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Humans are highly dependent on plants to reach their dietary requirements, as plant
products contribute both to energy and essential nutrients. For many decades, plant
breeders have been able to gradually increase yields of several staple crops, thereby
alleviating nutritional needs with varying degrees of success. However, many staple
crops such as rice, wheat and corn, although delivering sufficient calories, fail to
satisfy micronutrient demands, causing the so called ‘hidden hunger.’ Biofortification,
the process of augmenting nutritional quality of food through the use of agricultural
methodologies, is a pivotal asset in the fight against micronutrient malnutrition, mainly
due to vitamin and mineral deficiencies. Several technical advances have led to recent
breakthroughs. Nutritional genomics has come to fruition based on marker-assisted
breeding enabling rapid identification of micronutrient related quantitative trait loci (QTL)
in the germplasm of interest. As a complement to these breeding techniques, metabolic
engineering approaches, relying on a continuously growing fundamental knowledge
of plant metabolism, are able to overcome some of the inevitable pitfalls of breeding.
Alteration of micronutrient levels does also require fundamental knowledge about their
role and influence on plant growth and development. This review focuses on our
knowledge about provitamin A (beta-carotene), vitamin C (ascorbate) and the vitamin
E group (tocochromanols). We begin by providing an overview of the functions of these
vitamins in planta, followed by highlighting some of the achievements in the nutritional
enhancement of food crops via conventional breeding and genetic modification,
concluding with an evaluation of the need for such biofortification interventions. The
review further elaborates on the vast potential of creating nutritionally enhanced
crops through multi-pathway engineering and the synergistic potential of conventional
breeding in combination with genetic engineering, including the impact of novel genome
editing technologies.

Keywords: vitamin metabolism, crop improvement, hidden hunger, malnutrition, plant development, carotenoids,
ascorbate, tocochromanols

INTRODUCTION

Ensuring food security to all populations is considered a top priority for global societal progress.
Undernourishment has dropped severely in the last decades, from roughly 20% of the world
population in 1990 to little above 10% in 2016 (Food and Agriculture Organization [FAOSTAT],
2017). It stands undisputed that continuing efforts should be undertaken to further reduce the
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number of undernourished people in the world, which is still
close to 800 million. The successful reduction of malnourishment
can partly be attributed to the increase in staple crop yield
witnessed over the last decades. Indeed, in the last 25 years,
the production per hectare of rice, wheat and potato has
risen by 30% (Food and Agriculture Organization [FAOSTAT],
2017). However, these crops often fail to supply adequate
amounts of micronutrients, thereby augmenting the prevalence
of micronutrient malnutrition (MNM, ‘hidden hunger’). These
micronutrients include minerals such as iron, zinc, selenium,
and manganese, as well as a wide range of vitamins (Miller and
Welch, 2013). Hidden hunger affects an alarming two billion
people (Bailey et al., 2015; Rautiainen et al., 2016), mostly in
the form of anemia, occurring in one-fourth of the human
population (McLean et al., 2009). The case of anemia clearly
demonstrates the physiological impact of MNM, as its onset
has been linked to deficiencies in different micronutrients such
as iron, vitamin B1, B9, and B12 (Green, 2003; Imdad and
Bhutta, 2012; Stabler, 2013). The importance of MNM is further
highlighted by the large, calculated economic benefit a reduction
of child malnutrition would have on development. Among 19
prioritized investment-for-development targets listed in the Post-
2015 Consensus, the Copenhagen Consensus Center think-tank
has ranked the reduction of child malnutrition as the human
development investment with the highest potential economic
returns (Copenhagen Consensus, 2012).

Vitamin deficiencies can be combatted by supplementation,
industrial fortification, biofortification, and educational
interventions encouraging dietary diversification. It should be
noted that choice of the intervention strategy to be implemented
depends on regional dietary and cultural differences (Bailey
et al., 2015). However, some universally valid remarks can
be made. Supplementation, whether by administration of
(multi-)vitamin pills or by fortification of cereal products
(mandatory in many countries), has shown to be a fast and
powerful means to reduce vitamin deficiencies (Sandjaja et al.,
2015; Atta et al., 2016; Wang et al., 2016). Unfortunately, this
intervention is not easily applicable to poor rural populations in
need (Blancquaert et al., 2014). Furthermore, supplementation
could exhibit adverse effects, as demonstrated by the observation
of increased mortality and higher risk of colorectal cancer in
males upon vitamin A and B9 supplementation, respectively
(Benn et al., 2015; Cho et al., 2015). Educational efforts, aimed
to change the diet and/or processing of food by populations
suffering from vitamin deficiencies, are an excellent way to fight
MNM, tackling the root causes of the problem. However, these
interventions are expensive and imply cultural and agronomical
changes, the feasibility of which cannot be guaranteed (Low
et al., 2007; Faber and Laurie, 2011). Biofortification, which
consists of enhancing the natural vitamin level of food crops, is
advocated as a powerful complementary method to fight vitamin
malnutrition, circumventing the aforementioned obstructions
(Fitzpatrick et al., 2012; Blancquaert et al., 2017; Saltzman et al.,
2017).

Biofortification of local crops can be considered a sustainable
and cost-effective means to reduce vitamin shortage (Meenakshi
et al., 2010; De Steur et al., 2015). Two methods of biofortification,

apart from agronomical interventions (Cakmak and Kutman,
2017; Watanabe et al., 2017), can be distinguished. First,
biofortified crops can be obtained by conventional breeding
or using molecular techniques, to obtain novel high-vitamin
lines (Ortiz-Monasterio et al., 2007; Bouis and Saltzman,
2017). Unfortunately, this approach relies on the presence of
sufficient variation of vitamin levels in sexually compatible
germplasm collections (Shimelis and Laing, 2012; Strobbe
and Van Der Straeten, 2017). Furthermore, introgression of
a certain trait of interest into various region-specific crops
demands time-consuming selection over several generations.
Novel breeding techniques, however, enable more rapid retrieval
of the desired trait via genome wide association mapping
(GWAS) or accelerated selection of the introgression lines using
marker-assisted breeding (MAB) (Borrill et al., 2014; Esuma
et al., 2016). Second, metabolic engineering via GM-technology
allows introduction of one or multiple genes of interest,
influencing plant metabolism toward increased accumulation
of the particular vitamin. As it is not dependent on sexual
compatibility of gene source, genetic elements from a very
diverse pool could be utilized, including the vast genetic
diversity of prokaryotes. Moreover, metabolic engineering can be
implemented in a time and tissue-specific manner via selection of
promoters with the desired temporal and spatial characteristics.
This method, however, demands prior knowledge about specific
vitamin metabolism as well as availability of adequate promoters.
In principle, it allows the creation of a model vitamin engineering
strategy, which can be implemented in a variety of cultivars and
crops. However, this cannot be generalized, due to differences
in vitamin regulation and metabolism in different crops and
tissues (Strobbe and Van Der Straeten, 2017). Interestingly, novel
genome editing techniques such as the CRISPR/Cas system
allow directed mutagenesis and editing of targeted genomic
regions (Cong et al., 2013; Luo et al., 2016), enabling targeted
metabolic engineering approaches, though still constrained by
the limitation of genetic diversity of the engineered species.
A combination of the aforementioned techniques, could offer
powerful solutions to alleviate vitamin deficiencies.

Biofortification should be carried out with due consideration
to its effects on the plant’s physiology and not only with
the consumers’ vitamin needs in mind. The health impact of
a biofortified crop could be region specific, due to genetic,
environmental and dietary factors. Massive consumption of
staple crops with low content of one or more micronutrients
appears to be a major factor aggravating the incidence of the
deficiency. Therefore, biofortification of these crops is advised.
Biofortification endeavors should, however, not solely focus on
vitamin content, but take all factors influencing vitamin-specific
nutritional value of the particular crop into considerations, such
as storage and processing stability, as well as bioavailability
(Fitzpatrick et al., 2012; Blancquaert et al., 2015; Diaz-Gomez
et al., 2017b).

The three vitamins covered in this review–namely vitamin
A, C and E–have been the subject of various biofortification
approaches due to their impact on human health and
very low content in the six major staple crops consumed
worldwide (Table 1). But because of their roles in key
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enzymatic and stress-related stress response roles, there is a
need to bundle the existing knowledge of in planta vitamin
metabolism, taking possible detrimental effects on crop growth
into consideration. Consequently, proper design of metabolic
engineering approaches for vitamin biofortification requires a
profound understanding of in planta vitamin biosynthesis as well
as its metabolism.

In the past decades, major advances have been accomplished
in biofortification of different food crops. Fortunately, some
of these are already being used to combat MNM. However,
the use of metabolically engineered, biofortified crops has
not been implemented to date. Interestingly, the imminent
commercialization of provitamin A-rich ‘Golden Rice’ might
open doors toward application of other engineered biofortified
crops. In this review, the incidence and pathophysiology of
the different vitamin deficiencies are discussed, alongside with
the status of knowledge on plant vitamin biosynthesis and
physiology and the advances made in crop biofortification with
these vitamins.

PROVITAMIN A – CAROTENOIDS

Vitamin A is a collective term for different fat-soluble retinoid
molecules (Bai et al., 2011), defined as every chemical structure
able to fulfill the biological activity of all-trans-retinol (Figure 1C)
upon human consumption (Eitenmiller et al., 2016). Carotenoids,
comprise over 600 different compounds, only three of which
can be metabolically converted to active vitamin-A substances
such as retinol (Figure 1) and its oxidized equivalents retinal
and retinoic acid (Asson-Batres and Rochette-Egly, 2016).
Carotenoids represent the major source of provitamin A in the
diet and are present throughout the plant kingdom. The general
backbone is formed by head-to-tail linking of eight isoprene
units, resulting in a C40-unsaturated chain, lycopene (Figure 1A),
a carotenoid precursor (Eitenmiller et al., 2016). The most
important carotenoid, β-carotene (Figure 1B), harbors cyclized
β-ionone rings on both ends of the C40-chain (Figure 1). Because
these molecules consist of long-chain conjugated polyene units,
they are sensitive to oxidation, light, heat and acids (Asson-
Batres and Rochette-Egly, 2016). Their sensitivity to oxidation,
however, enables them to serve as antioxidants in plants and
animals, as the radical resulting from interaction with reactive
oxygen species (ROS), is much less hazardous by stabilization of
the polyene groups. Vitamin A function, however, greatly exceeds
its antioxidant properties, as it plays multiple roles in plant and
animal physiology.

Vitamin A Biosynthesis
The principal provitamin A for humans is β-carotene, which
is composed of two symmetrical retinyl groups. One such
retinyl group consists of a retinyl isoprenoid chain and
a β-ionone ring which is important for vitamin A action
(Figure 1) (Send and Sundholm, 2007). Hence, as α-carotene,
γ-carotene and β-cryptoxanthin also carry 1 β-ionone ring, they
possess 50% vitamin A activity. Provitamin A is synthesized in
plastids in all photosynthetic organisms by enzymes associated
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FIGURE 1 | Chemical structure of vitamin A and its precursors. (A) Lycopene, (B) β-carotene, (C) all-trans-retinol.

with the thylakoid membrane, namely phytoene desaturase
(PDS), ζ-carotene desaturase (ZDS), lycopene-β-cyclase (β-LCY)
and lycopene-ε-cyclase (ε-LCY); or associated in multienzyme
complexes (Cunningham and Gantt, 1998).

