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Chloroplasts are organelles subjected to extreme oxidative stress conditions.

Biomolecules produced in the chloroplasts act as signals guiding plant metabolism

toward stress tolerance and play a major role in regulating gene expression in

the nucleus. Herein, we used transplastomic plants as an alternative approach to

expression of transgenes in the nucleus for conferring stress tolerance to abiotic

stresses and herbicides. To investigate the morphophysiological and molecular

mechanisms and the role of plastid expressed GSTs in tobacco stress detoxification

and stress tolerance, we used transplastomic tobacco lines overexpressing a theta

class glutathione transferase (GST) in chloroplasts. The transplastomic plants were

tested under drought (0, 100, and 200mM mannitol) and salinity (0, 150, and

300mM NaCl) in vitro, and under herbicide stress (Diquat). Our results suggest

that ptAtGSTT lines were tolerant to herbicide-induced oxidative and salinity stresses

and showed enhanced response tolerance to mannitol-induced osmotic stress

compared to WT plants. Overexpression of the Arabidopsis thaliana AtGSTT in the

chloroplasts resulted in enhanced photo-tolerance and turgor maintenance under

stress. Whole-genome transcriptome analysis revealed that genes related to stress

tolerance, were upregulated in ptAtGSTT2a line under both control and high mannitol

stress conditions. Transplastomic plants overexpressing the ptAtGSTT2a in the chloroplast

showed a state of acclimation to stress, as only limited number of genes were

upregulated in the ptAtGSTT2a transplastomic line compared to WT under stress

conditions while at the same time genes related to stress tolerance were upregulated

in ptAtGSTT2a plants compared to WT in stress-free conditions. In parallel, the metabolic

profile indicated limited perturbations of the metabolic homeostasis in the transplastomic

lines and greater accumulation of mannitol, and soluble sugars under high mannitol

stress. Therefore, transplastomic lines seem to be in a state of acclimation to stress
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under stress-free conditions, which was maintained even under high mannitol stress.

The results help to elucidate the role of GSTs in plant abiotic stress tolerance and the

underlying mechanisms of the GSTs expressed in the chloroplast, toward environmental

resilience of cultivated crops.

Keywords: chloroplasts, glutathione-S-transferases, tobacco, transplastomics, abiotic stresses, herbicide,

transcriptomics, metabolomics

INTRODUCTION

Developing crop plants, able to yield better under abiotic
stresses or plants with multiple herbicide resistance, is a
prerequisite for improved crop production. The chloroplast,
abundant in plant cells and eukaryotic algae, is the site of
photosynthesis, providing the primary source of the world’s
food productivity (Verma and Daniell, 2007). As chloroplasts
are the organelles responsible for photosynthesis they are also
a source of reactive oxygen species (ROS) in plants (Foyer
and Shigeoka, 2011). Furthermore, environmental stresses have
been found to produce an excess of excitation energy in
chloroplasts, resulting in the production of ROS, thus they are
also considered to be implicated in the regulation of stress
responses or even act as a sensor of cellular stress (Mullineaux
and Karpinski, 2002). Genetic transformation of chloroplasts
has been used as an alternative approach to the expression of
transgenes in the nucleus (Wang et al., 2009). The transplastomic
system has three main advantages: (i) prevents gene flow
via pollen through transgene containment due to maternal
inheritance, (ii) has highly active chloroplast transcription and
translation machineries, and (iii) a lack of epigenetic interference
allows stable transgene expression (Bock, 2014). Chloroplast
engineering has been applied for the development of resistant
crops to various abiotic and biotic stresses (Clarke and Daniell,
2011), production of biopharmaceuticals, metabolic pathway
engineering and advances on RNA editing (reviewed in Wang
et al., 2009) and phytoremediation (reviewed in Verma and
Daniell, 2007).

Understanding the adaptation of plants to different climatic
conditions, such as high temperatures, water logging, and
drought is essential for addressing climate change challenges.
Improving the resilience of chloroplasts through plastid
engineering may provide a solution toward the improvement
of crop productivity (Clarke and Daniell, 2011). To date, there
are a limited number of studies regarding the development
of transplastomic plants and their response to abiotic
stress. Transplastomic tobacco plants expressing a choline
monooxygenase (BvCMO) from Beta vulgaris demonstrated
increased tolerance to salt (100 and 150mM NaCl) and drought
(300mM mannitol) stresses (Zhang et al., 2008). Genetic
engineering of carrot chloroplast genome expressing the
Betaine-aldehyde dehydrogenase (badh) gene also improved
tolerance to high salinity (400mM L−1 NaCl) (Kumar et al.,
2004). Similarly, transplastomic Nicotiana benthamiana plants
expressing multiple defense genes encoding protease inhibitors
and chitinase were more tolerant to 200mM NaCl and 3% PEG

compared to the wild type plants and were able to maintain
greater root growth activity due to transgene expression in
the leucoplasts of roots (Chen et al., 2014). Transplastomic
tobacco lines overexpressing an A. thaliana γ -tocopherol
methyltransferase (Atγ -tmt) gene accumulated higher levels of
α-tocopherol when grown in 400mM NaCl, compared to wild-
type plants, which accumulated higher starch and total soluble
sugars, but transplastomic plants better regulated sugar transport
(Jin and Daniell, 2014). Genetically engineered plastomes have
provided a generation of herbicide-tolerant plants demonstrated
in tobacco for tolerance to glyphosate (Ye et al., 2001; Chin
et al., 2003), phosphinothricin (Iamtham and Day, 2000; Lutz
et al., 2001) sulcotrione (Falk et al., 2005), isoxaflutole (IFT)
(Dufourmantel et al., 2007) and paraquat (methyl-viologen)
(Poage et al., 2011; Chen et al., 2014).

Plant glutathione S-transferases (GSTs) have been shown to
modulate redox homeostasis by alterations in GSH content and
redox state (Sappl et al., 2009), conferring tolerance to a wide
range of abiotic stresses (Kumar et al., 2013; Csiszár et al.,
2014; Kissoudis et al., 2015b; Kayum et al., 2018) including
herbicides (Kissoudis et al., 2015a; Lo Cicero et al., 2015, 2017).
Glutathione transferases (GSTs; EC 2.5.1.18) are a superfamily
of multifunctional proteins that in plants, have evolved into
six discreet groups classified as the zeta (Z), theta (T), phi (F),
tau (U), lambda (L), and dehydroascorbate reductase (DHAR)
classes, respectively, (Dixon and Edwards, 2010). Functions
ascribed to date include the detoxification of herbicides (phi and
tau), tyrosine degradation (zeta), the reduction of intermediates
involved in redox cycling (DHAR and lambda), and acting as
glutathione peroxidases toward organic hydroperoxides (theta).
In the case of the theta enzymes (GSTTs), this ability to
use glutathione to reduce organic hydroperoxides is conserved
between plants and animals and is thought to be important in
oxidative metabolism, most notably through the processing of
phytotoxic oxidized lipids in the peroxisomes (Dixon et al., 2009;
Dixon and Edwards, 2010).

