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Genomic Selection (GS) has allowed the maximization of genetic gains per unit time

in several annual and perennial plant species. However, no GS studies have addressed

Coffea arabica, the most economically important species of the genus Coffea. Therefore,

this study aimed (i) to evaluate the applicability and accuracy of GS in the prediction of the

genomic estimated breeding value (GEBV); (ii) to estimate the genetic parameters; and

(iii) to evaluate the time reduction of the selection cycle by GS in Arabica coffee breeding.

A total of 195 Arabica coffee individuals, belonging to 13 families in generation of F2,

susceptible backcross and resistant backcross, were phenotyped for 18 agronomic

traits, and genotyped with 21,211 SNP molecular markers. Phenotypic data, measured

in 2014, 2015, and 2016, were analyzed by mixed models. GS analyses were performed

by the G-BLUPmethod, using the RKHS (Reproducing Kernel Hilbert Spaces) procedure,

with a Bayesian algorithm. Heritabilities and selective accuracies were estimated,

revealing moderate to high magnitude for most of the traits evaluated. Results of GS

analyses showed the possibility of reducing the cycle time by 50%, maximizing selection

gains per unit time. The effect of marker density on GS analyses was evaluated. Genomic

selection proved to be promising for C. arabica breeding. The agronomic traits presented

high complexity for they are controlled by several QTL and showed low genomic

heritabilities, evidencing the need to incorporate genomic selection methodologies to

the breeding programs of this species.

Keywords: genetic gains, selective efficiency, genomic-enabled prediction accuracy, plant breeding, SNP

molecular marker, complex traits, accelerating improvement

INTRODUCTION

Genetic plant breeding started with the phenotypic selection of individuals that positively stood
out in the segregating populations. In the 1980s, molecular markers were developed and used as
an auxiliary tool to phenotypic information (Soller and Beckmann, 1983). With the evolution of
molecular biology, in the 1990s, the Molecular Marker Assisted Selection (MAS) was proposed
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(Lande and Thompson, 1990), which enabled selecting
individuals with specific alleles. However, MAS has shown
to be inefficient in polygenic and/or low heritability traits
(Bernardo, 2008). This limitation is mainly because molecular
markers, on significant associations with QTL (Quantitative
Trait Loci), are unable to capture genes of lesser effect (Hayes
et al., 2009; Heffner et al., 2009; Xu et al., 2012).

Due to its potential and importance, genome-wide selection
(GS) was developed by Meuwissen et al. (2001), being currently
used in animal and plant studies (Crossa et al., 2010; de los
Campos et al., 2010; Heffner et al., 2010; Jannink et al., 2010;
Ornella et al., 2012; Azevedo Peixoto et al., 2017). The rapid
adoption of this selective technique is due, among other factors,
to the combination of expressive numbers of molecular markers,
widely distributed throughout the species genome, and robust
and accurate statistical methodologies. Therefore, the genetic
value of individuals can be estimated (Longin et al., 2015),
which allows increasing selection gain per unit time (Heffner
et al., 2010). Several studies have demonstrated the high selective
accuracy of GS [Bernardo and Yu, 2007; Wong and Bernardo,
2008; Heffner et al., 2009; Crossa et al., 2010; Davey et al., 2011;
Garcia et al., 2011; Grattapaglia and de Resende, 2011; (Iwata
et al., 2011; Resende et al., 2012b,c; de los Campos et al., 2013;
Gianola, 2013)]. Moreover, GS has been reported as efficient for
polygenic traits and traits with low heritability, high evaluation
cost, and of difficult measurement (Heslot et al., 2015; Poland,
2015).

With the development of NGS (Next Generation Sequencing)
platforms, GS has become a reality for several economically
important species, including annual and perennial plants. The
use of the NGS platforms has made SNP markers (Single
Nucleotide Polymorphisms) economically feasible (Patel et al.,
2015). SNP is the most abundant genetic variation in the
genome (Kwok and Gu, 1999; Ganal et al., 2009) and allows
the identification of polymorphism distributed throughout the
species genome.