The direct precursor for provitamin A is geranylgeranyl
diphosphate (GGPP) (see also vitamin E biosynthesis, 4.1),
which is formed by the condensation of the building blocks
isopentenyl diphosphate (IPP) and 3 dimethylallyl diphosphate
(DMAPP) molecules, by GGPP synthase (GGPPS) (Ruiz-Sola
et al., 2016) (Figure 2). IPP is produced in the plastid-
localized 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway
and DMAPP is its isomerisation product catalyzed by isopentenyl
diphosphate isomerase (IDI). GGPP is also the precursor
for chlorophylls, ubiquinones, tocopherols, gibberellins and
terpenoids (Saini et al., 2015). The first step of the actual
provitamin A biosynthetic pathway is the condensation of
two GGPP molecules by phytoene synthase (PSY) forming 15-
cis-phytoene, assumed to be a rate-limiting step (Fray and
Grierson, 1993; Li F.Q. et al., 2008; Cazzonelli and Pogson,
2010). In most plant species multiple redundant PSY genes are
present which are differentially regulated. Salt and drought, are
environmental factors which induce PSY expression, thereby
enhancing carotene levels (Ruiz-Sola et al., 2014; Nisar et al.,
2015). Moreover, ethylene is known to have a positive influence
on accumulation of carotenoids, inducing PSY expression (Zhang
et al., 2018). This aspect is particularly important in fruit ripening
and has therefore been studied in mango (Mangifera indica)
(Ma et al., 2018), durian (Durio zibethinus) (Wisutiamonkul
et al., 2017) and tomato (Solanum lycopersicum) (Su et al.,
2015; Cruz et al., 2018). A recent study identified the tomato
transcription factor SlCMB1 as a regulator of both ethylene
production and carotenoid accumulation (via PSY and PDS)

(Zhang et al., 2018). PSY can therefore, in most plants, be
considered a master regulator of carotenoid accumulation,
given that it is also stimulated by light, directly controlled
by transcription factors PHYTOCHROME INTERACTING
FACTOR 1 (PIF1) and LONG HYPOCOTYL 5 (HY5) in
Arabidopsis photomorphogenesis (Toledo-Ortiz et al., 2010;
Llorente et al., 2017). In the subsequent biosynthesis step, directly
downstream of PSY, 15-cis-phytoene is transformed into 9,15,9′-
tri-cis-ζ-carotene via a 15,9-di-cis-phytofluene intermediate by
two consecutive desaturation reactions catalyzed by phytoene
desaturase (PDS) (Pecker et al., 1992; Li et al., 1996; Qin
et al., 2007). Subsequently, either a photoisomerization or
an isomerization by ζ-carotene isomerase (ZISO) (Pecker
et al., 1992; Li et al., 2007) results in 9,9′-di-cis-ζ-carotene.
Reiteratively, two desaturation reactions are performed by
ζ-carotene isomerase (ZDS) producing neurosporene followed
by 7,9,7′,9′-tetra-cis-lycopene (prolycopene) (Wong et al., 2004;
Dong et al., 2007). Finally, either light or carotene isomerase
(CRTISO) isomerizes the cis bonds into all trans-lycopene.
This enzyme is a secondary point of regulation, as it is
epigenetically regulated via methylation (Cazzonelli et al., 2009).
Several cyclization reactions result in the production of bicyclic
carotenoids. Lycopene-β-cyclase (β-LCY) catalyzes the addition
of β-ionone rings. One β-ionone ring leads to the formation of
γ-carotene; a second one forms β-carotene. Lycopene-ε-cyclase
(ε-LCY) catalyzes addition of ε-ionone rings, forming δ-carotene.
Addition of one β-ionone ring and an ε-ionone ring on the other
side of the linear backbone results in production of α-carotene.
Essentially, the pathway bifurcates after lycopene synthesis into
β,β- and ε,β-carotenoids, and the relative activities of β-CLY and
ε-CLY determine the proportion of lycopene funneled to the
two branches (Cazzonelli and Pogson, 2010). Hydroxylation of
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FIGURE 2 | Provitamin A biosynthesis. Enzymes involved in its biosynthesis are marked in blue. Connections to other vitamin pathways are indicated in red. Filled
yellow boxes indicate the external influences on the biosynthesis, affected enzymes surrounded by a yellow square. The regulatory influences on DXS are derived
from studies on Arabidopsis (Estevez et al., 2001), those on PSY from studies in maize, rice and tomato (Li F.Q. et al., 2008; Welsch et al., 2008). Cofactors are
encircled in gray. Abbreviations (in order of appearance in the pathway): G3P, glyceraldehyde-3-phosphate; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; DXP,
1-deoxy-D-xylulose-5-phospate; DXR, DXP reductoisomerase; IPP, isopentenyl diphosphate isomerase; IDI, isopentenyl diphosphate isomerase; DMAPP,
dimethylallyl diphosphate; GGPPS, geranylgeranyl diphosphate synthase; GGPP, geranylgeranyl diphosphate; PSY, phytoene synthase; PDS, phytoene desaturase;
ZISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CRTISO, carotene isomerase; β-LCY, lycopene-β-cyclase; ε-LCY, lycopene-ε-cyclase; BCH1, β-carotene
hydroxylase; ZEP1, zeaxanthin epoxidase; VDE, violaxanthin de-epoxidase; AsA, ascorbate.

Frontiers in Plant Science | www.frontiersin.org 5 December 2018 | Volume 9 | Article 1862

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01862 December 15, 2018 Time: 15:9 # 6

Strobbe et al. Vitamins A, C, E Enhancement in Crops

α-carotene gives rise to lutein, while hydroxylation of β-carotene
leads to formation of zeaxanthin.

Provitamin A Functions in planta
Oxygenated carotenoid derivatives are termed xanthophylls,
whereas the non-oxygenated analogs are designated as carotenes.
Distinct functions are attributed to these two classes of
carotenoids.

Enhancing Light Harvesting and Photoprotection
Lipid soluble carotenoids play a major role in photoprotection.
The conjugated double bonds in the carbon skeleton function
as chromophore, allowing light absorption in the range of
450–570 nm, covering the absorption gap of chlorophyll.
Consequently, they function as accessory pigments in
photosynthesis, enhancing light harvesting in the blue–
green spectral domain (Cogdell and Frank, 1987; Havaux et al.,
2004), while also being required for the correct assembly of
photosystems (Formaggio et al., 2001).

Xanthophylls are crucial in non-photochemical quenching
(NPQ) of excess photon energy by thermal dissipation through
molecular vibrations (Demmig-Adams and Adams, 1996).
The xanthophyll cycle encompasses two antagonistic enzymes,
violaxanthin de-epoxidase (VDE) which converts violaxanthin
via antheraxanthin into zeaxanthin, and zeaxanthin epoxidase
(ZEP) which performs the reversed reactions. This protective
mechanism prevents the over-reduction of photosystem II (PSII)
and the generation of ROS (Briantais, 1994). When the level of
absorbed light exceeds the photochemical capacity of PSII, the
acidification of the thylakoid lumen activates VDE. Additionally,
ethylene was found to be a negative regulator of the cycle as
it influences the activity and activation of VDE (Chen and
Gallie, 2015). Overexpression of β-carotene hydroxylase (BCH1),
causing a simultaneous increase in zeaxanthin and xanthophyll
levels, enhances tolerance to high light and heat stress (Davison
et al., 2002). The extra xanthophyll was shown to be associated
with the PSII light-harvesting complexes (LHCII), and the plants
exhibited reduced leaf necrosis and lipid peroxidation.

Carotenes are important to mitigate the generation of ROS
during photosynthesis. Carotenoids can quench both triplet
chlorophyll (3Chl∗) and singlet oxygen (1O2), protecting PSI and
PSII from photoinhibition (Edge et al., 1997; Triantaphylides and
Havaux, 2009). On the other hand xanthophylls like zeaxanthin
are involved in the protection of the photosynthetic membranes
against lipid peroxidation (Havaux and Niyogi, 1999; Davison
et al., 2002).

Stress Signaling
Besides their role in photosynthesis, carotenoids perform a
function in stress signaling, as stress-imposed singlet oxygen
production can lead to a variety of oxidative cleavage carotenoid
derivatives, several of which are reactive electrophile species
(RES). One example of RES is the volatile β-cyclocitral (β-CC),
which is capable of altering 1O2 responsive gene expression
in relation to stress acclimation (Havaux, 2014). This RES-
induced 1O2 response could interact with jasmonic acid (JA)
signaling and thus compromise the JA-mediated responses

to pathogens and herbivores in high light acclimated plants
(Ramel et al., 2012). Another example in which carotenoid-
derived signals are implicated in retrograde signaling resides
in the control of chloroplast and leaf development. The
albino Arabidopsis (Arabidopsis thaliana) null mutant of ZDS,
Arabidopsis zds/chloroplast biogenesis5 (clb5), exhibits abnormal
leaf development and cell differentiation with weakened auxin
responses. Introduction of the pds3 mutation, compromising
ζ-carotene synthesis, rescued the clb5 mutant gene expression
and leaf development phenotypes. This suggests that ζ-carotene
isomers are implicated in regulating chloroplast biogenesis and
leaf development (Avendano-Vazquez et al., 2014).

Shoot and Root Development
Inhibition of carotenoid production disturbs the rhythmic
oscillation of the lateral root (LR) clock, necessary for
establishment of pre-branch sites (Van Norman et al., 2014).
The same decrease in LR capacity was observed when using
an inhibitor of carotenoid cleavage dioxygenases (CCDs),
but the carotenoid-derived signaling molecule responsible for
the influence on root branching remains to be identified
(Van Norman et al., 2014). Earlier mutant analysis has
revealed the necessity for other carotenoid derived signals
in normal development. The bypass1 (bps1) mutant has
short roots, a malfunctioning shoot apical meristem and leaf
vasculature with an increasing severity in lower temperatures.
Grafting experiments suggested the constitutive presence
of a mobile root derived ‘bypass’ signal, which required
β-carotene synthesis, but no CCDs. (Van Norman et al.,
2004, 2014; Van Norman and Sieburth, 2007). CAROTENOID
CHLOROPLAST REGULATORY1 (CCR1) which encodes a
histone methyltransferase Set Domain Group8 (SDG8), defines
yet another link of carotenoids to shoot development. SDG8
is important for expression of CRTISO (Figure 2). Besides
enhanced rosette growth and cauline branching, altered
carotenoid content was observed in ccr1 (Cazzonelli et al., 2009).