GSTs have been used before in chloroplast transformation;
The SjGST26 (EC:2.5.1.18), from Schistomosoma japonicum
(Smith and Johnson, 1988) and His-tagged derivative of
the maltose- binding protein (His6-MBP) were expressed in
tobacco chloroplasts to be used as affinity tags for the rapid
purification of chloroplast-expressed proteins (Ahmad et al.,
2012). Transplastomic tobacco lines overexpressing glutathione
reductase (GR) alone or combined with GST were more tolerant
under 10◦C, whereas lines overexpressing dehydroascorbate
reductase (DHAR) alone or in combination with GR were
more sensitive compared to wild type plants (Grant et al.,
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2014). When these lines were chilled at 4◦C and under
relatively high photosynthetically active radiation (PAR), all lines
were more sensitive compared to wild type plants, indicating
that overexpression of the ROS-scavenging enzymes may be
dependent on the interaction of light and cold stress (Grant
et al., 2014). Transplastomic seedlings expressing either DHAR
or an Escherichia coli GST B1-1, which has been shown to
exhibit a GSH-dependent peroxidase activity against cumene
hydroperoxide (Nishida et al., 1994) and proved to be important
for bacterial resistance to hydrogen peroxide- induced oxidative
stress (Kanai et al., 2006), or a combination of DHAR:GR and
GST:GR in chloroplasts were less sensitive to salt (200mMNaCl)
and cold (4◦C) compared to wild type seedlings (Le Martret
et al., 2011). However, only the simultaneous expression of
DHAR:GR and GST:GR conferred tolerance to methyl viologen
(MV) (Le Martret et al., 2011). Transplastomic tobacco lines
expressing GR in combination with either DHAR or GST (from
E. coli) exhibited better tolerance to supplemental UV-B than
wild type plants (Czégény et al., 2016). The expression of GSTs in
compartments where they are not normally found in, can reveal
new insights into their functions. For example, the expression
of GSTs in cellular compartments (recombinant bacteria, plant
chloroplasts) producing porphyrins has revealed their ability to
bind to porphyrinogen intermediates (Dixon et al., 2008). In the
case of the ZmGSTU1-ZmGSTU2, the transplastomics ability to
protect plants against herbicides that inhibit porphyrin synthesis
in the chloroplast shed light into the functional role of the
engineered chimeric enzyme (Dixon et al., 2008).

The GSTs are predominantly not targeted for expression
in the chloroplast, however, if they are expressed in this
organelle, they could deliver some of their key antioxidant
and detoxification functions, such as metabolizing photosystem
herbicides, and reducing lipid hydroperoxides generated by ROS
formed during photosynthesis. In addition to the efficiency
of transplastomic expression, we were also interested in how
the protective functions of GSTs could be manifested in an
organelle where they are not normally targeted for expression.
GSTs are important enzymes of the antioxidant pathway and
when expressed in the plastome we hypothesized that the
leaf physiology and performance would be enhanced under
stress compared to the non-transformed wild type plants. None
of the above-mentioned examples were performed with plant
derived GSTs from the Theta or Tau classes. Therefore, to
investigate whether the overexpression of these GSTs in the
chloroplast enhances tolerance to salinity, drought, and herbicide
induced oxidative stress we used T1 transplastomic tobacco
lines overexpressing a theta class GST from Arabidopsis thaliana
AtGSTT1 (At5g41210), an enzyme normally only expressed in the
peroxisomes which is highly active as a glutathione peroxidase
toward organic hydroperoxide substrates or a Zea mays tau
class chimeric ZmGSTU1/ZmGSTU2 enzyme (EFD6-115A),
which has been previously shown to protect the transformed
plants from herbicide injury through its ability to detoxify
fluorodifen (Dixon et al., 2003) and in subsequent studies it
was confirmed that the chimera had the additional ability to
bind porphyrinogen intermediates formed during chlorophyll
biosynthesis, a trait shared with its ZmGSTU parent proteins

(Dixon et al., 2008). To assess plant tolerance to abiotic stresses,
we investigated the morphophysiological parameters, and the
metabolic and transcriptomic reactions involved in the response
of transplastomic tobacco lines. Herein, we approach plant
stress tolerance from an alternative perspective via chloroplast
engineering to (i) mitigate the oxidative stress imposed
under various abiotic and anthropogenic stress conditions and
(ii) unravel the complex networks of molecular interactions
controlling plant acclimation to field conditions.

MATERIALS AND METHODS

Plant Material and Experimental Design
For the experiments we used homoplastomic, transplastomic
tobacco lines ptAtGSTT and ptEFD6−115A overexpressing the
AtGSTT (lines 2a and 6-1) or a ZmGSTU1-ZmGSTU2 chimera
in chloroplasts, respectively (Dixon et al., 2008). The seeds of
the ptAtGSTT and ptEFD6−115A T1 lines were initially grown
on MS selection medium supplemented with Streptomycin
Sulfate (500mg L−1) and Spectinomycin Dihydrochloride
(250mg L−1) (Duchefa Biochemie, The Netherlands), whereas
the wild-type (WT) tobacco seeds were placed on plain
MS medium. After selection, the plantlets were transferred
to MS media for further growth and when they reached
four true leaves were tested in vitro under drought (0, 100,
and 200mM mannitol; AppliChem-PanReac, Germany) and
salinity (0, 150, and 300mM NaCl; Centralchem, Slovakia)
conditions (n = 6). The experiments lasted for 35 and 20 days,
respectively.

The in vivo herbicide experiment was performed in a
controlled glasshouse environment with a photoperiod of 14/10 h
light/dark. The temperature was between 20 and 27◦C, with a
mean temperature of 23◦C. Plantlets undergone acclimatization
for 3 weeks and Diquat a non-selective contact herbicide, was
applied as Reglone 20 SL formulation (Syngenta Hellas) at 1
and 2 L of Reglone/ha (200-low dose; Diq_L and 400 -high
dose; Diq_H, g ai of diquat per hectare, respectively). Herbicide
treatments were performed with a portable field plot sprayer
(AZO-SPRAYERS, P.O. Box 350-6710 BJ EDE, The Netherlands)
using flat-fan nozzles (Teejet Spray System Co., P.O. Box
7900, Wheaton, IL 60188) and calibrated to deliver 300 L/ha
of water at 280 kPa pressure.Diquat (REGLONE R© Desiccant,
Syngenta Canada Inc), Control plants were sprayedwith the same
volume of water only (no herbicide). All pots were placed in a
randomized complete block design (transgenic lines: n = 15 and
WT: n = 9). The experiment lasted for 2 days after herbicide
application.

Morphophysiological Measurements
Dark-adapted chlorophyll a fluorescence measurements were
performed on the youngest fully developed leaf on the adaxial
leaf surface using the OS30p+ chlorophyll fluorometer (Opti-
Sciences Inc., Hudson, USA) following dark adaptation of
30min. Relative chlorophyll content was measured according
to Stavridou et al. (2016) on one leaf per plant with three
averaged measurements using a CCM-200 plus chlorophyll
content meter (Opti-Sciences Inc., Hudson, USA). Harvested
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plants were separated into leaves, stems, and roots and the final
morphological parameters, such as stem length, root length,
number of leaves, and plant fresh matter (MF) were measured.
The plant dry matter (MD) was obtained after drying at 60◦C
until constant weight.

Transcriptomic Analysis
Total RNA from whole plant tissue of ptAtGSTT2a line and
WT plants under control and high mannitol stress conditions
in vitro was isolated using the Monarch Total RNA Miniprep
kit (BioLabs Inc., UK) and their concentration was determined
spectrophotometrically. The RNA sequencing was performed by
the BGI (Denmark). The RNA results were compared as follows:
ptAtGSTT2a and WT in control conditions (groups 1 and 3) and
ptAtGSTT2a and WT in high mannitol (200mM) stress (groups 2
and 4) (Table 1).