The use of SNP molecular markers in GS studies has been
shown to be advantageous for several species. However, the
procedure requires special care for polyploid species, which
have subgenomes with duplicate regions or with high similarity,
such as Coffea arabica species. These species originate from the
natural cross from non-reduced gametes between the diploid
species Coffea canephora and Coffea eugenioides (Lashermes
et al., 1999), whose genomes have highly similar regions (Cenci
et al., 2012). Although C. arabica is a true allotetraploid
(Clarindo and Carvalho, 2008), its meiotic behavior is similar
to that of a diploid with the bivalent formation (Lashermes
et al., 2016). Thus, if the polymorphism detected by the SNP
occurs between these regions of the sub genomes, this marker
will not explain the phenotypic variation observed between
individuals, being not informative (false SNP) (Vidal et al.,
2010). Therefore, this SNP must be eliminated from the data
set (Sant’Ana et al., 2018). Moreover, the objective must be
to achieve the optimal number of molecular markers used to
predict the genetic value of individuals. Excessmarkers associated
with reduced number of observations (genotypes) can lead
to multicollinearity problems. Thus, the analyses must use an

optimal set of informative SNPs, maximizing the predictive
accuracy estimates.

GS has an essential role in perennial plants (Resende et al.,
2012a; Azevedo Peixoto et al., 2017). Despite the economic
importance of C. arabica, no GS work has addressed this species.
Coffee trees have been selected based on biometric analyses that
use mainly phenotypic data of yield and resistance to diseases.
Experiments with perennial species, such as C. arabica, usually
present unbalanced data due to adversities in the field over time.
Therefore, the use of the mixed models methodology, Residual
or Restricted Maximum Likelihood/Best Linear Unbiased
Prediction (REML/BLUP) (Patterson and Thompson, 1971;
Henderson, 1975) has allowed, from phenotypic information,
the accurate, and unbiased prediction of genetic values of
individuals (Resende and Thompson, 2004; Viana et al., 2011;
Barbosa et al., 2012; Ferreira et al., 2012; Pereira et al., 2013;
Corrêa et al., 2015; Spinelli et al., 2015). For coffee, genetic
gains have also been reported using molecular markers in
studies on genetic diversity (Sousa et al., 2017), genetic maps
(Pestana et al., 2015; Moncada et al., 2016), and assisted
selection (Alkimim et al., 2017; Favoretto et al., 2017). However,
due to the complexity and number of genes that control
most of the agronomic traits of this species, GS studies are
promising for they allow estimating the effects of all loci that
explain the genetic variation (Heffner et al., 2009) and the
genomic estimated breeding value (GEBV) (Meuwissen et al.,
2001).

Given the above, this study aimed (i) to evaluate the
applicability and accuracy of GS in the prediction of the GEBV;
(ii) to estimate the genetic parameters; and (iii) to evaluate the
time reduction of the selective cycle by GS in an Arabica coffee
breeding.

MATERIALS AND METHODS

Experimental Conduction
In the experimental area, soil liming and planting fertilization
were performed according to the crop requirement. The
genotypes were planted on February 11, 2011. Plants were
arranged at spacing of 3.0m between rows and 0.7m between
plants. No phytosanitary control method was used against rust,
cercosporiosis, and leaf miner. The experiment was evaluated in
the experimental area of the Department of Plant Pathology of
the Universidade Federal de Viçosa, Brazil (lat. 20◦44′25" S, long.
42◦50′52" W), in 2014, 2015, and 2016.

