeasurements, functional
trait values were averaged at the species level for each sample
plot as interspecific variability inclines to exceed intraspecific
variability for understory traits (Burton et al., 2017). All
understory species and the values of functional traits for each
species were listed in the Table S2.

Measurement of Trait Phylogenetic
Conservatism
Before quantifying phylogenetic conservatisms for the measured
functional traits, a phylogenetic tree for our study species
was constructed using the online tool Phylomatic (http://
phylodiversity.net/phylomatic/). This program generates a
megatree with modern family and genus names based on
previously published phylogenies (Phylogenetic tree version:
zanne2014) (Zanne et al., 2014). Family and genus name
resolutions are based on the Angiosperm Phylogeny Website
(Stevens, 2001).

To assess the degree of species phylogenetic trait
conservatism, we employed a widely used Blomberg’s K
statistic to quantify the phylogenetic signals of the six continuous
traits (Blomberg et al., 2003). K was the ratio of the mean
squared error of the tip data measured from the phylogenetically
correct mean (MSE0), divided by the mean squared error of
the data (MSE), which was quantified using the phylogenetic
variance-covariance matrix, derived from the candidate tree.
Afterward, K is calculated as:

K = observed
MSE0

MSE
/expected

MSE0

MSE
(1)

K is a continuous value, ranging from zero to infinity. When
the K value is close to zero (p > 0.05), it implies a random or
convergent pattern of trait evolution, and a weak phylogenetic
signal. When the K value is close to one (p < 0.05), it implies
that there is a strong phylogenetic signal, and that a trait has
evolved based on the Brownian motion model. When the K value
is higher than 1 (p < 0.05), it indicates a strong phylogenetic
signal of traits, and closely related species are more similar than
expected under a Brownian motion model of trait evolution.
The K values were calculated in R 3.4.1 (R Development Core
Team, 2017) using the “picante” package (Kembel et al., 2010).
Additionally, we projected phylogenetic tree into trait space using
traitgram and extended this to incorporate uncertainty about
ancestral trait values along branches and at nodes, which was
performed in R with package “phylotools” (Ackerly, 2009; Revell,
2013).

Measurement of Phylogenetic and
Functional Diversity and Trait Dispersion
The phylogenetic diversity within individual plots at each stand
age was quantified via the mean pairwise distance (MPD), which
measures the sum of the branch lengths of all co-occurring
species within each community (Webb, 2000; Webb et al.,
2002). We performed this analysis by using the phylogenetic
dendrogram and weighted the pairwise distances among species
by their relative coverage. An identical framework was utilized
to quantity functional diversity using the trait dendrogram
from Euclidean trait distances, referred to as mean pairwise
functional distance (MFD) (Li et al., 2015). Community weighted
trait variance (CWV) within individual plots at each stage was
employed to depict trait dispersion (Bernard-Verdier et al., 2012),
which was computed for each trait in each plot as follows:

CWV =

S∑

i=1

pi × (xi-CWM)2 (2)

where CWV is the community weighted trait variance for a given
functional trait, pi is the relative abundance (percent coverage) of
species i (i = 1, 2, . . . , S), xi is the trait value of species i, and
CWM is the community weighted mean trait value of species
i. The community weighted mean trait value (CWM) for each
functional trait (Garnier et al., 2004) was calculated as follows:

CWM =

S∑

i=1

pixi (3)

where CWM is the community weighted mean value for a given
functional trait, pi is the relative abundance (percent coverage) of
species i (i = 1, 2, . . . , S), and xi is the trait value of species i. In
order to account for the potential scale sensitivities of community
patterns, all calculations of individual plots were replicated at a
larger spatial scale by summing the plot composition within each
stand age (n= 7).