Agilent 2100 Bioanalyzer (Agilent RNA 6000 Nano Kit)
was used for the total RNA sample QC: RNA concentration,
RIN value, 28S/18S and the fragment length distribution.
We use NanoDropTM to identify the purity of the RNA
samples. The first step in the workflow involves purifying
the poly-A containing mRNA molecules using poly-T oligo-
attached magnetic beads. Following purification, the mRNA
is fragmented into small pieces using divalent cations under
elevated temperature. The cleaved RNA fragments are copied
into first strand cDNA using reverse transcriptase (Takara
Bio Inc.) and random primers. This is followed by second
strand cDNA synthesis using DNA Polymerase I and RNase
H (Takara Bio Inc.). These cDNA fragments then have the
addition of a single “A” base and subsequent ligation of the
adapter. The products are then purified and enriched with
PCR amplification. The PCR yield was quantified by Qubit
and the samples were pooled together to make a single strand
DNA circle (ssDNA circle), which gave the final library. DNA
nanoballs (DNBs) were generated with the ssDNA circle by
rolling circle replication (RCR) to enlarge the fluorescent
signals at the sequencing process. The DNBs were loaded
into the patterned nanoarrays and pair-end reads of 100
bp were read through on the BGISEQ-500 platform for the
following data analysis study. For this step, the BGISEQ-
500 platform combines the DNA nanoball-based nano arrays
and stepwise sequencing using Combinational Probe-Anchor
Synthesis Sequencing Method.

TABLE 1 | Plants used for RNA extraction and transcriptomics analysis.

Analysis group Plant Conditions

Group 1 ptAtGSTT2a Control

ptAtGSTT2a Control

Group 2 ptAtGSTT2a Mannitol High

ptAtGSTT2a Mannitol High

Group 3 WT Control

WT Control

Group 4 WT Mannitol High

WT Mannitol High

Bioinformatics Workflow
The reads were filtered for low-quality reads (>20% of the bases
qualities are lower than 10), reads with adaptors and reads
with unknown bases (N bases more than 5%) to get the clean
reads using SOAPnuke software. Then we mapped the clean
reads onto reference genome, followed by novel gene prediction,
SNP & INDEL calling and gene splicing detection. Finally, we
identified DEGs (differentially expressed genes) between samples
and performed clustering analysis and functional annotations.
After filtering, the remaining reads are called “Clean Reads” and
stored in FASTQ format.

Regarding Genome Mapping, HISAT (Hierarchical Indexing
for Spliced Alignment of Transcripts) was used to do the
mapping step (Kim et al., 2015). The StringTie (Pertea et al.,
2015) was used to reconstruct transcripts and Cuffcompare
[Cufflinks tools- Trapnell et al. (2012)] to compare reconstructed
transcripts to reference annotation. After that, the “u,” “I,” “o,”
”j” class code types were used as novel transcripts followed by a
support vector machine-based classifier, named Coding Potential
Calculator (CPC) (Kong et al., 2007) to predict coding potential
of novel transcripts, then the coding novel transcripts were
merged with reference transcripts to get a complete reference,
and downstream analysis was based on this reference. The clean
reads were mapped to reference using Bowtie2 (Langmead and
Salzberg, 2012), and then gene expression level was calculated
with RSEM (Li and Dewey, 2011), a software package for
estimating gene and isoform expression levels from RNA-Seq
data. After calculating Pearson’s correlation between all samples
using cor, hierarchical clustering was performed between all
samples using hclust, and PCA analysis with all samples using
princomp, and the diagrams were drawn with ggplot2 in R (R
Core Team, 2016). The detection of DEGs was performed with
NOIseq, which is based on noisy distribution model, as described
in Tarazona et al. (2011). The Hierarchical Clustering Analysis
of DEGs was performed using heat map function in R. With
the GO annotation result, DEGs were classified according to
official classification, and GO functional enrichment was also
performed using p hyper in R. The p-value calculating formula
in hypergeometric test is Equation 1:

P = 1−
m−1
∑

i=0

(

M
i

) (

N −M
n− i

)

(

N
n

)

Then the false discovery rate (FDR) for each p-value was
calculated and in general, the terms which FDR was not
larger than 0.01 were defined as significantly enriched. With
the KEGG annotation result, we classified DEGs according to
official classification, and we also performed pathway functional
enrichment using phyper in R with the same p-value calculating
formula in Equation 1 and the FDR was calculated as described
above.

To find the ORF of each DEG the getorf function was used.
For plants, ORF were aligned to TF domains (from PlntfDB)
using hmmsearch (Mistry et al., 2013). DIAMOND (Buchfink
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et al., 2014) was used to map the DEGs to the STRING database
(von Mering et al., 2005) to obtain the interaction between DEG-
encoded proteins using homology with known proteins. The top
100 interaction networks were selected to unfold the pathways
involved and for the entire interaction result we provide an input
file that can be imported directly into Cytoscape for complex
network analysis and visualization.

Metabolite Extraction, Derivatization, and
GC–MS Analysis
Determination of primary polar metabolites was performed as
described by Lisec et al. (2006) and Michailidis et al. (2017)
with slight modifications. Whole plant lyophilized material
(∼0.040 gr) from ptAtGSTT2a and WT plants under in vitro
high mannitol stress and control conditions (three biological
replicates) were transferred in 2mL screw cap tubes with 1400
µL of precooled (−20◦C) pure methanol. Adonitol (100 µL of
0.2mg mL−1) was added as internal quantitative standard, and
incubated for 10min at 70◦C. The supernatant was collected after
centrifugation (11000 g, 4◦C, 10min) and 750 µL chloroform
(−20◦C) plus 1500 µL dH2O (4◦C) were added. Following
centrifugation (2200 g, 4◦C, 10min), 150 µL of the upper polar
phase were transferred into a 1.5mL glass vial and placed
under vacuum until drying. Dried residues were re-dissolved
by gentle shaking in 40 µL of 20mg mL−1 methoxyamine
hydrochloride for 120min at 37◦C, thereafter they were treated
with 70 µL of N-methyl-N-(trimethylsilyl) trifluoroacetamide
reagent (MSTFA), and incubated for 30min at 37◦C. GC-MS
analysis was carried out in Thermo Trace Ultra GC equipped
with ISQ MS and TriPlus RSHTM auto-sampler (Thermo Fisher
ScientificTM, Switzerland). One µL was injected with a split
ratio of 70:1. GC separation was held on a TR-5MS capillary
column 30m x 0.25mm x 0.25mm (Thermo Fisher ScientificTM,
Switzerland). Injector temperature was 220◦C, ion source 230◦C,
and the interface 250◦C. A constant flow of 1mL min−1 was
used for carrier gas. The GC temperature program was held at
70◦C for 2min, then increased to 260◦C (rate 8◦Cmin−1), where
it remained for 18min. Mass range of m/z 550 was recorded,
after 5min of solvent delay. The mass spectra were acquired in
electron impact ionization mode. The peak area integration and
chromatogram visualization was performed using the X-calibur
processing program. Standards were used for peak identification
or NIST11 database (Michailidis et al., 2017) in case of unknown
peaks. The detected metabolites were assessed based on the
relative response compared to adonitol and expressed as relative
abundance.