Genetic Material
From the cross between three parents of the Catuaí group and
three parents of Híbrido de Timor (HdT), which contrast in
relation to resistance to coffee rust, 13 progenies were obtained
from the C. arabica breeding program of Epamig/UFV/Embrapa
(Figure 1). These progenies are resistant backcrosses (BCr),
susceptible backcrosses (BCs), and F2 (Figure 1 and Table 1)
generations. In each progeny, 15 genotypes (repetitions) were
analyzed, totaling 195 individuals.
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FIGURE 1 | Heredogram of the 13 progenies of Coffea arabica from crosses between parents of the Catuaí group and Híbrido de Timor (HdT); C1, C2, and C3,

genotypes Catuaí amarelo IAC 30, IAC 86, and IAC 64, respectively; HdT1, HdT2, and HdT3, genotypes Híbrido de Timor UFV 445-46, UFV 440-10, and UFV 530,

respectively; H1, H2, H3, H4, and H5, hybrids from crosses between the parents Catuaí amarelo and Híbrido de Timor; 1, 3, 5, and 7, progenies of first rust-resistant

backcross generation; 2, 4, 6, 8, and 9, progenies of first rust-resistance backcross generation; 10, 11, 12, and 13, progenies in the F2 generation.

TABLE 1 | Coffea arabica progenies evaluated in 2014, 2015, and 2016 in Viçosa

(Brazil).

Progeny Genotypes Parent 1 Parent 2

BCr 1 1–15 H 419-1 c-17 UFV 445-46

BCs 2 16–30 H 419-1 c-17 UFV 2143-235

BCr 3 31–45 H 514-8 c-387 UFV 440-10

BCs 4 46–60 H 514-8 c-387 UFV 2154-344

BCr 5 61–75 H 514-7 c-364 UFV 440-10

BCs 6 76–90 H 514-7 c-364 UFV 2154-344

BCr 7 91–105 H 419-10 c-214 UFV 445-46

BCs 8 106–120 H 419-10 c-214 UFV 2143-235

BCs 9 121–135 UFV 2148-57 H 513-5 c-14

F2 10 136–150 H 514-8 c-387 –

F2 11 151–165 H 514-7 c-364 –

F2 12 166–180 H 419-10 c-214 –

F2 13 181–195 H 513-5 c-14 –

BCr, first resistant backcross; BCs, first susceptible backcross; F2, generation obtained

by the selfing of F1 hybrids.

Phenotypic Evaluations
The phenotypic evaluations of 18 agronomic traits (11
continuous and seven categorical traits) were performed
(Table 2) in the 195 C. arabica genotypes listed in Table 1, in
2014, 2015, and 2016.

The continuous traits were measured as described in
Table 2. The categorical traits were evaluated by score scales.
Ripening fruit size was evaluated by a score scale ranging
from 1 to 3 (1: small; 2: medium; and 3: large fruits).
Maturation uniformity was evaluated by a score scale ranging
from 1 to 4 (1: uniform; 2: semi-uniform; 3: semi non-
uniform; and 4: non-uniform maturation). Maturation cycle
was evaluated by a score scale ranging from 1 to 5 (1:
early; 2: semi-early; 3: intermediate; 4: semi-late; 5: late cycle).
The incidence of coffee rust, cercosporiosis, and leaf miner
was evaluated using a score scale ranging from 1 to 5, in
which 1 corresponded to genotypes without symptoms and
5 referred to highly susceptible genotypes. Vegetative vigor
was evaluated by a score scale ranging from 1 to 10, in
which 1 was attributed to fully depauperate (depleted) plants

and 10 was assigned to plants with maximum vegetative
vigor.

Genetic Parameters From Phenotypic Data
Thirteen progenies, which were composed of 15 plants
(repetitions), totaling 195 genotypes were evaluated. Phenotypic
data were corrected for years, plots, and years × plots
interactions, from which the selective accuracies (ryy) and
phenotypic heritabilities (h2phen) of the 18 agronomic traits were

estimated. Analyses were performed considering the linear mixed
models (REML/BLUP procedure), implemented in the Selegen-
REML/BLUP software (Resende, 2016). Genetic parameters were
estimated by the individual analysis of the 18 traits, using the
following statistical model:

y = Xu+ Zg +Wp+ Vr + Tb+ Ri+ e

Where:
y is the data vector;
u is the vector of the overall mean in each evaluation year;
g is the vector of progeny effects (random effect);
p is the permanent effects between plants (random effect);
r is the effects between population types (random effect);
b is the effects between plot (random effect);
i is the effects of progenies x years interaction (random effect);
e is the residue vector (random effect).
The uppercase letters represent the incidence matrices for

these effects.