Vitamin A in Human Health
Function and Pathophysiology of Vitamin A
Deficiency
During the last decades, knowledge on vitamin A functioning
in humans has greatly increased, emphasizing its tremendous
clinical importance (Wiseman et al., 2017). Retinol and retinal
vitamer forms of vitamin A play a pivotal role in proper
function of vision and dark adaptation. Human vision depends
on the regeneration of the vitamin A derivative 11-cis-retinal,
necessary for the formation of rhodopsin (Tang et al., 2013;
Hanneken et al., 2017; Tian et al., 2017). Rhodopsin in turn
is required as pigment in the retinal receptor responsible
for dark adaptation (Sommer, 2008; Wiseman et al., 2017).
This explains why vitamin A deficiency (VAD) can lead to
xerophthalmia, a pathophysiological condition of impaired
vision, starting with night blindness, and ultimately leading to
complete blindness due to corneal damage (Sommer, 2008; Chiu
et al., 2016). Furthermore, vitamin A is known to have a beneficial
impact on innate and adaptive immunity (Lima et al., 2010;
Wiseman et al., 2017). Consequently, VAD induces increased
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susceptibility toward a variety of infections, particularly gastro-
intestinal conditions (Brown and Noelle, 2015). Anemia, the
most prevalent of all micronutrient deficiency-induced disorders,
has also been linked to VAD, as vitamin A is able to influence
iron metabolism (Semba et al., 1992; West et al., 2007). Human
reproduction also depends on vitamin A, more particularly
retinoic acid, as it is shown to be necessary in spermatogenesis as
well as for proper embryo growth (Hogarth and Griswold, 2010;
Clagett-Dame and Knutson, 2011; Wiseman et al., 2017). The
above is, however, but a selection of the vast impact of vitamin
A in all its vitamer entities on basic human physiology. It also
illustrates the urgency of cutting back VAD incidence on a global
scale.

Global Burden of Vitamin A Deficiency
Occurrence of VAD can be explained by poor dietary
diversification, likely caused by high consumption of staples
with low vitamin content (Table 1). An estimated 250 million
children of preschool age suffer from VAD (Wiseman et al., 2017;
World Health Organization [WHO], 2018). Moreover, 250–500
thousand children develop VAD-induced full blindness each year,
half of these cases resulting in death within a year (World Health
Organization [WHO], 2018). As VAD is known to have a negative
impact on the human immune system (Brown and Noelle, 2015),
many infection-related deaths could also, at least partially, be
attributed to low vitamin A status, indicating that the incidence
of VAD-induced mortality is potentially underestimated.
UNICEF reported that vitamin A supplementation programs are
able to save 350 thousand children lives annually (Dalmiya and
Palmer, 2007; Sommer and Vyas, 2012). Despite these efforts,
coverage of the supplementation programs remains poor in
many regions, explaining the persistent occurrence of VAD in
these populations. Though VAD is much more prevalent in
low-income countries (Bailey et al., 2015; Wiseman et al., 2017),
there is also a great need to enhance (pro)vitamin A uptake on a
global scale, given the existence of VAD-induced disorders in the
developed world (Chiu et al., 2016).

Sources of Vitamin A
Provitamin A is present in animal as well as plant derived
foods (Bai et al., 2011; Mody, 2017). Meat and dairy products
are typically rich in retinyl esters, which can be metabolized to
retinol in the human body (Bai et al., 2011). In plant-derived
food sources on the other hand, the provitamin A content is
represented by carotenoids, β-carotene being the most prevalent
(Grune et al., 2010). β-carotene can be converted to retinal
by the human β-carotene 15,15′–monooxygenase (Lindqvist
and Andersson, 2002), which is typically absent in strictly
carnivorous mammals. Richly colored fruit and vegetables are
good sources of provitamin A. Examples of high provitamin
A carotenoid containing crops are carrots, sweet potatoes,
pumpkin, kale and spinach (Harrison, 2005). The food matrix
within which the vitamin is delivered is also of great importance,
as it determines bioavailability, demonstrated by the increasing
portion of bioavailable provitamin A in orange juice upon
pasteurization (Aschoff et al., 2015). As the provitamin A content
of a food source can be the result of a whole array of provitamin

A (mostly carotenoids) compounds, the vitamin content is
often described as retinol activity equivalent (RAE). The RAE
measures the amount of provitamin A expressed as having the
same bioactive power of a certain amount of retinal, taking
bioavailability into account. The highest recommended daily
allowance is 1.3 mg for lactating females. As all major staples,
with the exception of plantain (cooking banana, Musa sp.), are
poor sources of provitamin A (Table 1), there is a strong case for
raising its level in those crops (De Moura et al., 2016).

Biofortification: Toward Higher
Provitamin A Levels in Crops
Metabolic Engineering
Over the last decades tremendous efforts has been invested
in the augmentation of provitamin A levels in different crops
(Giuliano, 2017). PSY, responsible for the first committed step
of carotenoid biosynthesis, has been pinpointed as rate-limiting
step, thereby serving as an ideal candidate gene in biofortification
strategies (Fitzpatrick et al., 2012). A well-known example is
the genetically engineered Golden Rice (Oryza sativa) (Ye et al.,
2000; Beyer et al., 2002; Paine et al., 2005), which has a yellow
color, due to its high carotenoid nature. In Golden Rice (Ye
et al., 2000), metabolic engineering was achieved via endosperm-
specific induction of the daffodil (Narcissus pseudonarcissus) PSY
and bacterial (Erwinia uredovora) carotene desaturase (CRT),
representing the steps in carotenoid synthesis which are naturally
not expressed in rice endosperm. The Golden Rice engineering
strategy was later improved by replacing the daffodil-derived PSY
by a maize ortholog showing a stronger enzymatic activity in
rice than the originally used daffodil enzyme and thus leading to
higher beta-carotene levels in the so called Golden Rice 2 (GR2)
(Paine et al., 2005). The latter rice lines contain up to 3.7 mg/100 g
dry weight (DW) carotenoids in the endosperm. GR2 delivers
50% of a child’s RDA of provitamin A in 72 g dry rice. On top
of its ability to be deployed to minimize VAD, Golden Rice can
be considered a solid proof-of-concept, enabling implementation
of this metabolic engineering strategy in a range of crops. Indeed,
adopting this strategy into Zea mays yielded maize kernels with
6 mg/100 g DW β-carotene (Naqvi et al., 2009), corresponding to
a 112-fold increase in total carotenoid content over the WT corn
variety used in this study. Also in wheat (Triticum aestivum), this
strategy has led to a 10-fold increase in endosperm carotenoid
levels, reaching almost 500 µg/100 g dry weight (Cong et al.,
2009).

Interestingly, a one-gene metabolic engineering approach,
overexpressing only PSY, has also led to several successfully
biofortified crops. In canola (rapeseed, Brassica napus), PSY
introduction yielded 50-fold increase in seed carotenoid content
(Shewmaker et al., 1999). Similarly, carotenoid content of potato
(Solanum tuberosum) was elevated (up to 3.5 mg/100 g DW)
mostly caused by strongly enhanced β-carotene levels (up to
1.1 mg/100 g DW) (Ducreux et al., 2005). In cassava (Manihot
esculenta), root specific ectopic expression of PSY resulted in
carotenoid levels to be elevated 20-fold, reaching 2.5 mg/100 g
DW (Sayre et al., 2011). Finally, a recent cis-genic PSY-
overexpression engineering approach resulted in banana lines
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reaching up to 5.5 mg/100g DW β-carotene equivalent content
of fruits (Paul et al., 2017).

A different one-gene approach has been applied in tomato
fruit engineering (Rosati et al., 2000; Ralley et al., 2016),
as this tissue harbors high expression of genes controlling
biosynthesis of lycopene, such as the aforementioned PSY.
Therefore, a carotenoid biosynthesis gene, downstream of
lycopene was a more appropriate choice for biofortification of
carotenoid content in tomato fruit (Rosati et al., 2000). The
lycopene β-cyclase gene (β-LCY), catalyzing the cyclization of
the lycopene molecule by introduction of the β-ionone rings
yielding β-carotene (Cunningham et al., 1996) (Figures 1A,B),
was engineered in tomato fruit, resulting in high β-carotene
tomatoes (Rosati et al., 2000; D’Ambrosio et al., 2004; Ralley et al.,
2016).

Single gene approaches, despite reaching satisfying levels
of provitamin A, could be strengthened by introduction of
additional genes, further increasing flux through the biosynthetic
pathway. Indeed, further research in canola resulted in seeds with
over 1,000-fold increase in β-carotene, reaching over 20 mg/100 g
fresh weight (FW) (Fujisawa et al., 2009). This was accomplished
by introduction of seven bacterial genes, highlighting the power
of multiple gene engineering as well as the applicability of
prokaryotic genes (Fujisawa et al., 2009; Bai et al., 2011).
Similarly, in potato, combined tuber-specific boosting of PSY,
PDS and β-LCY (Figure 2) generated ‘golden potato’ tubers
having 11 mg/100 g DW of carotenoids of which 4.7 mg/100 g
DW is represented by β-carotene (Diretto et al., 2007).

Another interesting gene in carotenoid biofortification
is the gene encoding 1-deoxyxylulose-5-phosphate synthase
(DXS). The DXS enzyme acts in the MEP pathway, upstream
of IPP formation, in the plastid isoprenoid pathway (Estevez
et al., 2001; Sayre et al., 2011; Ruiz-Sola and Rodríguez-
Concepción, 2012), thereby acting also upstream of biosynthesis
of a whole range of metabolites depending on this pathway,
including tocochromanols (see vitamin E). This approach has
been adopted in cassava, tomato and Arabidopsis (Estevez
et al., 2001; Enfissi et al., 2005; Sayre et al., 2011). The
idea of changing carotenoid content via engineering of a
further upstream component proves to be applicable, as
shown in tomato, as fruit-specific down-regulation of DE-
ETIOLATED1 (DET1) [a light signaling pathway controlling
gene (Schafer and Bowler, 2002)], leads to enhancement
of both carotenoid and flavonoid levels (Davuluri et al.,
2005). Fruit-specific RNAi suppression of an epoxycarotenoid
deoxygenase (NCED), a key enzyme in abscisic acid (ABA)
biosynthesis, resulted in enhanced lycopene and β-carotene
levels (Sun et al., 2012). Strikingly, metabolism of different
vitamins could be intertwined, potentially positively influencing
their accumulation and stability, as was the case with the
combined biofortification of vitamin E and carotenoids in
‘Golden Sorghum’ (Che et al., 2016). This further emphasizes
the importance of considering vitamin stability, especially
upon long-time storage. In this respect, down-regulation of
a lipoxygenase gene (r9-LOX1), known to cause carotenoid
oxidation (Wu et al., 1999; Blancquaert et al., 2017) in rice
endosperm yielded enhanced provitamin A stability in Golden

Rice upon storage (Gayen et al., 2015). Suppressing enzymes
involved in vitamin breakdown has also been implemented as
a metabolic engineering strategy and successfully demonstrated
in wheat. Endosperm-specific stimulation of carotenoid
biosynthesis by bacterial phytoene synthase was combined
with silencing of carotenoid hydroxylase, leading to kernels
accumulating up to 500 µg/100 g DW of β-carotene (Zeng et al.,
2015).

These strategies are, however, species and likely tissue-specific,
as different crops require adjusted engineering approaches.
Assessment of their implementation in different agronomically
important crops would be a great leap forward (Kang et al.,
2017). In this respect, the ability of processing habits to lower
vitamin bioavailability should be taken into consideration (Diaz-
Gomez et al., 2017a). Interestingly, interventions in provitamin A
metabolism resulted in remarkable alterations in crop properties.
This has been reported for provitamin A biofortified cassava,
achieved by DXS and CTRb (bacterial phytoene synthase)
introduction, resulting in prolonged shelf-life upon storage
as well as aberrant carbon partitioning causing a significant
reduction in dry matter content (Beyene et al., 2018). This
further emphasizes the importance of taking all aspects of plant
physiology into consideration, not only upon designing but also
upon evaluation of biofortified crops.