Statistical Analysis
All the statistical analyses were performed using the computing
environment R. The effects of stress treatments and the
genotypes on the morpho-physiological parameters of the in
vitro experiments and harvesting parameters of the in vivo
experiments and treatments genotypes and time (days-where
applicable) on the physiological parameters were assessed using
two-way or three-way ANOVA, respectively, with the ez and
afex packages (Lawrence, 2016; Singmann et al., 2018). All
data were tested for normality (Shapiro test) and if normality

failed and transformations were attempted. Data were also tested
with Mauchly’s test for sphericity, and if the assumption of
sphericity was violated, the corresponding Greenhouse–Geisser
corrections were performed. If significant differences were found
among treatments, then the Tukey’s HSD post hoc test was
performed to determine specific treatment differences using the
agricolae package (deMendiburu, 2017). Formetabolic data, two-
way ANOVA was conducted using SPSS (SPSS v21.0., Chicago,
USA) and statistically significant differences were based on
Duncan’s multiple range test (raw data) and Student’s t-test
for comparisons between genotypes or treatments at P < 0.05
(Table S1). The raw data are presented in Table S2 and the
reported data are relative to the MF of the ptAtGSTT2a line and
WT plants.

RESULTS

Effect of GST Overexpression on Oxidative
Stress Tolerance
Both low and high Diquat concentrations were severe enough
to cause chlorotic lesions from day one (Figure S1) and
senescence by day 2 on both WT plants and transplastomic
lines (Figure S2). Transplastomic lines ptAtGSTT2a and 6.1
showed chlorophyll content with increasing Diquat dose,
compared to the WT control, except line ptEFD6−115A, which
showed reduced chlorophyll content following Diquat exposure
(Table 2 and Table S3). Both Diquat doses negatively affected
the maximum quantum efficiency of photosystem II (PSII)
photochemistry in both WT and transplastomic lines, indicating
that the oxidative stress was too severe possibly as a result
of extensive free radical formation. The high diquat dose
had a more severe effect on the MF of transplastomic line
ptAtGSTT 6.1 (not statistically significant to the control) and
WT plants (p < 0.05), and a less severe reduction was
induced in ptAtGSTT 2a (not statistically significant to the
control) and ptEFD6−115A (p < 0.05) (Table 2 and Table S3).
MD was not affected by any Diquat dose, indicating that
any reduction in MF was a result of turgor loss potentially,
inhibiting the respiratory processes due to the function of
Diquat as a rapid-acting translocated desiccant (Cronshey, 1961;
McNaughton et al., 2015). An increase in MD of ptAtGSTT

2a was observed under both Diquat doses, however, the
MD of WT plants and transplastomic lines ptAtGSTT 6.1 and
ptEFD6−115A was decreased with increasing Diquat concentration
(Table 2).

Tolerance of Transplastomic Lines Under
in vitro NaCl Stress
Transplastomic ptAtGSTT line 6-1 and 2a, when grown in
150mM NaCl, exhibited increased tolerance compared to WT
plants (Figure S3, Table 3 and Table S4), with shoot length
and MF not showing statistically significant differences with
the stress-free plants. Transplastomic line ptAtGSTT6-1 also
showed a non-statistically significant decrease in the shoot
length even under the double salt concentration, 300mM
NaCl. Transplastomic line ptEFD6−115A showed reduced MF
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TABLE 2 | Percent of change difference in growth (fresh-MF and dry-MD matter; g) and photophysiological parameters (relative chlorophyll content- Chl and Maximum

quantum yield of PSII-Fv/Fm) of GST transplastomic lines and WT tobacco plants grown for 2 days in low (Diq_L) and high (Diq_H) Diquat dose compared to control

conditions.

Genotype Treatment MF% HSD MD% HSD Chl% HSD Fv/Fm% HSD

ptAtGSTT6.1 Diq_L −44.86 a −7.41 a 24.67 a −41.25 b

ptAtGSTT6.1 Diq_H −51.4 a −23.46 a 35.16 a −45 b

ptAtGSTT2a Diq_L −49.84 b 23.73 a −0.28 a −43.04 b

ptAtGSTT2a Diq_H −30.11 a 62.71 a 8.52 a −49.37 b

ptEFD6−115A Diq_L −71.95 b −28.23 a −18.87 ab −48.75 b

ptEFD6−115A Diq_H −67.53 b −29.41 a −24.49 b −51.25 b

WT Diq_L −46.99 b −7.55 a −15.65 b −44.44 b

WT Diq_H −53.72 b −21.69 a −9.34 ab −41.97 b

Data are the % change of the mean. Different letters indicate significant differences between treatments with the control for each genotype at p < 0.05.

in both salinity concentrations compared to the stress-free
plants, however showed statistically significant increase in root
length at low NaCl concentration (Table S3 and Table S4).
Root length and maximum quantum efficiency of PSII were
only reduced under the 300mM NaCl concentration in all
transplastomic lines and WT plants (Table 3). Wild-type plants
showed the lowest chlorophyll content in both low and
high NaCl concentrations compared to the transplastomic
lines, although not significantly different. Relative chlorophyll
content was maintained in 300mM NaCl concentration in
the transplastomic line ptEFD6−115A, and it was reduced in
all other genotypes including the WT compared to 150mM
NaCl concentration (Figure 1). Overall, the transplastomic line
ptAtGSTT2a demonstrated tolerance to both salt concentrations
and especially at 150mM NaCl as indicated by non-significant
decrease in shoot length.

Tolerance of Transplastomic Lines Under
in vitro Mannitol Stress
Overexpression of the theta class AtGSTT in chloroplasts
increased PS II functionality in both mannitol concentrations
(100 and 200mM) compared to the stress-free plants and relative
to ptEFD6−115A andWTplants, which only increased the Fv/Fmat
low mannitol stress and reduced their quantum yield under high
osmotic stress (Table 4 and Table S5). Additionally, the ptAtGSTT

lines showed increased chlorophyll content in 200mM mannitol
compared to ptEFD6−115A and WT plants, which maintained
their relative chlorophyll content in similar levels to the control
plants (Figure 2). With respect to the effect of mannitol on
growth, only ptAtGSTT2a increased the shoot and root length in
200mM mannitol, yet not significantly, in comparison to the
stress-free plants, whilst the other transplastomic lines and the
WT plants reduced the shoot length in high mannitol treatment.
All transcriptomic lines reduced their MF in the high mannitol
stress, yet this reduction was less severe compared to the WT
plants. Interestingly, in low mannitol stress only line ptAtGSTT6.1
showed a non-significant reduction in the MF and increased
the shoot length and Fv/Fm, compared to the stress-free plants
and the other transplastomic lines and WT plants (Table 4 and
Table S5).

Effect of GST Overexpression to the
Transcriptome in Control and High
Mannitol Stress
Based on the results the overexpression of the AtGSTT in the
transplastomic 2a line resulted in enhanced tolerance to both
salinity concentrations and osmotic stress (200mM mannitol),
along with tolerance to herbicide induced oxidative stress based
on the increase in MD and relative chlorophyll content. Taking
into consideration the osmotic component of salinity, we have
selected this line for further investigation of the changes occurred
in transcriptome and metabolome level under osmotic stress as it
looked to be the most promising one for acquired stress tolerance
to investigate the whole transcriptome and metabolome response
of this line in order to understand in a systemic way the response
of the transplastomic line.