Null Model Testing
The null model was employed to determine whether the observed
value of a metric varied from its random expectations. In order to
achieve this goal, we implemented three null models. Null model
1 and 2 were generated through shuffling the names of taxa across
the tips of the phylogenetic dendrogram and trait dendrogram,
respectively (Kembel, 2009). Null model 3 was constructed to
test the hypothesis that species abundance (percent coverage)
within a community is randomly distributed with respect to trait
values through shuffling the abundance values with unchanged
traits (Mason et al., 2008; Bernard-Verdier et al., 2012). We then
calculated the standardized effect size (SES) of MPD, MFD, and
CWV as follows:

SES =
Metricobserved −mean(Metricnull)

sd(Metricnull)
(4)

where Metricobserved is the observed value of MPD, MFD, and
CWV, Metricnull is the mean values of random assemblages, and
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TABLE 1 | Six measured species functional traits: leaf area (LA), leaf carbon

concentration (LCC), leaf dry matter content (LDMC), leaf nitrogen concentration

(LNC), plant height (PH), and specific leaf area (SLA).

Trait Type of variable Mean (SE) K p

LA Continuous (mm2) 1921.06 (326.89) 0.176 0.022

LCC Continuous (%) 43.20 (0.56) 0.218 0.001

LDMC Continuous (%) 31.13 (0.97) 0.083 0.445

LNC Continuous (%) 1.71 (0.08) 0.139 0.032

PH Continuous (cm) 28.59 (3.10) 0.087 0.348

SLA Continuous (cm2/g) 284.32 (16.78) 0.158 0.047

The phylogenetic signal was measured using the K statistic. K values closer to 1 indicate

a phylogenetic signal similar to a Brownian motion model of trait evolution. Values >1

indicate a strong phylogenetic signal, and values <1 indicate a weak phylogenetic signal.

P-values <0.05 indicate that traits have a greater phylogenetic signal than the traits

predicted by random association.

sd(Metricnull) is the standard deviation of the random value. The
negative values of SES.MPD and SES.MFD with low quantiles
(p < 0.05) indicated smaller phylogenetic or functional distances
among co-occurring species than expected by chance, namely,
significant clustering. In contrast, positive values with high
quantiles (p > 0.95) indicated greater phylogenetic or functional
distances among species than expected by chance, namely,
significant overdispersion (Webb et al., 2002). For SES.CWV,
the negative values with low quantiles (p < 0.05) indicated
trait convergence, whereas positive values with high quantiles (p
> 0.95) indicated trait divergence. Non-significant positive or
negative values indicated observed values close to the median of
the random dispersion. The metrics of SES.MPD, SES.MFD, and
SES.CWV were all calculated in R using the “picante” package
with an “abundance.weighted” argument (Kembel et al., 2010).

Statistical Analysis
The differences in SES.MPD, SES.MFD, and SES.CWV among
stand ages were assessed using a non-parametric approach,
as our data failed to meet the assumptions of normality and
homogeneous variances. We employed rank-based one-way
ANOVA to test the effects of stand age on SES.MPD, SES.MFD,
and SES.CWV. These analyses were performed in R using the
“oneway.rfit” function with “Rfit” package (Kloke and McKean,
2012). The significance of the differences among stand ages
was tested by Dunn’s Post Hoc test via the “dunn.test” function
in R using the “pgirmess” package (Giraudoux, 2017). We
used chi-squared tests to detect whether and how phylogenetic
and functional patterns and trait dispersions changed from
early successional stage (4- and 14-year age classes combined)
to the late successional stage (98- and 203-year age classes
combined).

RESULTS

Trait Conservatism and Evolution
All measured traits exhibited small degrees of trait conservatism,
with K values ranging from 0.083 for LDMC, to 0.218 for
LCC (Table 1). This indicated that these traits were largely

phylogenetically convergent, in contrast to the traits that were
evolved under a Brownian motion model (all trait K values <1;
Table 1). Among these traits, four functional traits (LA, LCC,
LNC, and SLA) were more conserved than the those predicted
by a random association (four traits with p < 0.05; Table 1),
whereas LDMC and PH were closer to zero, which corresponded
to a random pattern of evolution. Mapping the six functional
traits on the phylogenetic tree, we found functional traits
displayed significant differences among phylogenetic related
species (Figure S1). LA values of most species exhibited a
widely range of 14.21–4,000 mm2, which was far away from
the estimated ancestral value of LA (1,228 mm2) for all species
(Figure S1a). As well, SLA had a widely range of values from
150 to 350 cm2/g, while the ancestral trait value is 234 cm2/g
(Figure S1f). Conversely, LCC, LDMC, LNDC, and PH displayed
a relatively narrow range of trait values, which were close to their
estimated ancestral ancestral values (Figures S1b–e).