Breeding
Enhancement of provitamin A content in food crops has not
been limited to transgenic metabolic engineering approaches,
as different breeding projects have also led to successes
(Giuliano, 2017; Haskell et al., 2017). Interestingly, studies
implementing genome-wide association (GWAS), association
analysis and quantitative trait locus (QTL) mapping, pinpoint
the factors strongly influencing carotenoid accumulation. Indeed,
as maize exhibits a strong natural variation in carotenoid
content, germplasm analysis indicated a lycopene cyclase to
be the major determinant of the vitamin level (Harjes et al.,
2008). QTL analysis of different crops mostly revealed the
same genes to be major effectors in carotenoid accumulation,
corresponding to those genes also implemented in successful
metabolic engineering approaches such as PSY, LCY, and DXS
genes (Giuliano, 2017). Analysis of carotenoid variation could
also highlight negative regulators, as was the case for the gene
encoding BCH1 (Yan et al., 2010). Molecular techniques have
enabled breeding of high vitamin yielding crops. Exemplary
cases include biofortified corn (up to 1.5 mg/100 g DW of
β-carotene) (Muzhingi et al., 2011; Palmer et al., 2018; Zunjare
et al., 2018), cassava (800 µg/100 g DW of β-carotene) (Welsch
et al., 2010; Ilona et al., 2017) and sweet potato (400 µg/100 g
FW of RAE of provitamin A) (Low et al., 2017). The latter
is already reaching almost three million households in Sub-
Saharan Africa, thanks to the Sweet Potato for Profit and Health
Initiative (SPHI), which aims to provide this orange-fleshed
sweet potato (OFSP) to 10 million households (Laurie et al.,
2018). Unfortunately, satisfactory variation in rice germplasm
to support adequate breeding for enhanced provitamin A
content of the endosperm, has not been found (De Moura
et al., 2016). A nice overview of achievements in provitamin
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A biofortified crops is given in a recent review of Giuliano
(2017).

Provitamin A: Major Problems and
Future Prospects
The successful creation of provitamin A rich rice, coined
Golden Rice, is a good example of a product with great
potential, the introduction of which is hampered by regulatory
obstructions (Potrykus, 2010, 2017). Indeed, though the potential
humanitarian benefit as well as adequate cost-effectiveness of
Golden Rice are well known (Stein et al., 2006), current societal
perception, strongly following the precautionary principle, has
blocked the implementation of Golden Rice for almost two
decades. Ingo Potrykus, one of the creators of Golden Rice,
has referred to this impediment as ‘a crime against humanity’
(Potrykus, 2010). The rationale behind this, is the calculated
amount of Disability-Adjusted Life Years (DALY) (over a million)
as well as deaths (over 40 thousand) that could be saved
annually by Golden Rice implementation (Potrykus, 2010; De
Steur et al., 2017; Wesseler and Zilberman, 2017). The case of
Golden Rice holds an important lesson to minimize regulatory
obstructions for products of genetic engineering. Satisfactory
proof-of-concepts are often difficult to commercialize due to
intellectual and tangible property right (Kowalski et al., 2002).
When the ultimate goal of a biofortification endeavor goes
beyond the academic proof-of-concept, one must thoroughly
examine every patent or intellectual property right attached
to it. In the case of the Golden Rice project, all licenses -for
the technologies involved- have been acquired, enabling free
distribution to farmers, provided that the transgenic event is
approved (Potrykus, 2017). This was possible, as it is considered
a humanitarian project, allowing to be deployed in developing
countries by a Humanitarian Use Technology Transfer (HUTT)
license. More strikingly, the Golden Rice event GR2-R1 was
found to disrupt the native OsAUX1 (encoding an auxin influx
transporter) expression, yielding detrimental consequences for
plant growth and development (Bollinedi et al., 2017). This
further emphasizes the importance of characterizing the genomic
place of insertion and potential influences on growth and
development.

Provitamin A is an example of a micronutrient for which
major progress has been achieved in biofortification over the
last decades (Giuliano, 2017). A substantial part of these
accomplishments has been realized via breeding endeavors
(Bouis and Saltzman, 2017; Ilona et al., 2017), without the
use of genetic engineering and therefore more readily accepted
for commercial release (Potrykus, 2017). Focus should now be
directed toward proper information of the public on allowing
provitamin A rich crops created via GM-technology, so that
these can be deployed to decrease VAD in populations which
are in need. Moreover, the case of tomato fruit, which naturally
contains sufficient lycopene, thus requiring a downstream
metabolic engineering intervention to redirect the biosynthetic
pathway, is a nice example on how general knowledge of a
food crop steers biofortification approaches. Therefore, acquiring
a general metabolic engineering strategy is difficult and future

research should first be directed to understanding provitamin
A biosynthesis within the target crop tissue as well as natural
variation in the germplasm thereof. The latter could put
breeding strategies forward as a valuable solution to fight VAD.
Finally, given the success of breeding strategies in provitamin A
biofortification and the natural variation of sexually compatible
germplasm they depend on, expanding the available germplasm
of a certain crop could have very beneficial impacts.

VITAMIN C – ASCORBATE

Ascorbate or L-ascorbic acid (AsA), referred to as vitamin C, is
a potent water-soluble antioxidant (Iqbal et al., 2004; Macknight
et al., 2017). This molecule is, however, unstable, as it easily
deteriorates, being sensitive to heat, alkaline environments and
oxygen (Iqbal et al., 2004). Vitamin C sensu lato includes all
molecules (vitamers) which can be metabolized to form ascorbic
acid in human metabolism, including dehydroascorbic acid
(Wilson, 2002). Ascorbic acid is a weak sugar acid, related to, and
derived from, hexoses (Pohanka et al., 2012).

Vitamin C Biosynthesis
The sole physiologically significant source of AsA is provided
via the Smirnoff-Wheeler pathway, following a route via D-
mannose (D-Man) and L-galactose (L-Gal), essentially taking
place in the cytosol, with the exception of the final mitochondrial
step generating L-AsA (Figure 3) (Ishikawa et al., 2008).
Therefore, hexoses need to be directed into D-Man metabolism by
phosphomannose isomerase (PMI), followed by the conversion
of D-Man-6-P into D-Man-1-P by phosphomannomutase (PMM)
(Qian et al., 2007; Maruta et al., 2008). The reversible
phosphorylation of D-mannose-1-phosphate (D-Man-1-P) by
GDP-D-mannose pyrophosphorylase (GMP/VTC1) results in
GDP-D-Man, which is subsequently equilibrated with its epimer,
GDP-L-galactose (GDP-L-Gal), through GDP-D-mannose-3,5-
epimerase (GME) (Wolucka and Van Montagu, 2007). However,
this enzyme can also produce GDP-L-gulose, which occurs in
25% of the epimerization events. This leads to the alternative
biosynthesis route, named the L-gulose pathway, which might be
species or tissue specific. GDP-Gal is converted to L-galactose-
1-Phosphate (L-Gal-1-P) by GDP-L-Gal phosphorylase/L-Gal
guanylyltransferase (GGP/VTC2), the first committed and rate-
limiting step in the vitamin C biosynthesis pathway (Linster and
Clarke, 2008). Both transcription and activity of GGP appear
light-regulated, explaining the increase in ascorbate levels in
high light conditions. Furthermore, as their diurnal pattern of
expression was also observed in constant darkness, GGP is
assumed to be under circadian clock control (Dowdle et al., 2007)
(Ishikawa et al., 2018). Additionally, VTC2 is suggested to be
controlled by a cis-acting upstream open reading frame in high
ascorbate conditions (Laing et al., 2015). Several other enzymes
are also feedback-inhibited by AsA, including PMI (Maruta
et al., 2008), GME (Wolucka and Van Montagu, 2003) and
LGalDH (Mieda et al., 2004). In the subsequent step in ascorbate
biosynthesis, L-Gal-1-P is hydrolyzed to L-galactose (L-Gal) by L-
Gal-phosphate phosphatase (GPP/VTC4) (Conklin et al., 2006),
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followed by an NAD-dependent oxidation into L-galactono-1,4-
lactone (GalL) by L-galactose dehydrogenase (L-GalDH). The
last step is yet another oxidation, exerted in mitochondria
by the flavin containing L-galactono-1,4-lactone dehydrogenase
(L-GalLDH), forming AsA which uses cytochrome c as an
electron acceptor (Wheeler et al., 1998; Leferink et al., 2008).
This enzyme also shows a diurnal expression pattern (Tamaoki
et al., 2003). In the case of the alternative gulose pathway,
L-gulono-1,4-lactone is formed, and further converted into
AsA by L-GulL dehydrogenase (Wolucka and Van Montagu,
2003). Both GalL and AsA, being low molecular-weight solutes,
might cross the outer membrane without the need of a
carrier.

Vitamin C Functions in planta
The physiologically active form of vitamin C is its
anionic form, ascorbate. The water soluble ascorbate
anion (AH−) is a universal player in both enzymatic
and non-enzymatic antioxidant defense systems and
therefore implicated in a range of processes in plants.
Its efficiency as an antioxidant most probably relies on
the (relative) stability of its primary oxidation product,
the monodehydroascorbate radical (MDA) and moreover,
on its capacity to terminate radical chain reactions by
spontaneously disproportionating into the non-toxic, non-
radical product AsA and dehydroascorbate (DHA) (Noshi et al.,
2016).

Antioxidant
AsA is of great importance during photosynthesis, firstly
because it is capable to donate electrons to PSI and PSII
in both normal and stress conditions (Mano et al., 2004;
Ivanov, 2014). Moreover it eliminates directly superoxide (O−2),
hydroxyl radicals (•OH) and singlet oxygen (1O2) coming from
photoreduction and photorespiration and aids in the scavenging
of hydrogen peroxide being a cofactor of ascorbate peroxidase
(APX) in the Asada-Halliwel pathway or Mehler-peroxidase
pathway (Foyer and Halliwell, 1976; Shigeoka et al., 2002).
The latter pathway, also known as the ascorbate-glutathion
cycle (ASC-GSH cycle), involves APX, monodehydroascorbate
reductase (MDHAR), dehydroascorbate reductase (DHAR) and
glutathione reductase (GR) and is of uttermost importance
in the antioxidant defense of plants (Foyer and Halliwell,
1976). Despite the multiple scavenging processes present in
plants, lipids still receive the burden of oxidative stress
leading to the generation of lipid peroxyl radicals. Clearing
thereof is accomplished by α-tocopherols (see vitamin E),
which in turn are recycled through the oxidative action of
AsA (Davey et al., 2000). In addition, ascorbate, being the
cofactor of violaxanthin de-epoxidase (VDE), plays a role in
the xanthophyll cycle, as mentioned above in the section of
vitamin A, protecting PSII from photoinhibition (Eskling et al.,
1997).