The transcriptome data were analyzed with RNA-Seq
technology based on which, we performed the analysis of
variance. The differential expression gene was selected according
to the standard of P< 0.05 and the false discovery rate (FDR) was
set to 0.001 to determine the threshold of the P-value for multiple
tests. The absolute value of |log2Ratio|≥ 1 was used to determine
the difference between the gene expression transcription group
and the database. Gene function, annotation, and classification
were researched by GO analysis (Figures 3A,B). The RNA
analysis through next generation sequencing of the entire
transcriptome of the ptAtGSTT2a and WT plants under control
conditions and under high mannitol (osmotic stress) was studied
(each sample in duplicate). The comparison between the two
samples in each group showed that the expression profile was
similar, thus allowing their combination and their analysis. The
analysis generated 47.105 million clean reads in total with a Q20
(%) 98.38%. The reads generated a total of 80.623 transcripts of
which 51.879 are known genes and 28.744 are unknown genes.
On average 93.55% reads are mapped, and the uniformity of the
mapping result for each sample suggests that the samples are
comparable. Analysis of differentially expressed genes (DEGs)
(Table S6) between the transplastomic plants under control
conditions (group 1) and WT under control conditions (group
3) showed that there are 80858 commonly expressed DEGs while
there 4869 unique DEGs expressed in ptAtGSTT2a and 3864 in
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TABLE 3 | Morphological parameters and maximum quantum yield of PSII (Fv/Fm) of GST transplastomic lines and WT tobacco plants grown for 20 days in salinity

stress (150 and 300mM NaCl) in vitro.

Genotype Treatment Shoot length (cm) HSD Root length (cm) HSD MF (g) HSD Fv/Fm HSD

ptAtGSTT6-1 Control 2.13 ± 0.14 a 6.9 ± 0.45 a 2.23 ± 0.38 a 0.82 ± 0.004 a

ptAtGSTT6-1 NaCl_L 1.68 ± 0.30 a 6.71 ± 0.67 a 1.47 ± 0.29 ab 0.83 ± 0.001 a

ptAtGSTT6-1 NaCl_H 0.82 ± 0.10 b 2.41 ± 0.13 b 0.63 ± 0.1 b 0.78 ± 0.008 b

ptAtGSTT2a Control 3.23 ± 0.97 a 8.2 ± 0.97 a 2.6 ± 0.81 a 0.82 ± 0.003 a

ptAtGSTT2a NaCl_L 2.72 ± 0.44 a 6.9 ± 0.42 a 1.57 ± 0.22 ab 0.81 ± 0.002 a

ptAtGSTT2a NaCl_H 1.85 ± 0.28 a 2.26 ± 0.34 b 0.7 ± 0.12 b 0.78 ± 0.007 b

ptEFD6−115A Control 3.4 ± 1.12 a 6.83 ± 0.59 a 2.51 ± 0.16 a 0.82 ± 0.012 ab

ptEFD6−115A NaCl_L 1.5 ± 0.126 b 7.38 ± 0.62 a 1.6 ± 0.15 b 0.83 ± 0.001 a

ptEFD6−115A NaCl_H 1.12 ± 0.19 b 2.78 ± 0.39 b 0.82 ± 0.21 c 0.78 ± 0.012 b

WT Control 2.93 ± 0.29 a 7.26 ± 0.27 a 1.72 ± 0.12 a 0.82 ± 0.002 a

WT NaCl_L 2.05 ± 0.22 b 6.78 ± 0.2 a 1.36 ± 0.1 a 0.83 ± 0.003 a

WT NaCl_H 1.38 ± 0.15 b 1.86 ± 0.18 b 0.47 ± 0.05 b 0.76 ± 0.02 b

Data (cm and g) are the mean ± SE (morphological data- control: n = 3 and treatments: n = 4; Fv/Fm: n = 6). Different letters indicate significant differences between treatments with

the control for each genotype at p < 0.05.

FIGURE 1 | Changes in the relative chlorophyll content in ptAtGSTT (6-1 and 2a) and ptEFD6−115A transplastomic lines, and WT plants growing under salinity (left

panel) and drought (right panel) for 20 and 35 days, respectively. Different letters indicate significant differences between treatments for each genotype at P < 0.05

(n = 3 for control treatment and n = 6 for stress treatments).

WT (Figure 4A). Furthermore, when we applied the mannitol
(osmotic stress simulating drought) we found 82765 commonly
expressed DEGs, 4181 in ptAtGSTT2a plants, and 3337 in WT
plants, thus there is a difference of 1907 more common DEGs,
688 fewer DEGs in ptAtGSTT2a plants, and 527 fewer DEGs in
WT plants under stress showing a reduction in differentially
expressed genes both in WT and ptAtGSTT2a plants (Figure 4B).

Regarding the differentially expressed genes, between
ptAtGSTT2a and WT in control conditions (groups 1 and
3), we depicted 431 DEGs that were upregulated and 1500
downregulated (Figure 5A). Moreover, it is important to

mention that between ptAtGSTT2a and WT in high mannitol
(200mM) stress (groups 2 and 4), which are the samples under
high mannitol stress only 264 were upregulated and 80 were
downregulated (Figure 5B; Table S6).

Analysis of ptAtGSTT2a overexpressing line and WT plants
before the application of the high mannitol (osmotic stress)
showed that genes like alanine transaminase and glutamate
decarboxylase both implicated in alanine metabolism and
biosynthesis were upregulated in ptAtGSTT2a under control
conditions. Additionally, 2,3-bisphosphoglycerate-dependent,
phosphoglycerate mutase, glycine hydroxymethyl transferase
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TABLE 4 | Morphological traits and maximum quantum yield of PSII (Fv/Fm) of transplastomic lines and WT tobacco plants grown for 35 days in osmotic stress (100 and

200mM mannitol stress).

Genotype Treatment Shoot length (cm) HSD Root length (cm) HSD MF (g) HSD Fv/Fm HSD

ptAtGSTT6-1 Control 2.33 ± 0.03 ab 7.96 ± 0.56 a 2.7 ± 0.73 a 0.77 ± 0.01 b

ptAtGSTT6-1 Man_L 2.73 ± 0.19 a 7.18 ± 0.36 a 2.15 ± 0.08 a 0.83 ± 0.001 a

ptAtGSTT6-1 Man_H 2 ± 0.12 b 6.68 ± 0.31 a 0.96 ± 0.12 b 0.81 ± 0.005 a

ptAtGSTT2a Control 2.9 ± 0.36 a 7.2 ± 0.47 a 4.06 ± 0.57 a 0.79 ± 0.002 a

ptAtGSTT2a Man_L 0.52 ± 0.12 b 1.8 ± 0.55 b 0.56 ± 0.11 b 0.79 ± 0.005 a

ptAtGSTT2a Man_H 3.38 ± 0.46 a 8.85 ± 1.27 a 1.18 ± 0.14 b 0.75 ± 0.05 a

ptEFD6−115A Control 6.1 ± 0.17 a 7.03 ± 0.37 a 4.63 ± 0.74 a 0.793 ± 0.001 b

ptEFD6−115A Man_L 2.9 ± 0.29 b 6.63 ± 1.19 a 1.68 ± 0.11 b 0.823 ± 0.002 a

ptEFD6−115A Man_H 2.23 ± 0.09 b 6.95 ± 0.39 a 1.11 ± 0.09 b 0.805 ± 0.008 b

WT Control 5 ± 0.35 a 6.96 ± 0.43 a 5.11 ± 0.66 a 0.81 ± 0.002 ab

WT Man_L 2.33 ± 0.18 b 7.13 ± 0.42 a 2.5 ± 0.22 b 0.82 ± 0.001 a

WT Man_H 2.32 ± 0.1 b 7.51 ± 0.3 a 1.44 ± 0.13 c 0.79 ± 0.01 b

Data are the mean ± SE (morphological data- control: n = 3 and treatments: n = 4; Fv/Fm: n = 6). Different letters indicate significant differences between treatments with the control

for each genotype at p < 0.05.

were also upregulated whilst phosphoserine phosphatase was
downregulated in the pathway of Glycine, serine, and threonine
metabolism. Thus, high glycine content should be expected in
ptAtGSTT2a plants under control conditions.