Genomic DNA Extraction
Young and fully expanded leaves of the 195 genotypes were
collected, and the genomic DNA was extracted using the
methodology described by Diniz et al. (2005). The DNA
concentration was verified in the NanoDrop 2000, and its quality
was evaluated in 1% agarose gel.

The DNA concentration of the samples was standardized
and sent to RAPiD GENOMICS, Florida/USA, for probes
construction, sequencing, and identification of SNP molecular
markers (Sousa et al., 2017).
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TABLE 2 | Phenotypic traits evaluated in 2014, 2015, and 2016 in Viçosa (MG).

Traits Type of evaluation

Yield (Y) Liters of fresh cherries harvested per plant

Leaf length (cm) (LL) Measured in the leaf of the third or fourth pair of a plagiotropic branch of the

middle third of the plant (cm)

Leaf width (cm) (LW)

Branch length (cm) (BL) Measured in the plagiotropic branch of the middle third of the plant

Number of reproductive nodes (NRN)

Number of vegetative nodes (NVN)

Total number of fruits (NF)

Fruit volume (FV)

Plant height (cm) (PH) Measured in the orthotropic branch (from the soil surface to the final branch

growth point)

Canopy diameter (cm) (CD) Measured transversely to the planting row, considering the greatest canopy

longest

Stem diameter (cm) (SD) Measured at the stem region of the plant (about 5 cm from the soil surface)

Ripening fruit size (RFS) Evaluated by a score scale ranging from 1 to 3

Maturation uniformity (MU) Evaluated by a score scale ranging from 1 to 4

Maturation cycle (MC) Evaluated by a score scale ranging from 1 to 5

Rust incidence (Rus)

Cercosporiosis incidence (Cer)

Leaf miner infestation (LM)

Vegetative vigor (Vig) Evaluated by a score scale ranging from 1 to 10

Quality Control of Molecular Markers
From 40,000 probes, 10,000 polymorphic probes were selected,
and 21,211 SNP molecular markers were identified. Details on
probes construction and SNPs identification can be obtained
from Sousa et al. (2017). The SNP set was subject to quality
analysis implemented in the Rbio software (Bhering, 2017).
The quality parameters used were CR (Call Rate) and MAF
(Minor Allele Frequency) equal to or higher than 90 and
5%, respectively. The critical level for MAF was obtained
by the equation MAF = 1√

2N
, where N refers to the

number of individuals evaluated. Moreover, to avoid the
occurrence of false SNPs (Vidal et al., 2010) resulting from
the polyploidy of C. arabica, SNPs that had the same genotype
in all individuals, even when polymorphic, were eliminated.
Thus, SNPs without genetic variance among the individuals
that make up the study population were eliminated from the
analysis.

Cross-Validation
Cross-validation is a method used to evaluate the generalization
capacity of a predictive model from a dataset. When applying this
method, the dataset is partitioned intomutually exclusive subsets.
The population, composed of 195 coffee trees, was divided into
13 folds−180 individuals were used for training or estimation of
the predictivemodels and 15 individuals were used for validation.
The process was repeated 13 times so that each part was used once
as a validation set. In the end, the predictive capacity (rgy) of the
GS model obtained by the result of the mean correlation between
the GEBV and the observed phenotypic values was estimated.

Genomic Selection
Genomic selection (GS) analyses were performed using the
G-BLUP method via the RKHS (Reproducing Kernel Hilbert
Spaces) procedure, with the Bayesian algorithm (Gianola, 2006).
The BGLR (Bayesian Generalized Linear Regression) package
(Perez and de los Campos, 2014), implemented in the software
R (R Core Team, 2017), was used.