Development
A wide range of hormone-AsA interactions influence plant
physiology. First, AsA is involved as a cofactor of GA3-oxidase

and ACC-oxidase in the biosynthesis of gibberellin (GA) and
ethylene, respectively (Arrigoni and De Tullio, 2000; Van de
Poel and Van Der Straeten, 2014). Second, hormones can also
control AsA biosynthesis. In seed tissue, enhanced levels of ABA
suppresses activity of NADPH oxidases, the main producers of
ROS in seeds (Ishibashi et al., 2017). The resulting decrease
of ROS in the aleuron layers inhibits AsA and concomitant
GA biosynthesis (Ye et al., 2012). On the other hand, ROS,
and more specifically exogenous H2O2, were shown to enhance
expression in imbibed seeds of biosynthesis genes of GA, an
essential hormone in seed germination (GA20ox1, GA20ox2,
GA20ox3, GA3ox1, and GA3ox2) (Liu et al., 2010; Ye et al.,
2012).

Furthermore, AsA was shown to be implicated in sustaining
seedling growth. Simultaneous loss of function of two homologs
(vtc2-1 and vtc5-1 or vtc5-2) encoding the biosynthesis enzyme
GGP, results in growth inhibition after cotyledon expansion,
followed by bleaching. In later stages of development, ascorbate
is required for growth, as the older leaves of the rescued double
mutants started to bleach again when transferred back to L-
Gal-free medium, the immediate downstream product of these
isoforms. Moreover, growth reduction was already observed
in the vtc2 null mutant, in accordance with its low ascorbate
level (20%) as compared to wild-type (Dowdle et al., 2007).
AsA is also linked with cell expansion and division. Culture
experiments showed an increase in ascorbate levels during cell
elongation in tobacco, while addition of an ascorbate biosynthesis
inhibitor (lycorin) induced cell cycle arrest in G1 in onion root
cells (Liso et al., 1984; Kato and Esaka, 1999). This link could
partially be attributed to its function as a cofactor of prolyl
hydroxylase which converts proline residues in hydroxyproline-
rich glycoproteins such as extensins in the cell wall (Fry, 1986;
Kerk and Feldman, 1995; De Tullio et al., 1999; Joo et al., 2001;
Sanmartin et al., 2007). Moreover, the observation of a depleted
level of ascorbate together with an increased activity of ascorbate
oxidase (AOX) in the quiescent center (QC) in maize roots
are suggestive for a role of ascorbate in the maintenance of
QC identity. The concomitant augmented auxin level revealed
a regulatory role of the latter on AOX expression (Kerk and
Feldman, 1995). Moreover, shoot apical dominance is stimulated
by ascorbate (Barth et al., 2006; Kotchoni et al., 2009; Zhang
C.J. et al., 2011). Through control of GA and ABA, AsA is also
involved in flowering, programmed cell death and senescence
(Barth et al., 2006; Kotchoni et al., 2009). AsA and ABA
were also shown to influence the expression of senescence
associated genes (SAGs) in an antagonistic way (Barth et al.,
2006).

Finally, fruit ripening is also related to AsA (Sanmartin et al.,
2007). Ascorbate aids in fruit ripening by its counterintuitive
site-specific pro-oxidant function. This involves the apoplastic
conversion of O2 and Cu2+ into H2O2 and Cu+, which
thereupon combine to generate OH radicals. The presence of
the latter results in polysaccharide degradation causing fruit
softening (Fry, 1998). In addition, AsA is involved in ethylene
biosynthesis (see above), which is essential to induce ripening,
and in turn, induces AsA biosynthesis via upregulation of VTC4
expression (Figure 3) (Ioannidi et al., 2009).
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FIGURE 3 | Biosynthesis of vitamin C. The enzymes committed to vitamin C (VTC) biosynthesis are marked in blue. Feedback regulations are illustrated in purple.
Filled yellow boxes indicate the external influences on the biosynthesis, regulating enzymes surrounded by a yellow square. Biosynthesis and salvage links to
vitamins A and E, in dark red, are indicated with a double and a dashed arrow, respectively. The dashed oval arrow represents the recycling of α-tocopherol, within
which ascorbate aids in the detoxification of tocopheroxyl radicals. Abbreviations (in order of appearance in the pathway): PMI, phosphomannose isomerase; PMM,
phosphomannose mutase; VTC1/GMP, GDP-D-mannose pyrophosphorylase; GDP-D-mannose, guanosine diphosphate mannose; GME,
GDP-mannose-3′,5′-epimerase; VTC2/GPP, GDP-L-galactose-phosphorylase/L-galactose guanylyltransferase; VTC4/GPP, L-galactose 1-phosphate phosphatase;
L-GalDH, L-galactose dehydrogenase; L-GalLDH, L-galactono-1,4-lactone dehydrogenase; L-GulLDH, L-gulono-1,4-lactone dehydrogenase.
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Vitamin C in Human Health
Functions and Pathophysiology of the Deficiency
In human physiology, ascorbate functions as an important
scavenger of ROS, such as hydrogen peroxide (Lobo et al., 2010).
Importantly, ascorbate is also required as a reducing agent in
the conversion of iron from ferric (Fe3+) to ferrous (Fe2+)
oxidation state, thereby aiding in sufficient iron uptake and thus
indirectly linked to anemia in case of deficiency (Iqbal et al.,
2004; Macknight et al., 2017). Furthermore, vitamin C assists in
the metabolism of tryptophan, tyrosine and folate (Iqbal et al.,
2004). Moreover, AsA aids in lowering excess cholesterol levels,
thereby reducing atherosclerosis (Das et al., 2006; Chambial
et al., 2013). This vitamin is also known to function as a
cofactor in several reactions such as hydroxylation of muscle
carnitine, amidation of several hormones, and the conversion of
the neurotransmitter dopamine into norepinephrine (Chambial
et al., 2013). Hence, the function of ascorbate is evidently
linked to energy metabolism. In collagen biosynthesis, prolyl and
lysyl hydroxylases utilize AsA as a enzymatic cofactor (Myllylä
et al., 1984; Pimentel, 2003). This explains the pathogenesis of
scurvy, a vicious disease, caused by severe vitamin C deficiency,
characterized by bleeding gums and eventually leading to edema,
jaundice, hemolysis, spontaneous bleeding, neuropathy and
death (Leger, 2008). Strikingly, there have been indications that
ascorbate supplementation could have a negative impact on
tumor development (Cha et al., 2013; Mastrangelo et al., 2018).
Moreover, high vitamin C status could prevent or cure several
infections (Carr and Maggini, 2017). Evidence indicates that
low vitamin C status, though not immediately depicting clinical
symptoms, hampers ideal human functioning, as increasing
vitamin C uptake is known to be beneficial (Johnston et al., 2006,
2014).

Prevalence of Vitamin C Deficiency
Incidence of Vitamin C deficiency is difficult to quantify, as
clear deficiency-induced disorders only occur upon very severe
ascorbate shortage. Furthermore, there is no consensus on ideal
vitamin C intake quantities (Frei et al., 2012; Hickey et al.,
2014). Indeed, retrieving an ideal recommended daily intake for
vitamin C has been a heavily debated issue, even tackled by Nobel
Prize winner Linus Pauling (Pauling, 1974). However, it remains
undeniable that increasing the vitamin C status would exhibit
positive effects on general human health (Macknight et al., 2017).
There is, however, no controversy about the presence of vitamin
C deficiency in the general public, despite the infrequency of
scurvy. Vitamin C status was reported as being deficient in
about 20% of the low-income population of the United Kingdom
(Mosdol et al., 2008). Comparable results were obtained by
analysis of the north-American population, where smoking and
low socio-economic status were identified as risk factors for
vitamin C deficiency (Cahill et al., 2009; Schleicher et al., 2009).

Vitamin C Sources
Most animals are capable of de novo ascorbic acid biosynthesis,
given its vital role in their metabolism. However, humans
(but also guinea pigs and bats) have lost this privilege due to
mutation in the L-gulono-γ-lactone oxidase (GLO) gene (cf.

L-GulLDH in Figure 3) (Nishikimi et al., 1988; Imai et al.,
1998), the evolutionary reason of which has been questioned (De
Tullio, 2010). This leaves humans dependent on sufficient dietary
ascorbate intake to preserve vital functioning. Fresh (citrus)
fruits, tomatoes, broccoli and leafy vegetables are considered
excellent sources of vitamin C (Iqbal et al., 2004; Chambial
et al., 2013). Unfortunately, ascorbate is prone to deteriorate
upon storage or processing, as its content declines upon exposure
to heat and oxygen (Lee and Kader, 2000). Vitamin C losses
during storage can be decreased via limited exposure to heat and
oxygen (Lee and Kader, 2000; Sapei and Hwa, 2014). Though
most staples are poor sources of vitamin C, potato and cassava
do supply a significant amount of the vitamin to the populations
relying on these crop products (Table 1). However, elevating the
levels of vitamin C in these crops could deliver additional health
advantages.

Vitamin C Biofortification
Metabolic Engineering
Metabolic engineering strategies, aimed at elevating ascorbate
levels in a specific crop/tissue, have been deployed by increasing
either ascorbate biosynthesis, salvage or altered pathway
regulation (Macknight et al., 2017). Interestingly, these
approaches possess the ability to increase tolerance to abiotic
stresses such as drought, salinity, cold, heat and high light.
In ascorbate biosynthesis, the conversion of GDP-L-galactose
to L-galactose-1-P, the central step in plant ascorbic acid
biosynthesis, carried out by the GDP-L-galactose phosphorylase
(GGP, VTC2) enzyme (see Figure 3), is mainly considered
as being rate-limiting, thereby a prime target for metabolic
engineering approaches (Bulley and Laing, 2016; Macknight
et al., 2017). This has been adequately demonstrated in tomato
and potato, where introduction of the kiwi and potato GGP
gene, respectively, yielded an ascorbate increase up to sixfold
in tomato fruit and threefold in potato tubers (Bulley et al.,
2012). Though other steps in ascorbate biosynthesis have
been evaluated in metabolic engineering, GGP remains the
most successful (Macknight et al., 2017). Ascorbate salvage
on the other hand, the retrieval of ascorbic acid from the
oxidized dehydroascorbic acid vitamer, has been tackled using
dehydroascorbate reductase (DHAR) (Li et al., 2012). Similarly,
ascorbate degradation has been engineered via RNAi-mediated
downregulation of AOX in tomato fruit, resulting in augmented
vitamin C levels (Zhang Y.Y. et al., 2011). Furthermore, the
Arabidopsis ethylene response factor AtERF98, positively
regulating ascorbate biosynthesis, has been implemented
in metabolic engineering attempts, as its overexpression in
Arabidopsis resulted in enhanced ascorbate levels concomitant
with increased salt tolerance (Zhang et al., 2012). This should,
however, be approached with caution, as the impact on other
aspects of plant metabolism/physiology requires in-depth
knowledge of the affected metabolic pathways (Macknight et al.,
2017). Moreover, AsA stability should be considered upon
evaluation of metabolic engineering strategies. Indeed, after
8 months storage, a drop of vitamin C levels of almost 90% was
demonstrated in pasteurized pink guava nectar juice (Psidium
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guajava L.) (Ordonez-Santos and Vazquez-Riascos, 2010). Thus,
a metabolic engineering approach combining multiple aspects
of ascorbate metabolism including as biosynthesis, recycling,
stability and potentially regulation, might prove to yield higher
but also stable vitamin C augmentation.