Histone-lysine N-methyltransferase ASH1L, was down
regulated in ptAtGSTT2a plants whereas in histidine
metabolism genes responsible for phosphoribosyl-ATP
pyrophosphohydrolase, phosphoribosyl-AMP cyclohydrolase,
histidinol dehydrogenase, and histidine decarboxylase were
upregulated, suggesting that histidine should be accumulated
in the ptAtGSTT2a plants. Glutamate decarboxylase implicated
in the Alanine, aspartate and glutamate metabolism and
taurine and hypotaurine metabolism was upregulated in the
transplastomic lines. Furthermore, glutathione S-transferases
were found to be overexpressed (BGI_novel_G036737 K00799:
BGI_novel_G036737 (-2.6), BGI_novel_G008526 (-2.3),
BGI_novel_G023189 (-2.3).

An important metabolic pathway related to stress tolerance
is starch and sucrose metabolism where trehalose 6-phosphate
synthase was downregulated in ptAtGSTT2a line under
control conditions suggesting that plants were in a state of
stress-priming. Transplastomic line ptAtGSTT2a upregulated
inositol polyphosphate 5-phosphatase and inositol-pentakis
phosphate 2-kinase in the Inositol phosphate metabolism and
Phosphatidylinositol signaling system. Alanine transaminase
involved in Alanine, aspartate, and glutamate metabolism was
upregulated, whilst glycine hydroxyl methyltransferase and
phosphoserine phosphatase were found to be downregulated in
the biosynthesis of amino acids pathway.

In the comparison of ptAtGSTT2a vs. WT plants under the
high mannitol stress the number of transcripts for ptAtGSTT2a
and WT plants was similar to those in control conditions;
however, there were only 264 DEGs upregulated and 80
downregulated compared with 431 and 1500, respectively,
in control conditions (Table S6). Important genes found
with altered expression are glycerate dehydrogenase and
hydroxypyruvate reductase upregulated in Glycine, serine and

threonine metabolism as well as in DNA repair pathway,
which is expected as stress produces ROS, to also affect
nucleic acids. Additionally, the gene responsible for spermidine
synthase implicated in glutathione metabolism, cysteine, and
methionine metabolism and in arginine and proline metabolism
was downregulated along with pectinesterase, an important
gene implicated in Pentose and glucuronate interconversions
as well as in cell wall degradation, in ptAtGSTT2a compared
to WT plants under stress. In the Phenylalanine, tyrosine
and tryptophan biosynthesis pathway, the genes encoding
bifunctional anthranilate synthase/indole-3-glycerol-phosphate
synthase (G005943) related to tryptophane biosynthesis were
upregulated as was the 5-methyltetrahydrofolate-homocysteine
methyltransferase (G005943), leading to methionine.

Effect of GST Overexpression in the
Chloroplast to the Metabolome in High
Mannitol Stress
The response of transplastomic line ptAtGSTT2a and the WT
plants was investigated further through the induced metabolic
alterations. A total of 51 polar metabolites were identified
(Figure 6; Table S1), of which 11 were soluble sugars, 5
soluble alcohols, 9 organic acids, 21 amino acids, and 5 other
compounds (Figure 6; Tables S1, S2). The differences between
the transplastomic line andWT plants under stress-free and high
mannitol stress, revealed that∼78, 66.6, and 90% of themetabolic
changes occurred due to treatment, genotypic, and treatment x
genotype interaction effects, respectively.

In stress-free conditions, the overexpression of the AtGSTT
had a significant effect to the metabolic profile of transplastomic
plants as indicated by the 27 out of 51 metabolites being
significantly altered from theWT plants, 26 of which were down-
regulated and only the benzoic acid was up-regulated (27.6-fold)
(Table 5). The downregulated metabolites were mostly amino
acids (13), such as proline, oxoproline, and valine, organic acids
(5), such as citric, quinic, and threonic acids, soluble sugars (5),
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FIGURE 2 | Effect of mannitol (100 and 200mM) stress on growth of transplastomic lines and WT tobacco plants after 35 days in mannitol and stress-free (C)

conditions.

such as sucrose, fructose, and glucose and the soluble alcohols,
erythritol, myo-inositol and glycerol. In contrast, the effect of
high mannitol stress on plants overexpressing the GST chimera
was moderate as only 16 metabolites were significantly changed.
More specifically, plants overexpressing the GST chimera up-
regulated only the soluble sugars threose (9.5-fold) and arabinose
(0.82-fold), whilst, 14 metabolites were downregulated compared
to theWT plants (Table 5). These results indicate that ptAtGSTT2a
transplastomic line was osmotolerant and able to maintain
cellular homeostasis in comparison to the WT plants that
required more energy to tolerate high mannitol stress.

The ptAtGSTT2a line under high mannitol stress significantly
altered more metabolites (38) compared to the 34 metabolites
of the WT plants (Figures 7, 8; Table S7). The ptAtGSTT2a
line upregulated six metabolites of which four were common.

In the increased metabolites two were soluble sugars, such
as arabinose, which was unique for the transplastomic line,
two were soluble alcohols, such as mannitol, and quinic acid
(Figure 7). Erythrose and sorbitol were accumulated in greater
concentrations in the WT plants than in the transplastomic line
under high mannitol compared to control conditions (Table S7).
Interestingly, the compatible solute mannitol was accumulated in
greater concentration in the ptAtGSTT2a by 6.84-fold compared to
the 4.73-fold increase in the WT plants.

The WT plants down-regulated 31 metabolites compared to
the 28 of the ptAtGSTT2a plants. Among the metabolites that
were decreased, 24 were common (6 soluble sugars, 12 amino
acids, and 2 organic acids), such as the TCA cycle intermediate
citric acid and the precursor of various amino acids aspartic
acid (Figure 8; Table S7). Additionally, the WT plants had more
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FIGURE 3 | Histogram representation of Gene Ontology classification. (A) control conditions (B) under high mannitol stress (200mM).

FIGURE 4 | Venn diagram of differentially expressed genes. Comparison among (A) ptAtGSTT2a and WT in control conditions (groups 1 and 3) and (B) ptAtGSTT2a

and WT in high mannitol (200mM) stress (groups 2 and 4).

differentially decreased metabolites compared to the ptAtGSTT2a
plants (Figure 8).

DISCUSSION

The adaptation response mechanisms of plants to adverse abiotic
stresses result in the up-regulation of the reactive oxygen species

(ROS) detoxification network, to mitigate the negative effects
of oxidative stress, commonly induced under such conditions
(Gill and Tuteja, 2010; Nianiou-Obeidat et al., 2017). Enhancing
the ROS scavenging capacity in plants by direct gene expression
in the chloroplast, an active cell compartment could in theory
increase the photosynthetic rate and thus increase in yield, yet
this is only a speculation that needs thorough investigation,
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FIGURE 5 | Scatter plot of differentially expressed genes in (A) ptAtGSTT2a and WT in control conditions (groups 1 and 3), and (B) ptAtGSTT2a and WT in high

mannitol (200mM) stress (groups 2 and 4).

which is beyond the scope of this research. The functional role
of tobacco lines overexpressing the AtGSTT in chloroplasts has
been previously characterized (Dixon et al., 2008), yet, the roles
of this AtGSTT in plant homeostasis and response mechanisms
both under abiotic and herbicide-induced oxidative stresses,
and non-stress conditions are still required to be unraveled.
Targeting the chloroplasts, we have assessed the osmotic, ionic,
and oxidative potential of the ptAtGSTT lines and the ZmGSTU1-
ZmGSTU2 chimera overexpressing line in comparison to WT

plants. Our work shows that ptAtGSTT lines were tolerant to
herbicide-induced oxidative and salinity stresses and showed
enhanced response tolerance to mannitol-induced osmotic stress
compared to WT plants.