Phylogenetic and Functional Diversity and
Trait Dispersion of Environmental Filtering
and Competitive Exclusion
In the 76- and 203-year age classes, more than half of the
plots had negative SES.MPD values, which were significantly
different from those expected via the null model, indicating a
clustered phylogenetic structure (Table 2). In other age classes,
more than half, and even all plots, had SES.MPD values that
were not significantly different from those expected by the null
model, which indicated a randomly distributed phylogenetic
structure (Table 2). The clustered patterns of phylogenetic
structure were driven by competitive exclusion, as the traits
were largely convergent. In the 4- and 55-year age classes,
more than half of the plots had negative SES.MFD values,
which were significantly different from those expected by the
null model. This indicated a clustered functional structure
that was driven by environmental filtering as the traits were
largely convergent (Table 2). For other age classes, more than
half, and even all plots, had SES.MFD values that were not
significantly different from those expected by the null model,
indicating a randomly distributed functional structure (Table 2).
For the six measured functional traits, more than two-thirds, and
even all plots had SES.CWV values that were not significantly
different from those expected by the null model across all
age classes, indicating random trait dispersions for most plots
(Table S3).

Phylogenetic and Functional Patterns and
Trait Dispersions Across Stand Age
The SES.MPD decreased significantly from the 4-year age class
and attained the lowest level in the 76-year age class (Figure 2A).
Subsequently, the SES.MPD increased significantly and remained
stable in the 98 and 203-year stages (Figure 2A). The SES.MFD
attained the lowest value in the 4-year age class (Figure 2B).
The SES.MFD then increased considerably and attained the
highest level in the 27-year age class (Figure 2B). Further, the
SES.MFD initially decreased and then increased between the 27
and 76-year age classes, with a further decrease and increase,
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TABLE 2 | Percentage of clustering, random, and overdispersion patterns for phylogenetic (SES.MPD) and functional (SES.MFD) structures in each age class.

Stand age Phylogenetic structure Functional structure

Clustering Random Overdispersion Clustering Random Overdispersion

4 0 100 0 56 44 0

14 0 100 0 33 67 0

27 25 75 0 0 100 0

55 50 50 0 67 33 0

76 83 17 0 8 92 0

98 42 58 0 33 67 0

203 58 42 0 25 75 0

FIGURE 2 | Standardized effect size of phylogenetic diversity (SES.MPD, A) and functional diversity (SES.MFD, B) along with stand age which were measured as the

mean pairwise phylogenetic distance and the mean pairwise functional distance of the 88 plots over 203 years of succession, based separately on phylogeny and the

functional dendrograms. Stand ages from 4 to 203 years represent early stand initiation, late stand initiation, early stem exclusion, late stem exclusion, early canopy

transition, late canopy transition, and gap dynamics stages, respectively. The boxplot midlines correspond to the median value for each stand age; upper and lower

hinges represent the first and third quartiles. Letters indicate significant differences of the mean SES values (p < 0.05) across the stand age. Red dots correspond to

the SES values at a larger spatial scale by summing the plot composition for each stand age, and asterisks indicate a significant difference from the null model.

from the 76 to 203-year age classes (Figure 2B). At the larger
scale, by summing the plot composition for each age class, the
SES.MPD was significantly different from the null model for the
55- to 203-year age classes (Figure 2A), and the SES.MFD was
significantly different from the null model in only the 4-year age
class (Figure 2B). The chi-squared test indicated that there was
a pronounced shift of random phylogenetic pattern to clustering
from early to late successional stages (Chi-squared = 18.2, p <

0.01), while there was no pronounced shift of functional pattern
from early to late successional stage (Chi-squared= 1.6, p= 0.2).