Breeding
Given the relatively low increase in ascorbate levels upon
metabolic engineering approaches, breeding methods might
catch up with these interventions. In pepper (Capsicum annuum),
which can be considered a rich source of vitamin C, a 2.5-
fold variation was observed within the 7 genotypes examined
(Geleta and Labuschagne, 2006). The high heritability of this
trait indicates a great potential in breeding programs in
vitamin C biofortification of pepper. In tomato, transcriptomic
analysis of an introgression line exhibiting 4-fold difference in
fruit AsA content, pinpointed pectine degradation (particularly
pectinesterases) as an important determinant for vitamin C
accumulation (Di Matteo et al., 2010; Ruggieri et al., 2015).
By QTL mapping of introgression lines, tomato fruit ascorbate
levels were also linked to a single nucleotide polymorphism
(SNP) near the MDHAR genomic region (Sauvage et al., 2014;
Bulley and Laing, 2016). Subsequently, analysis of a high
ascorbate/carotenoid introgression line enabled identification of
an L-ASCORBATE OXIDASE allele (AOX) as a determinant for
AsA levels, the expression of which negatively correlated with
vitamin C content (Calafiore et al., 2016). Interestingly, the
same study identified an NCED allele, to indirectly control AsA
accumulation. In apple, a sixfold variation in AsA content found
over 28 commercial varieties allowed creation of a mapping
population, pinpointing GGP alleles as major determinants of
fruit vitamin C content (Mellidou et al., 2012). Together, these
findings illustrate the vast potential of screening crop germplasms
for high vitamin C accumulating varieties, and implement these
plants in GWAS and breeding programs.

Ascorbate: Major Problems and
Future Prospects
Given its antioxidant nature and a diversity of potential roles,
pathophysiological manifestations are not easily attributable
to ascorbate deficiency. This is likely the main cause for
the dissent on the ascorbate RDA value, which in turn
provokes an underestimation of vitamin C deficiency. Therefore,
there is a great need to further underline the tremendous
health benefit of improving ascorbate status on a global
scale, despite the absence of typical deficiency symptoms.
As inherent ascorbate levels in wheat and rice endosperm
are negligible (Table 1), metabolic engineering strategies
in these tissues might be challenging. However, ascorbate
metabolic engineering strategies could be fruitful in helping
these crops cope with abiotic stresses. Moreover, metabolic
engineering has the potential to convert potato into an
ideal medium to deliver sufficient quantities of a potent
water-soluble antioxidant, ascorbate, to the population. Future
biofortification strategies on the other hand, should, based on the
available knowledge on ascorbate function in plant physiology,
try to exploit ascorbate accumulation to enable creation of

FIGURE 4 | Structure of tocochromanols. (A) Tocopherol. (B) Tocotrienol.
(C) Nomenclature of molecules arising from diversity in (R1 and R2
substituents).

nutritionally enhanced crops with concomitant increased stress
tolerance.

VITAMIN E – TOCOCHROMANOLS

Vitamin E or tocochromanols, which includes tocopherols and
tocotrienols, are fat-soluble, amphipathic molecules (Colombo,
2010). These molecules consist of a lipophilic isoprenoid chain
carrying a polar chromanol ring, providing their amphipathic
nature (Figure 4). The molecular structure of these vitamers
contains three chiral centers, resulting in 8 stereoisomers of
each vitamin E entity (Figure 4). Depending on the substituents
on the chromanol ring, both tocochromanols groups exist as
α-, β-, γ-, and δ-isomers. Vitamin E molecules are known as
potent antioxidants, as they are free radical scavengers, of which
α-vitamers are most powerful (Niki and Traber, 2012).

Vitamin E Biosynthesis
Tocochromanols are synthesized only in the plastids of
photosynthetic organisms. While tocopherols are present
throughout the plant, tocotrienol is found almost exclusively
in seeds and fruits. Both groups and their isoforms occur in
different tissues and exert different functions. α-tocopherol
resides mainly in the leaves of vascular plants, while γ-tocopherol
is the predominant form in seeds (Grusak and DellaPenna, 1999;
Abbasi et al., 2007). Indeed, as seen in Arabidopsis, seeds typically
exhibit a more pronounced γ-tocopherol contribution to the
total tocopherol pool (Gilliland et al., 2006). The precursors
of tocochromanols are derived from two different pathways,
the shikimate and the MEP pathway, which are also delivering
the precursors of the plastidial biosynthesis of folate (B9) and
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carotenoids (provitamin A), respectively (Mène-Saffrané and
Pellaud, 2017).

The polar phenolic p-hydroxyphenylpyruvic acid (HPP),
synthesized from tyrosine by tyrosine aminotransferase
(TAT) and therefore the shikimate pathway (Figure 5), is
used to produce the aromatic ring of the tocochromanols
(Figure 4). HPP dioxygenase (HPPD) catalyzes the onset of
the actual tocochromanol biosynthesis by converting HPP into
homogentisic acid (HGA) after which the pathway bifurcates
toward the production of tocopherols and tocotrienols through
condensation of two different metabolites bearing the polyprenyl
chains (Figure 5).

The MEP pathway delivers the precursors for the biosynthesis
of prenyl side chains of tocochromanols, as described for
provitamin A biosynthesis (see section “Provitamin A Functions
in planta”). This branch of tocochromanol biosynthesis utilizes
GGPP (geranylgeranyl diphosphate). Interestingly, this product
serves as a substrate of multiple enzymes in biosynthesis of
different metabolites, including carotenoids, gibberellins, and
plastoquinones (Ruiz-Sola et al., 2016). Reduction of GGPP
by geranylgeranyldiphosphate reductase (GGDR) yields phytyl
diphosphate (PPP) (Gramegna et al., 2018). In the absence of
light, PIF3 physically interacts with the promoter of GGDR,
down-regulating its expression. Light activation of phytochromes
prevents that interaction, leading to transcriptional derepression
of the GGDR promotor. The resulting product of GGDR
activity, PPP, can be utilized for both tocopherol and chlorophyll
biosynthesis (Tanaka et al., 1999). Moreover, PPP is recycled from
chlorophyll breakdown, by phytol kinase (VTE5) and phytol-
phosphate kinase (VTE6) (Vom Dorp et al., 2015). This was
revealed by feeding studies in Arabidopsis which demonstrated
the incorporation of labeled phytol in tocopherols in seedlings
(Ischebeck et al., 2006). Notably, in ripening fruit tissues, often
an important source of tocochromanols, recycling of phytol from
chlorophyll breakdown is witnessed to be the predominant PPP
source (Gramegna et al., 2018).

Condensation of PPP and HGA by HGA phytyl
transferase (HPT/VTE2) leads to the formation of 2-methyl-
6-phytylbenzoquinol (MPBQ), a step toward creation of
tocopherols (Sattler et al., 2004). On the other hand, HGA
geranylgeranyl transferase (HGGT) catalyzes the condensation
of GGPP with HGA, yielding 6-geranylgeranyl-benzoquinol
(MGGBQ), leading toward the formation of tocotrienols
(Cahoon et al., 2003; Mène-Saffrané and Pellaud, 2017).
These two benzoquinol products, MPBQ and MGGBQ,
resulting from HGGT and MGGBQ action, giving rise
to tocopherols and tocotrienols, respectively, mark the
branch point of tocopherol/tocotrienol biosynthesis. This
is illustrated by higher accumulation of tocotrienols in
HGGT-overexpressing barley (Hordeum vulgare) lines,
depicting decreased tocopherol levels and therefore relatively
unaltered total tocochromanol levels (Chen et al., 2017).
Downstream reactions follow a similar pattern for both
tocopherols and tocotrienols, as the catalysis is performed
by shared enzymes. Cyclization of MPBQ and MGGBQ
results in δ-tocochromanols (δ-tocopherol and δ-tocotrienol,
respectively), a reaction which is executed by tocopherol cyclase

(TC, VTE1) (Porfirova et al., 2002; Semchuk et al., 2009).
However, MPBQ and MGGBQ can take a different route
by methyltransferase reactions (MPBQMT, VTE3), resulting
in the formation of 2,3-dimethyl-6-phytyl-1,4-benzoquinone
(DMPBQ) and 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinone
(DMGGBQ) (Cheng et al., 2003). Cyclization of these
products by the aforementioned TC results in the formation
of γ-tocochromanols. These γ-tocochromanols and
δ-tocochromanols can thereafter be methylated by γ-tocopherol
methyltransferase (γ-TMT,VTE4) to α-tocochromanols and
β-tocochromanols, respectively (Bergmuller et al., 2003).

Vitamin E Functions in planta
Scavenger of Lipid Peroxyl Radicals
The most important role of vitamin E in vivo is the termination
of a chain reaction of polyunsaturated fatty acid (PUFA) free
radicals generated by lipid oxidation. Hence, they play a vital
role in scavenging lipid peroxyl radicals during germination and
early seedling growth. The detrimental decrease in germination
potential of TC mutants (vte1-1) show they are indispensable
to preserve the viability of seeds during seed quiescence, which
might explain the elevated level of γ-tocopherol in seeds
(Sattler et al., 2004). The upstream biosynthesis mutant vte2,
which lacks the intermediary DMPBQ, displays difficulties in
early seedling development attributable to a decrease in both
synthesis and catabolism of lipids as well as an increase in
lipid oxidation (Sattler et al., 2004). The few vte2 plants that
survive up to the adult stage display no phenotypical differences
from wild type which is explained by a predominant need for
tocopherols during early development when essential carbon
is recruited from lipid catabolism and gluconeogenesis. At
later stages, other antioxidants can mitigate the deficiency of
tocopherol-mediated ROS scavenging. Hence, tocopherols and
its precursors are important to attenuate lipid peroxidation at
specific developmental or stress-related periods (Sattler et al.,
2006).

Antioxidant, Photoprotectant, and Stress Signaling
The antioxidant function of tocopherols is supported by
the ascorbate-glutathione cycle which recycles tocopheroxyl
radicals produced during the reaction of tocopherols with
lipid peroxyl radicals. Moreover, tocochromanols are, albeit
with a lower rate constant than carotenoids, quenchers of
singlet oxygen (1O2) (Kaiser et al., 1990). Up to 120 molecules
of 1O2 can be neutralized by one molecule of α-tocopherol
through resonance energy transfer (Fahrenholtz et al., 1974).
Related to their scavenging capability, tocochromanols have
strong photoprotective properties. When exposing the alga
Chlamydomonas to high light, the inhibition of HPP-dioxygenase
led to decreased levels of α-tocopherol and concomitantly, to the
inactivation of PSII (Trebst et al., 2002). Addition of synthetic,
cell-wall permeable, short-chain tocopherol derivatives could
partly restore photosynthesis, hence tocopherols are implicated
in the maintenance of PSII function, supplemental to the
photoprotective function of NPQ (Trebst et al., 2002; Havaux
et al., 2005; Kruk et al., 2005). Thus, tocochromanols together
with carotenoids and zeaxanthin are the major protectors of PSII
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FIGURE 5 | Biosynthesis pathway of vitamin E. The actual enzymes involved in vitamin E biosynthesis, which occurs in the plastids, are marked in blue. The
corresponding genes encoding the most important enzymes in Arabidopsis thaliana are written in italics. Biosynthesis and salvage links to the other discussed
vitamins, in dark red, are indicated with a double and a dashed arrow, respectively. Filled yellow boxes indicate the inducers, regulating enzymes surrounded by a
yellow square. Tyr, tyrosine; TAT, tyrosine aminotransferase; HPP, p-hydroxyphenylpyruvic acid; HPPD, HPP dioxygenase; PDS1, PHYTOENE DESATURATION1;
HGA, homogentisic acid; GGDR, geranylgeranyl diphosphate reductase; HGGT, geranylgeranyl transferase; HPT, homogentisate phytyltransferase; VTE, VITAMIN E
PATHWAY gene (1–6); GGPP, geranylgeranyl pyrophosphate; PPP, phytyl pyrophosphate; MGGBQ, 6-geranylgeranyl-benzoquinol; MPBQ,
2-methyl-6-phytyl-1,4-benzoquinone; MPBQMT, MPBQ methyltransferase; DMGGBQ, 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinone; DMPBQ,
2,3-dimethyl-6-phytyl-1,4-benzoquinone; TC, tocopherol cyclase; γ-TMT, γ-tocopherol methyltransferase; α-,β-,γ-,δ-toc, α-,β-,γ-,δ-tocopherol; α-,β-,γ-,δ-T3,
α-,β-,γ-,δ-tocotrienol; SA, salicylic acid; ABA, abscisic acid.