The general mixed linear model (Resende, 2007, 2008) was
adjusted to estimate the effects of markers, according to the
expression y=Xb+Wm+ e, where y is the vector of phenotypic
observations; b is the vector of fixed effects; m is the vector
of random effects of markers; and e is the vector of random
residue. Uppercase letters represent the incidence matrices for
these effects. The incidence matrix X contains the values 0, 1, and
2 for the number of alleles of the marker (or the so-called QTL)
in a diploid individual. The genomic mixed model equations for
the prediction of m via the G-BLUP method are equivalent to:





X′X X′W

W′X W′W + I
σ 2
e

(σ 2
g /nQ)





[

b̂
m̂

]

=
[

X′
y

W′
y

]

The genomic estimated breeding value (GEBV) of individual j is
given by GEBV =

∑

i wijm̂i, in which Wi is equal to 0, 1, or 2 for
the genotypes mm, Mm, and MM, respectively, for the biallelic
and codominant marker i (SNP); and Wij is the element i of row
j of matrix W, regarding individual j.

Predictive Capacity and Accuracy of GS
The predictive capacity (rgy) is estimated by correlating the
predicted genomic values with the corrected phenotypic values,
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being equivalent to the predictive capacity of the GS to estimate
phenotypes (Resende et al., 2014a).

The accuracy was obtained by the estimator rgg = rgy√
h2
,

in which rgy is the predictive capacity of the GS, and h2 is the
individual heritability (Legarra et al., 2008).

Number of QTL and Individuals
The number of QTL (nQTL) controlling each trait was estimated

by the expression nQTL = (1−r2gg )Nh
2

r2gg
, where rgg is the accuracy of

the GS; N is the number of individuals in the population; and h2

in the individual heritability (Resende et al., 2008). The individual
heritability was estimated by: h2 = σ 2

g /(σ 2
g + σ 2

p + σ 2
r + σ 2

b
+

σ 2
i + σ 2

e ), where σ 2
i is the variance component associated to the i

effect.
The number of individuals (Ni) that must be evaluated to

obtain the desired accuracy was estimated by the expression

Ni = r2gg nQTL

(1−r2gg )h
2 , in which rgg is the accuracy of the GS; nQTL is the

number of QTL controlling each trait; and h2 is the individual
heritability (Resende et al., 2014a).

Markers Density
The effect of the number of markers on the selective accuracy was
evaluated. Predictive accuracy, with a set of markers composed of
different SNP densities, was estimated by the G-BLUP method,
using the RKHS (Reproducing Kernel Hilbert Spaces) procedure
with a Bayesian algorithm (Gianola, 2006). The BGLR package
(Perez and de los Campos, 2014), implemented in the software R
(R Core Team, 2017), was used. These analyses were performed
with a set of markers composed of 1,000; 4,000; 8,000; 12,000;
16,000; 20,000; and 20,477 SNPs selected to representatively
sample the original data set. Cross-validation was performed
using 13 folds.

Selective Efficiency of GS
The selective efficiency of GS (Ef), compared with selection
based on phenotypes alone, was estimated by the expression

Ef = rggLf
ryyLGS

, in which rgg is the selective accuracy of GS;

Lf is the mean time required for the selection cycle based on
phenotypes; ryy is the accuracy of the phenotypic selection;
LGS is the mean time required for the selection cycle based on
GS (Resende et al., 2012d). Efficiency analyses were estimated
considering 24 years to obtain phenotypic accuracies, according
to the mean release time of an Arabica coffee cultivar composed
of four selection cycles, each cycle lasting 6 years. Conversely, the
selective accuracies of GS were estimated considering 12 and 24
years. This 12 year period is the minimum duration for the use of
SNPs, considering four selection cycles, each one totaling 3 years.
Although the application of SNP allows for the selection at the
seed stage, a 3 year cycle was considered since this is the period
required for the coffee trees to reproduce.