The mode of bipyridiniums action is within the chloroplast by
diverting electrons from photosystem I (PSI) of photosynthesis
to form the Diquat radical, which in turn generates a
highly destructive superoxide radical (Devine et al., 1992;
Hawkes, 2014). Despite the observed reduction in maximum
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FIGURE 6 | Heat map of primary metabolites of ptAtGSTT2a and WT plants under high mannitol (200mM) stress compared to WT control plants. Increase is indicated

as red and decrease as blue (see color scale). Mean values of 3 independent determinations for each treatment were expressed as relative abundance compared to

internal standard adonitol and are reported relative to the respective MF. Actual data are provided in Table S1.

quantum yield of PSII, the transplastomic lines ptAtGSTT

showed differential response mechanism in the accumulation
of relative chlorophyll content in both half- and recommended
field dose of Diquat, possibly to alleviate the negative effect
of oxidative damage on PSII, which was apparent under
all levels of Diquat in WT plants. It has been observed
that transplastomic tobacco plants expressing simultaneously
DHAR:GR and GST:GR showed enhanced tolerance to paraquat
induced oxidative stresses while expression of either single
transgene did not (Le Martret et al., 2011). Transplastomic
overexpression of glutathione peroxidase (GP) in tobacco
plants has shown to confer moderate tolerance to paraquat
(Yoshimura et al., 2004), whereas, transplastomic tobacco lines
overexpressing an Escherichia coli glutathione reductase (gor)
gene have not enhanced protection from paraquat induced
photooxidative stress (Poage et al., 2011). In the present
study ptAtGSTT lines also had enhanced turgor maintenance in
contrast to WT plants, which showed extensive dehydration,

since Diquat is a rapid desiccant (Cronshey, 1961; Hawkes,
2014).

At 150mM of NaCl concentration, both ptAtGSTT

transplastomic lines showed enhanced growth (shoot length and
MF) and ptAtGSTT2a moderate tolerance to high salinity stress
(300mM NaCl) by maintaining the shoot length compared to
WT plants. Additionally, under both NaCl concentrations, all
transplastomic lines demonstrated a higher relative chlorophyll
content compared to the WT plants. Similar results were
observed in transplastomic tobacco plants overexpressing
a choline monooxygenase (BvCMO) from beetroot which
increased photosynthetic rate and apparent quantum yield of
photosynthesis in the presence of 150mM NaCl when compared
to WT, and the maximal efficiency of PSII photochemistry
in both wild type and transplastomic plants was not affected
(Zhang et al., 2008). This is also consistent with our results
indicating that the overexpression of the AtGSTT and the
ZmGSTU1-ZmGSTU2 chimera can protect PSII reaction centers
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TABLE 5 | Metabolites that were significantly (p < 0.05) altered in ptAtGSTT2a and

WT plants under high mannitol (200mM) and control conditions.

ptAtGSTT2a C/ WT C ptAtGSTT2a MAN_H/ WT MAN_H

Metabolites Fold-change Metabolites Fold-change

Benzoic acid 27.6 Threose 9.5

Erithritol −0.37 Arabinose 0.82

Xylose −0.37 Serine −0.31

Citric acid −0.45 Putrescine −0.46

Threonine −0.45 Quinic acid −0.54

Serine −0.45 Glucose −0.56

Myo-inositol −0.46 Valine −0.56

Putrescine −0.49 Fructose −0.57

Oxoproline −0.5 Glycine −0.65

Lysine −0.5 Glutamine −0.66

Valine −0.51 Galactose −0.68

Glycerol −0.51 Sorbitol −0.69

Cysteine −0.53 Sucrose −0.75

Alanine −0.57 Proline −0.94

Quinic acid −0.61 Glycerol −0.99

Asparagine −0.62 Lysine −1

Citruline −0.64

2-Isopropylmalic acid −0.64

2-Oxoglutaric acid −0.64

Threonic acid −0.65

Arginine −0.67

Glycine −0.69

Galactose −0.72

Glucose −0.74

Fructose −0.75

Sucrose −0.82

Proline −0.85

FIGURE 7 | Venn diagram representation of metabolites commonly or

differentially increased in the leaves of WT and ptAtGSTT2a tobacco plants

under high mannitol (200mM) compared to non-stressed plants.

from damage. Transplastomic carrot plants expressing the
badh gene demonstrated enhanced tolerance up to up to
400mM NaCl compared to untransformed plants exhibiting
severe growth inhibition at 200mM NaCl (Kumar et al., 2004).

FIGURE 8 | Venn diagram representation of metabolites commonly or

differentially decreased in the leaves of WT and ptAtGSTT2a tobacco plants

under high mannitol (200mM) compared to non-stressed plants.

Herein, the ptAtGSTT transplastomic lines ptAtGSTT2a and
especially ptAtGSTT6-1 demonstrated enhanced photo-tolerance
when exposed to 200mM mannitol stress demonstrating
increased relative chlorophyll content and maximum yield
of PSII compared to WT plants. Increasing or maintaining
the chlorophyll content in transgenic chloroplasts suggests
the integrity of thylakoid membranes, even in the presence of
high concentrations of NaCl and mannitol, demonstrating the
advantage of overexpressing the AtGSTT in the chloroplasts.
Similar results were observed by Lee et al. (2003).

The transcriptomics analysis of ptAtGSTT2a line andWT plants
under control and high mannitol stress suggests that plants of the
ptAtGSTT2a overexpressing line, before the application of the high
mannitol (osmotic stress) upregulated genes related to stress
tolerance such as genes encoding for alanine transaminase and
glutamate decarboxylase both implicated in alanine metabolism
and biosynthesis. Alanine was found to be the main amino acid
accumulated in Medicago truncatula seedlings under hypoxic
stress (Limami et al., 2008). Furthermore, genes encoding for 2,3-
bisphosphoglycerate-dependent phosphoglycerate mutase and
glycine hydroxymethyl transferase were also upregulated, while
phosphoserine phosphatase was downregulated in glycine, serine
and threonine metabolism, which may lead to increased glycine.
Therefore, high glycine content should be expected in ptAtGSTT2a
plants under control conditions but considering that high
glycine content is correlated with stress tolerance and especially
drought resistance (Thankur and Rai, 1982), the ptAtGSTT2a line
is probably in a stress primed state before the application of the
stress. . Also, glutamate decarboxylase is upregulated which is
implicated in Alanine, aspartate and glutamate metabolism and
in taurine and hypotaurine metabolism and was also confirmed
in metabolomics analysis. Interestingly, in the resurrection
plant Sporobolus stapfianus Martinelli et al. (2007) reported
that the accumulation of asparagine and glutamate might have
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led to its conversion to arginine and asparagine, as all of the
above are considered to play important role in plant protection
against drought stress (Martinelli et al., 2007). Moreover, we
found that the histone-lysine N-methyltransferase ASH1L, was
down regulated in ptAtGSTT2a plants in histidine metabolism
whereas, genes responsible for histidine metabolism like
phosphoribosyl-ATP pyrophosphohydrolase phosphoribosyl-
AMP cyclohydrolase, histidinol dehydrogenase and histidine
decarboxylase were upregulated, suggesting that histidine should
be accumulated in the ptAtGSTT2a plants prior to the application
of stress, which reinforces the notion that the transplastomic
plants are in a primed condition as before (Tran et al., 2007; Witt
et al., 2012). Similarly, trehalose 6-phosphate synthase was found
to be downregulated in ptAtGSTT2a line under control conditions
highlighting the stress primed condition of the transplastomic
line (Lee et al., 2003; Ilhan et al., 2015).