against photoinhibition, as they control D1 protein degradation
by scavenging singlet oxygen molecules in PSII, and they also
protect the whole thylakoid membrane against photooxidative
stress, by controlling lipid peroxidation (Trebst et al., 2004).
In young leaves of a carotenoid mutant devoid of zeaxanthin,
high light stress induced accumulation of tocopherols, conferring
tolerance to the mutant, suggesting overlapping functions for
these antioxidants (Havaux et al., 2000; Golan et al., 2006).
Recently, it was found that an oxidation product, tocopherol

quinone, can function as an indicator of oxidative stress,
transforming into a signal for programmed cell death upon severe
stress. Herewith, the plant protects itself from propagation of
stress from the infection point (Li Y. et al., 2008). Moreover,
defense-related genes were expressed at higher levels in vte2
plants in response to an increase in peroxidized lipids, suggesting
that tocopherol plays a role in gene regulation and modulation
of defense responses (Sattler et al., 2006). In this respect,
α-tocopherol was found to be important in the mitigation of
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salt and heavy metal stresses (Jin and Daniell, 2014). In rice,
expression of the VTE1 gene was induced by high salt, H2O2,
drought and cold, while overexpression led to increased tolerance
to salt stress (Ouyang et al., 2011). Conversely, tocopherol
deficient Arabidopsis mutants displayed similar phenotypes as
wild types under most stress conditions (high light, salinity
and drought) applied (Maeda et al., 2006). Hence, in case of
tocopherol shortage, other antioxidants can take over its role in
stress, yet, vitamin E is an additive value in harsh conditions.

Membrane Fluidity and Phloem Transport
Besides their role as lipophilic antioxidant, tocochromanols
also act as important structure-stabilizing agents of membranes
(Wang and Quinn, 1999). Their concentration in the chloroplast
is most probably tightly regulated as a low concentration
of α-tocopherol, comparable with the physiological plastidial
concentration, seemed to have an important effect on membrane
stability during freezing (Hincha, 2008). On that account
tocopherols help, together with other components, to maintain
the fluidity and thus the function of photosynthetic membranes.

Furthermore, tocopherols have been suggested to play a role in
the regulation of photoassimilate export and thus be involved in
carbohydrate metabolism, source-sink relationships and growth
(Sattler et al., 2003; Hofius et al., 2004). In that respect, a
tocopherol cyclase mutant of maize sucrose export defective1
(sxd1) suggested the link between the tocopherol pathway and
carbohydrate metabolism as it accumulated carbohydrates in
leaves (Russin et al., 1996). The same was observed in StSXD1
RNA interference knockdown lines in potato, but surprisingly
not in the vte1 mutant in Arabidopsis, suggesting species-specific
differences to tocopherol reduction or a possible additional
role of tocopherol in signal transduction (Sattler et al., 2003;
Hofius et al., 2004; Li Y. et al., 2008). The biosynthesis
mutants vte2 and, to a lesser extent, vte1 revealed inhibition
of photoassimilated carbon transport at low temperatures and
thus indicated a crucial role of tocopherol in low-temperature
adaptation. Cold, non-freezing conditions resulted in a dramatic
growth reduction and seed production in these mutants due
to structural changes in the phloem parenchyma transfer cells
induced by callose deposition and thus leading to reduced
photoassimilate export. Lipid peroxidation and photoinhibition
were not intensified in vte2, leading to the conclusion that
vitamin E function in phloem transport might be more important
than its photoprotective role. Apparently the intermediate redox-
active DMPBQ can compensate for the absence of tocopherols
as the phenotype of vte1 is not as pronounced as of vte2 (Maeda
et al., 2006).

Vitamin E in Human Health
Function and Onset of Deficiency
As antioxidants, the different E-vitamers play an important role
in neutralizing ROS and inhibiting membrane peroxidation, very
much like they do in plants. Due to their amphipathic character,
they reside in the membranes, where they perform their peroxyl
scavenging function (Brigelius-Flohe, 2009). The main role
of these vitamers is to maintain the integrity of long-chain
polyunsaturated fatty acids, thereby ensuring their bioactivity

(Traber and Atkinson, 2007). Vitamin E deficiency can induce
changes in phospholipid composition of membranes, possibly
leading to reduced fertility (Infante, 1999). Indeed, vitamin E,
together with the micronutrient selenium, has been suggested to
serve as a supplement to treat male infertility (Keskes-Ammar
et al., 2003). Though tocopherols, predominantly α-tocopherols,
are present at higher levels in the human body, significance
of tocotrienols should not be neglected (Sen et al., 2006;
Colombo, 2010). Indeed, tocotrienols have shown to be effective
in inhibiting proliferation of cancers (Aggarwal et al., 2010;
Kannappan et al., 2012), albeit that the ability to impede
tumorigenesis also has been documented for tocopherols (Li
et al., 2011). Vitamin E is also known to have a positive effect
on human health by negatively influencing the occurrence of
atherosclerosis and cardiovascular diseases (Mathur et al., 2015).
Furthermore, vitamin E, α-tocopherol in this case, was shown
to delay the development of Alzheimer’s disease in patients
(Dysken et al., 2014; La Fata et al., 2014). Indeed, vitamin
E deficiency aggravates or even induces neurodegenerative
disorders (Berman and Brodaty, 2004; Wysota et al., 2017).
Hence, vitamin E has been proposed as a therapeutic agent for
Alzheimer’s disease (Ibrahim et al., 2017). Vitamin E deficiency
can impair cognitive functioning, particularly in elderly people
(Ortega et al., 2002), which could be explained by aberrant
brain energy metabolism, also known to be associated with
thiamin deficiency (Sang et al., 2018; Strobbe and Van Der
Straeten, 2018) and phospholipid composition (McDougall et al.,
2017).

Global Vitamin E Status
Vitamin E deficiency, though not often identified as the causative
agent of pathophysiological disorders, is known to be highly
prevalent in different populations. Strikingly, a vast majority
of the US population is characterized by insufficient intake
of dietary α-tocopherol (Maras et al., 2004), the predominant
dietary source of vitamin E (Chun et al., 2006). Assessment
of vitamin E intake in the French and Italian population,
indicated a significant prevalence of suboptimal vitamin E levels
(Polito et al., 2005). Interestingly, vitamin E status of the
Italian population appeared superior compared to the French,
which could be attributed to the typical dietary habits in the
Italian culture (see below). More recently, approximately one-
fourth of the Korean population (in the Seoul metropolitan
area) was found to be vitamin E deficient, based on plasma
α-tocopherol levels (Kim and Cho, 2015). Furthermore, analysis
of blood α-tocopherol levels, confirmed the presence of vitamin
E deficiency in many developing countries (Dror and Allen,
2011).

Sources of Vitamin E
Good plant-based sources of dietary (bioactive) vitamin E,
in some cases interpreted as supply of α-tocopherol, are fat
and oily products such as dried nuts, seeds and almonds
(Maras et al., 2004). Tomatoes, avocadoes, spinach, and olives
deliver a significant portion of vitamin E (Chun et al., 2006).
Though vegetables are generally not a good source of vitamin
E (α-tocopherol), soybean and dark leafy greens do exhibit
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relatively high tocochromanol content. This could explain the
rather high vitamin E status of the Italian population (Polito et al.,
2005), given the consumption of vitamin E-rich vegetable oil in
this region (Huang and Sumpio, 2008). Indeed, the traditional
Mediterranean diet has been associated with health benefits,
similar to vitamin E, such as reduced incidence of cardiovascular
diseases and decreased lipid oxidation (Fito et al., 2007). Starchy,
energy-rich staples on the other hand, can be considered rather
poor contributors to dietary the vitamin E supply (Table 1).

Vitamin E Biofortification
Metabolic Engineering
Biofortification to enhance vitamin E content in different
crops has been successfully deployed over the last decades
(Mène-Saffrané and Pellaud, 2017). To understand the rationale
behind these strategies, one must first consider the different
biological activities of the E-vitamers. As mentioned above,
in many cases, α-tocopherol is considered the most potent,
bioactive E-vitamer, as confirmed in a rat fetal resorption
assay (Bunyan et al., 1961; Mène-Saffrané and Pellaud, 2017).
Interestingly, important vitamin E sources such as vegetable
oils (soybean, corn, canola and palm) contain a high ratio
(up to 10:1) of γ-tocopherol over α-tocopherol (Eitenmiller,
1997). As α-tocopherol was determined to be ten times more
bioactive as compared to γ-tocopherol, the idea arose to
design metabolic engineering approaches shifting this ratio
toward an enhanced relative α-tocopherol content (Shintani
and DellaPenna, 1998). However, this objective needs to be
justified by assessing the bioavailability as well as storage
stability of these vitamers. Indeed, no compelling differences in
bioavailability of these E-vitamers were found (Reboul et al.,
2008; Reboul, 2017). Unfortunately, α-tocopherol appears less
stable in storage, as it reacts faster with peroxy radicals,
confirmed by the higher instability of α-tocopherol compared
to γ-tocopherol in storage of camelina (Camelina sativa) oil
(Abramovic et al., 2007). Although this issue should not be
neglected, the higher bioactivity of the α-tocopherol vitamer
could outweigh this disadvantage. Introduction of a γ-tocopherol
methyltransferase (γ-TMT) (Figure 5) (Tewari et al., 2017),
catalyzing the addition of the required methyl group to form
α-tocopherol from γ-tocopherol (Figures 4, 5), was therefore
conducted. This strategy was proven successful in Arabidopsis,
where the α/γ-tocopherol ratio was completely reversed in
favor of α-tocopherol accumulation in seeds overexpressing the
γ-TMT gene (Shintani and DellaPenna, 1998; Mène-Saffrané and
Pellaud, 2017). This strategy has been implemented in several
crops, including corn (Zhang L. et al., 2013), soybean (Glycine
max) (Arun et al., 2014) and lettuce (Lactuca sativa L.) (Cho
et al., 2005). Theoretically, the biological activity of the crop
vitamin E pool can be increased up to 10-fold by this strategy
(Mène-Saffrané and Pellaud, 2017). In rice endosperm, ectopic
γ-TMT expression yielded no significant change in α-tocopherol
content, explained by low γ-tocopherol levels, yet significantly
altered tocotrienol levels, in favor of α-tocotrienol (Zhang G.Y.
et al., 2013). Interestingly, implementation of this metabolic
engineering approach, yielding higher α-tocopherol content in

alfalfa leaves (Medicago sativa), coincided with a delayed leaf
senescence phenotype as well as enhanced tolerance to osmotic
stress (Jiang et al., 2016). As this strategy does not greatly
influence accumulation of the absolute tocochromanol content,
applicability is confined to crops accumulating higher levels
of E-vitamers with lowered bioactivity, such as γ-tocopherols
and δ-tocopherols. Furthermore, generalization of E-vitamers
into absolute values of ‘bioactivity’ could prove to be difficult.
Indeed, different vitamers could exhibit different potencies in
a whole range of biological functions, but without a single
vitamer being omnipotent. This is indicated by the observed
higher ability of γ-tocopherol to reduce 8-isoprostane [oxidative
stress marker (Elfsmark et al., 2018)] (Jiang et al., 2002;
Jiang and Ames, 2003). Assigning a universal (vitamin E)
bioactivity to a specific vitamer could miss identifying its
full biological potential. Moreover, the typical accumulation of
γ-tocopherols witnessed in seeds (Sattler et al., 2004; Gilliland
et al., 2006) (and therefore contributing to the vitamin E
content of oils), might hint at its physiological importance
in planta. Fortunately, no aberrant growth and fertility have
been reported in the γ-TMT-engineered biofortified crops,
indicating that the altered tocopherol ratio has marginal effects
on plant growth and development (Mène-Saffrané and Pellaud,
2017).