The SES.CWV revealed individualistic trends for the six
measured functional traits along with stand age (Figure 3). The
SES.CWV.LA (leaf area) decreased significantly from the 4-year
age class, and attained the lowest level in the 14-year age class,

which was followed by an increase to attain the highest level in the
27-year age class (Figure 3A). The SES.CWV.LA then decreased
and attained the lowest level in the 76- and 98-year age classes,
followed by an increase to attain the highest level in the 203-year
age class. The SES.CWV.LCC (leaf carbon content) increased
from the 4-year age class and attained the highest level in the 14-
year age class, which then decreased and remained stable from the
55-year age class to the 98-year age class, followed by an increase
to attain the highest level in the 203-year age class (Figure 3B).
The SES.CWV.LDMC (leaf dry matter content) attained the
highest value in the 4-year age class, which then decreased to
attain the lowest level in the 76-year age class, followed by an
increase to attain the highest level in the 203-year age class
(Figure 3C). The SES.CWV.LNC (leaf nitrogen content) had the
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FIGURE 3 | Standardized effect size of community weighted trait variance of leaf area (SES.CWV.LA, A), leaf carbon content (SES.CWV.LCC, B), leaf dry matter

content (SES.CWV.LDMC, C), leaf nitrogen content (SES.CWV.LNC, D), plant height (SES.CWV.LA, E), and specific leaf area (SES.CWV.LA, F) along with stand age,

which were measured by comparing observed CWV to a null model that was obtained by randomly shuffling the abundance values with unchanged traits. Stand ages

from 4 years to 203 years represent early stand initiation, late stand initiation, early stem exclusion, late stem exclusion, early canopy transition, late canopy transition,

and gap dynamics stages, respectively. The boxplot midlines correspond to the median value for each stand age; upper and lower hinges represent the first and third

quartiles. Letters indicate significant differences of the mean SES values (p < 0.05) across the stand age. Red dots correspond to the SES values at the larger spatial

scale by summing the plot composition for each stand age, and asterisks indicate a significant difference from the null model.
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lowest value in the 4-year age class, which then increased and
attained lowest level in the 27-year age class, followed by a regular
increase and decrease from the 27-year age class to the 203-
year age class (Figure 3D). The SES.CWV.SLA increased from
the 4-year age class and attained the highest level in the 27-year
age class, which then decreased and reached lowest level in the
98-year age class, followed by an increase to attain the highest
level in the 203-year age class (Figure 3F). At the larger scale by
summing the plot composition for each stand age, the values of
SES.CWV.LA were significantly different from the null model,
except in the 4- and 27-year age classes (Figure 3A). Similarly,
the values of SES.CWV.LCC were significantly different from the
null model in only the 203-year age class (Figure 3B), and the
values of SES.CWV.LDMC were significantly different from the
null model in the 4- and 14-year age classes (Figure 3C). The SES
values of LNC, PH, and SLA were not significantly different from
the null model across all age classes (Figures 3D–F).

DISCUSSION

In this study, we firstly tested the degree of phylogenetic trait
conservatism for boreal forest understory through quantifying
phylogenetic signal (Losos, 2008; Revell et al., 2008; Ackerly,
2009). According to previous studies, phylogenetically conserved
traits may result in low rates of trait evolution; conversely,
less phylogenetically conserved traits may result in a random
or convergent pattern of trait evolution (Webb et al., 2002;
Ackerly, 2004). The degree of phylogenetic trait conservatism
has been widely tested in tropical and temperate forests, and
studies in support of phylogenetic trait conservatism appear
to be dominant (Ackerly, 2003). However, there were also
counterexamples which suggested that key functional traits,
especially leaf morphological traits, were evolutionarily labile
for tree species (Kraft and Ackerly, 2010; Swenson et al.,
2012b). In our study, the phylogenetic signals of four measured
functional traits were >0 (p < 0.05) but <1, which indicated
that the key functional traits related to understory light capture
strategies were less phylogenetically conserved (Ackerly, 2009).
Furthermore, the traitgrams of the six functional traits implied
that these functional traits were convergently evolved (Ackerly,
2009).