When the transplastomic line ptAtGSTT2a and WT plants
were exposed to osmotic stress (high mannitol), the number
of transcripts for ptAtGSTT2a and WT plants did not change
compared to those in control conditions. However, important
genes found with an altered expression such as those encoding
for glycerate dehydrogenase and hydroxypyruvate reductase
which were found to be upregulated in glycine, serine and
threonine metabolism as well as in DNA repair pathway,
which, as stress produces ROS is expected to affect nucleic
acids. In contrast, the gene responsible for spermidine synthase
implicated in glutathione metabolism, cysteine and methionine
metabolism and in arginine, and proline metabolism was down
regulated. Proline is important in stress tolerance and has
been found to increase during different environmental stresses
like salinity, drought, UV, and extreme temperatures (Ashraf
and Foolad, 2007). In addition, polyamines like spermidine
have been reported to play a role in inducing stress response
under various stresses that produce ROS as they might serve
as ROS scavengers, and as positive regulators for expression of
stress response genes. Thus, polyamines like spermidine could
perform as primal stress molecules in plants (Rhee et al., 2007).
Additionally, pectinesterase was found to be downregulated
in ptAtGSTT2a compared to WT plants under stress. This is
an important gene implicated in pentose and glucuronate
interconversions as well as in cell wall degradation as it was
found to be upregulated in plants exposed to permissive high
temperature conditions (37◦C). This parallels to acclimation in
order to acquire thermotolerance as a result of the cell wall
modification (Yang et al., 2006). However, the downregulation
of such enzymes in the ptAtGSTT2a line under mannitol stress
suggests that these plants might be in a state of acclimation prior
to the application of the stress. In the Phenylalanine, tyrosine
and tryptophan biosynthesis pathway the genes encoding
bifunctional anthranilate synthase/indole-3-glycerol-phosphate
synthase (G005943) related to tryptophane biosynthesis were
upregulated as was the 5-methyltetrahydrofolate-homocysteine
methyltransferase (G005943), leading to methionine. In a rat
model, actin oxidative damage by ROS was found to occur
through the oxidation of cysteine, tryptophan and methionine
(Fedorova et al., 2010). If this is also the case in plants, then
increased amounts of these amino acids might be needed and

thus, leading to the upregulation of the genes responsible for
their production, as it was found herein; however, this hypothesis
needs further investigation.

The metabolomics analysis was performed on transplastomic
and WT plants grown under high mannitol stress and
controlled conditions in vitro for 35 days. The overexpression
of the AtGSTT had a significant effect to the metabolic
profile of transplastomic plants, since many metabolites were
downregulated under both control and drought conditions
indicating limited perturbation of metabolic homeostasis in
the transplastomic lines. Especially under high mannitol stress
the ptAtGSTT2a line had higher concentrations of the soluble
sugars, threose and arabinose, which demonstrates the protective
role against osmotic stress (Keunen et al., 2013). The soluble
alcohol mannitol was accumulated in greater concentration in
ptAtGSTT2a line despite the common increase in WT plants
under high mannitol stress. In contrast to our results mannitol
accumulation was decreased in transgenic tobacco plants
overexpressing a Gmgstu4 gene under salinity stress (Kissoudis
et al., 2015b). Mannitol accumulation plays an important role in
osmotic adjustment and signaling molecule enhance tolerance
to water stress in various plant species (Slama et al., 2015).
Additionally, the greater MF and shoot length of ptAtGSTT2a
compared to the WT plants under mannitol stress indicates a
possible relation between increase in mannitol and improved
growth. Similar results were observed in peanut (Bhauso et al.,
2014) and Zea mays (Nguyen et al., 2013) plants overexpressing
mtlD genes, which conferred water-deficit stress tolerance by
inducing the accumulation of mannitol and increase in biomass
and relative water content under drought conditions.

The results above suggest that overexpression of the AtGSTT
in the chloroplasts resulted in enhanced photo-tolerance
and turgor maintenance under herbicide-induced oxidative
(increased MD and Relative chlorophyll content) and salinity
stresses (higher chlorophyll, non-significant decrease in shoot
length and MF compared to the control plants) and enhanced
response tolerance to high mannitol-induced osmotic stress
(increased shoot and root length). Whole-genome transcriptome
analysis revealed that genes related to stress tolerance, such as
GSTs, were upregulated in ptAtGSTT2a line under both control
and high mannitol stress conditions indicating an acclimation
state to stress. In parallel, the metabolic profile indicated limited
perturbations of the metabolic homeostasis in the transplastomic
lines and greater accumulation of mannitol and soluble sugars
under high mannitol stress. We have therefore established that
the transplastomic plants overexpressing the ptAtGSTT2a in the
chloroplast are probably in a state of acclimation to stress,
thus, when the actual stress is applied there is limited need for
overexpression of the whole array of stress tolerancemechanisms,
which is imprinted in the levels of relative gene expression. As
mentioned before, we found only limited genes to be upregulated
in the ptAtGSTT2a transplastomic line compared to WT under
stress conditions while at the same time we have found genes
related to stress tolerance upregulated in ptAtGSTT2a plants
compared to WT in stress-free conditions, strengthening the
hypothesis that the AtGSTT overexpressed in plastids might have
conferred plant stress tolerance.
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Challenges caused by climate change will demand for quick
action of the scientific community in order to develop stress
tolerant varieties to secure enough food for the increasing world
population. GSTs, for have proven to be enzymes involved
in stress tolerance (Dixon et al., 1998, 2008, 2011; Axarli
et al., 2009, 2017; Chronopoulou and Labrou, 2009; Benekos
et al., 2010; Chronopoulou et al., 2011, 2012, 2014; Madesis
et al., 2013; Kissoudis et al., 2015a,b; Labrou et al., 2015;
Lo Cicero et al., 2015, 2017; Nianiou-Obeidat et al., 2017)
might help toward the development of plant acclimation to
environmental stresses. In some cases, the overexpression of a
single antioxidant enzyme might not provide protection against
oxidative stress whilst, simultaneous expression of multiple
antioxidant enzymes is more effective than a single expression
for enhancing tolerance to environmental stresses (Le Martret
et al., 2011). Herein, the ZmGSTU1-ZmGSTU2 chimera was able
to induce photoprotection of the photosystem II under sever
salinity stress, yet it was not as tolerant as the single AtGSTTs
overexpressed in the chloroplasts. Potentially, the expression of
multiple defense genes encoding enzymes belonging to different
classes could generate plants with enhanced stress tolerance
(Zhao and Zhang, 2006) able to withstand multiple stresses,
which needs to be further investigated. This study provides
evidence that overexpression of both the theta class AtGSTT
and the unique chimera GSTU1-GSTU2 from Zea mays in the
chloroplast resulted in enhanced tolerance of the transplastomic
plants to abiotic stresses. Furthermore, transcriptomics and
metabolomics analysis showed that the GST overexpressing
plants were in a stress tolerance priming state even before

the application of the severe osmotic stress (high mannitol
concentration) thus, enhancing the plant’s ability to tolerate
abiotic stresses.
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