Besides redirection of tocopherol homeostasis toward a
more satisfactory vitamer composition, increase of (absolute)
vitamer content has been tackled in metabolic engineering
approaches (Cahoon et al., 2003). Engineering the HGGT
gene, catalyzing the committed step in tocotrienol biosynthesis
(Figure 5), resulted in an increase in total tocochromanol
content of maize kernels and up to 18-fold enhancement in
tocotrienol accumulation (Dolde and Wang, 2011). Furthermore,
engineering HPPD, a key enzyme in the biosynthesis of
the tocochromanol precursor HGA (Figure 5), generated a
massive accumulation of tocotrienols, provided that prephenate
dehydrogenase (shikimate pathway) was also engineered to
ensure sufficient flux toward tyrosine (Rippert et al., 2004).
Building further on this approach, high tocochromanol
accumulating soybean was created via additional introduction
of HPT and GGDR (see Figure 5) (Karunanandaa et al.,
2005). However, biofortification approaches should not neglect
tocochromanol stability, as vitamin E levels were shown to
halve in freeze-dried fortified apple upon 6 months storage
(Cortes et al., 2009). Further details on the different strategies
employed in biofortification of crops toward higher vitamin
E content have been elaborated by Mène-Saffrané and Pellaud
(2017).

Breeding
From the perspective of plant breeders, an interesting amount
of variation in vitamin E content has been observed in
different agronomical important crops (Mène-Saffrané and
Pellaud, 2017). In rice, total kernel vitamin E content was
found to vary up to threefold in different Malaysia-grown
varieties (Shammugasamy et al., 2015). Similarly, a study in
canola, which is important for oil production and therefore
tocochromanol delivery, identified VTE3 and PDS as important
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determinants of tocopherol content, based on screening of 229
accessions (Fritsche et al., 2012). Moreover, a measured variation
of almost sixfold in maize kernel α-tocopherol content enabled
conducting a GWAS wherein a HGGT gene, a prephenate
dehydratase paralog [participating in tyrosine biosynthesis (El-
Azaz et al., 2016)] and a tocopherol cyclase were recognized
to contribute to tocotrienol content (Lipka et al., 2013). The
same study further confirmed the link between γ-TMT alleles
and α-tocopherol content. Interestingly, more recent GWAS
in maize revealed many significant QTL loci, attributed to
genes harboring novel activities as well as participating outside
the tocopherol pathway (Diepenbrock et al., 2017; Wang
et al., 2018). In conclusion, this is a nice example of GWAS
and assignment of candidate genes to the identified QTLs
to pinpoint potential factors for novel metabolic engineering
approaches.

Tocochromanols: Major Problems and
Future Perspectives
The case of tocochromanols, comprising tocopherols and
tocotrienols, is a good example on how simplifying these distinct
groups of molecules to their collective term ‘vitamin E’ can
be misleading. As previously mentioned, the bioactivity of
E-vitamers is diverse. However, bioactivity alters depending
on which tocochromanol-related process is utilized to
assess it. Moreover, there is no one-to-one relationship
between a certain vitamer and a given function. One could
therefore argue that grouping tocochromanols into one
group of ‘vitamin E’ is incorrect. This notion becomes
more important given the existence of different metabolic
engineering approaches aimed at altering E-vitamer ratios (e.g.,
increasing α-tocopherol/γ-tocopherol ratio) while keeping total
tocochromanol levels intact (γ-TMT-engineering). Similarly,
bioavailability as well as (storage) stability should not be
neglected. Moreover, whether engineering approaches are based
on altering tocochromanol ratio (e.g., via γ-TMT-engineering)
or enhancing total tocochromanol content (e.g., HGGT-
engineering), the impact on plant growth and development
should be closely monitored. Finally, seeds, being an important
target for metabolic engineering approaches, often depict a
typical tocochromanol signature (Sattler et al., 2004), related
to their function therein, which could be disrupted upon
engineering approaches. Future research should therefore
further unravel the in planta role of the different vitamin
E entities. Similarly, the pathophysiological significance
of the different vitamers in humans should be thoroughly
examined.

INTERTWINING OF VITAMIN
METABOLISM AND ITS SIGNIFICANCE
IN MULTI-BIOFORTIFICATION

A simultaneous increase of several micronutrients in a particular
crop/tissue, referred to as multi-biofortification, is a powerful
means to tackle MNM. This strategy aims at obtaining

adequate levels of multiple micronutrients in a single staple
crop, which is massively consumed by the local population
in need. Such endeavor might encounter synergistic but also
potentially detrimental effects, due to micronutrient interactions.
Taking the example of the antioxidant ascorbate, protection of
components sensitive to oxidative damage (e.g., carotenoids)
is expected, thereby contributing to their accumulation as
well as stability upon storage, an advantage which could
also be expected from the combination with vitamin E.
Furthermore, the ascorbate-glutathione pathway is needed in
the ‘detoxification’ of tocopheroxyl radicals in vitamin E
salvage (Szarka et al., 2012). In addition, ascorbate is known
to ameliorate iron uptake in humans (Iqbal et al., 2004).
Consequently, ascorbate biofortified crops could also aid in
combatting iron deficiency indirectly. Similarly, provitamin A
and vitamin E biofortification have shown to be positively
affect one another (Che et al., 2016; Muzhingi et al., 2017).
In the example of biofortified sorghum, the raised level of
vitamin E, obtained by genetic engineering, enhanced provitamin
A stability (Che et al., 2016). Interestingly, a synergistic
interrelationship between ascorbate and vitamin B9 (folates)
has been proposed, justified by their coextensive increase
during germination (Liu et al., 2017). This study also proposes
that folates (vitamin B9) biosynthesis counteracts vitamin
E biosynthesis by its competition for the precursor GTP.
Competition for precursors could prove to have a substantial
influence on vitamin metabolism, considering the fact that
vitamin E biosynthesis requires precursors from shikimate
and MEP pathways, which are also required in the folate
and provitamin A pathways, respectively. Conversely, folates
are proposed to aid in maintaining high ascorbate content,
as they contribute in supplying NADPH to the cell, which
could support adequate ascorbate salvage (Gorelova et al.,
2017; Liu et al., 2017). Moreover, DXS activity, which has
been enhanced in different metabolic engineering approaches
aimed at augmenting plant provitamin A content, requires
active B1 vitamer cofactor (thiamin pyrophosphate) for its
functioning (White et al., 2016) and is also required in the
biosynthesis of tocochromanols. This nicely illustrates how
different vitamins are part of a potentially strong network of
interactions in plant as well as in human metabolism. This
aspect certainly deserves proper consideration upon evaluation
of novel biofortification strategies (Strobbe and Van Der
Straeten, 2018). Furthermore, certain environmental influences
could alter the accumulation of multiple vitamins, illustrated
by the light-dependent accumulation of both provitamin A
and tocochromanols (Cruz et al., 2018; Gramegna et al.,
2018). This aspect can therefore be considered upon setting
light conditions in vertical farming projects (Bantis et al.,
2018).

Last but not least, biofortification could have the beneficial
‘side-effect’ of enhancing tolerance to abiotic stresses, as reported
in metabolic engineering approaches enhancing plant ascorbate
content (Macknight et al., 2017). This is particularly important
given the increased exposure to abiotic stresses, but also to biotic
stresses crops will have to face as a result of climate change
(Cheeseman, 2016).
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CONCLUSION

Vitamin biofortification of food crops holds the potential to
alleviate the global burden of vitamin deficiencies (Blancquaert
et al., 2017; Garcia-Casal et al., 2017; Jiang L. et al., 2017; Martin
and Li, 2017; Van Der Straeten et al., 2017; Garg et al., 2018). In
doing so, staple crops will play a predominant role, as they hold
the impressive capability to deliver cheap calories to populations
in need and have the potential to be nutritionally enhanced
via metabolic engineering or breeding approaches. Both
conventional breeding and metabolic engineering should coexist
in the battle against vitamin deficiencies, thereby reciprocally
strengthening their potential. Molecular breeding techniques
such as GWAS promise to facilitate enhancement of crop
vitamin content whilst uncovering potential new determinants in
vitamin accumulation in the particular crop/tissue, subsequently
applicable in new engineering approaches. In some cases,
downregulation of genes impeding vitamin accumulation is
advised (see provitamin A biofortification). Here, metabolic
engineering strategies utilizing genome-editing techniques
such as the CRISPR/Cas system are promising, especially
considering they might suffer less from regulatory issues
blocking their commercialization (Potrykus, 2017), in cases
where no transgenes are introduced. However, this technology
still faces crop-specific limitations toward the maximal vitamin
enhancement possible. Therefore, a combination with metabolic
engineering strategies employing transgenes, is advisable,
in which CRISPR/Cas technology could still be utilized
to allow specific T-DNA insertion the genome position of
interest.

When using a biofortification approach, several aspects
should be considered, including bioavailability, bioactivity,
stability and impact on crop yield and/or physiology.
Bioavailability, bioactivity and stability can be addressed by

examination of these properties on the specific biofortified
crop, and targeted by specific strategies to confer these
properties to the crop product [e.g., engineering toward
more stable folates in rice (Blancquaert et al., 2015), or
engineering toward more potent α-tocopherol (Shintani and
DellaPenna, 1998)]. Assessment of biofortification interventions
influencing plant physiology (and thereby yield) requires in-
depth analysis and knowledge of micronutrient metabolism
as well as post hoc examination of plant physiology in field
conditions.

Given their potential to provide sufficient micronutrients,
(multi-)biofortified crops are a crucial piece of the puzzle
in eradicating micronutrient deficiencies on a global scale.
Moreover, biofortified crops are already contributing to
sustainable food security in a time of increasing global
demographic pressure and climate change. Last but not least,
they hold great potential to contribute even more to maintaining
a healthy world population into the future, provided that novel
approaches to biofortification are embraced.
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