Contrary to our expectations, the phylogenetic and functional
diversity of most plots were not significantly different from
those expected by the null models, which indicated that most
understory communities were randomly assembled (Webb et al.,
2002; Kembel, 2009). These random patterns of co-occurring
understory species might be a consequence of stochastic
processes, such as external spatially random colonization and
germination from the soil seed bank (Hubbell, 2001; Ulrich
et al., 2016). Aside from random patterns, there was a clustered
phylogenetic pattern, which might be caused by competitive
exclusion as trait evolution was largely convergent (Cavender-
Bares et al., 2004; Pausas and Verd,ú, 2010). The phylogenetic
structure was inclined to shift from random to clustering, which
suggested that the importance of competitive exclusion increased
from early to late successional stages. In addition, we also found

that the clustered functional pattern, which might be caused by
environmental filtering as trait evolution was largely convergent
(Cavender-Bares et al., 2004). Although we observed clustered
functional patterns in the 4- and 55-year age classes, we failed to
observe shifts between clustered and random patterns, from early
to late successional stages. This suggested that environmental
filtering had only a minimal impact on understory assemblages
in some specific age classes. We found that the community
weighted trait variance for most communities were equal to those
expected by the null model, which indicated that random trait
dispersion was dominant in random community assemblages
(Bernard-Verdier et al., 2012).

Our study suggested that wildfire substantially altered
understory phylogenetic and functional diversity, and
community trait dispersions. In our study, phylogenetic diversity
decreased while functional diversity increased along with stand
age, which showed different temporal trends compared with
previous studies. For instance, Li et al. (2015) showed a unimodal
relationship of phylogenetic diversity, and a linear relationship
of functional diversity, along with stand age, respectively. In
contrast, Purschke et al. (2013) found that both the phylogenetic
and functional diversity of grassland communities increased
along with long-term succession. In addition, we found that
phylogenetic and functional diversity exhibited different
temporal trends compared with species richness (Figure S2),
which initially increased and then decreased along with stand
age (Hart and Chen, 2006). This suggested that phylogenetic and
functional diversity had weak correlations with species richness
in Eurasian boreal forests.

Our results failed to support the assumption that increased
local phylogenetic diversity corresponded to increased local
functional diversity. This might have been caused by the degree
of phylogenetic trait conservatism of the measured functional
traits in our study (Gerhold et al., 2015). In addition, we found
that the community weighted trait variance for the five traits that
we measured, changed significantly but with various temporal
trends along with stand age. The differences in phylogenetic
and functional diversity, and community weighted trait variance
among stand age classes might be attributed to random species
colorization and extinction (Lapiedra et al., 2015).

CONCLUSION

Using both phylogenetic- and functional-centric approaches, we
presented that the assembly and maintenance of understory
communities were the sum of different ecological processes. Our
study provided evidence that stochastic processes dominated in
the control of boreal forest understory community assembly
as shown by the observed random phylogenetic, functional
and trait patterns for most plots. We also found that
environmental filtering and competitive exclusion affected
understory community assembly to a certain degree, which
was indicated by the observed clustered phylogenetic and
functional patterns for some plots. Our results demonstrated
that understory community assembly following wildfire in boreal
forests shifted from stochasticity to competitive exclusion and
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environmental filtering. Our study presented a difference to
community assembly and species coexistence theories insisted
solely on deterministic processes. We anticipated that our
findings might provide complementary information toward
the further elucidation of community assembly mechanisms
following disturbances in boreal forest ecosystems.
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