RESULTS

Genetic Parameters From Phenotypic Data
Eighteen traits of agronomic importance were analyzed in
195 coffee trees. The individuals make up 13 families, which
were obtained from crosses between parents of the Catuaí
group and Híbrido de Timor (HdT). From the phenotypic
data, heritabilities (h²phen) and selective accuracies (ryy) were
estimated using the mixed model methodology (REML/BLUP)
(Table 3). Stem diameter (SD) had the lowest estimate of h²phen
(0.01); conversely, plant height (PH) and canopy diameter (CD)
showed the highest values for this parameter (0.90). Most of
the evaluated traits presented high magnitude of ryy, with the
exception of SD.

Quality Control of Molecular Markers
Coffee trees, besides being phenotyped, were genotyped with
21,211 SNP markers. After quality analyses, 20,477 SNPs
were selected. The initial set of SNP markers reduced by
3.46% (Figure 2). The most significant reduction (percentage)
in the number of markers was observed on chromosome 4,
corresponding to 14.21%. Markers were widely distributed,
being identified on all chromosomes of coffee. The number of
SNPs per chromosome ranged from 49 (UNIGENE) to 2,804
(chromosome 2), with a mean of 1,575 SNPs per chromosome.

Genomic Heritability
Genomic heritabilities (h2a) were estimated from the predictive
equations of genomic selection. Estimates of h2a ranged from 0.16,
for stem diameter (SD), to 0.46, for number of vegetative nodes
(NVN) and plant height (PH) (Table 3). For all the evaluated
traits, h2a estimates had a standard error equal to or lower than
0.05.

Predictive Capacity and Prediction Bias
Estimates of the predictive capacity (rgy) of the 18 traits ranged
from −0.01 to 0.40, for number of reproductive nodes (NRN)
and canopy diameter (CD), respectively (Table 3). The standard
error of the estimates ranged from 0.17 to 0.34. In addition to
CD, the highest estimates of predictive capacity were observed
for number of vegetative nodes (NVN) and plant height (PH).
Results of h2a and rgy showed a high positive association, with
a correlation coefficient of 88%. Prediction bias estimates (b)
ranged from 0.25 to 1.92 for number of reproductive nodes
(NRN) and number of vegetative nodes (NVN), respectively.
Most of the traits evaluated showed a b estimate close to the unit.
The standard error of these estimates ranged from 0.77 to 3.25.

Selective Accuracy of GS
Selective accuracy estimates obtained with the GS (rgg) are
presented in Table 3. rgg was not estimated for number of
reproductive nodes (NRN) since its predictive capacity estimate
was negative. The estimated rgg values of the other traits ranged
from 0.06, for maturation uniformity (MU) and leaf width (LW),
to 0.61, for canopy diameter (CD). A high correlation was
observed between the estimates of rgg and h2a (82%) and between
rgg and rgy (99%).
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TABLE 3 | Estimate of genetic parameters obtained by mixed model analyses (REML/BLUP), results of the Genome-wide Selection (GS), and estimates of the number of

individuals to obtain a desired selective accuracy (Ni) for 18 morpho-agronomic traits in a Coffea arabica breeding population evaluated in 2014, 2015, and 2016.

REML/BLUP Genomic selection (GS) Number of individuals (Ni)

Trait h2phen ryy h2a sdh rgy sdr b sdb rgg nQTL rggd 0.5 rggd 0.6 rggd 0.7 rggd 0.8 rggd 0.9

Y 0.55 0.74 0.26 0.03 0.13 0.27 1.63 3.01 0.25 751 964 1,626 2,778 5,140 12,326

LL 0.42 0.65 0.29 0.02 0.06 0.23 0.87 2.21 0.12 3,981 4,530 7,644 13,057 24,160 57,935

LW 0.44 0.66 0.32 0.05 0.03 0.25 0.44 2.62 0.06 17,758 18,631 31,440 53,701 99,365 238,281

BL 0.78 0.88 0.41 0.04 0.32 0.34 1.20 1.30 0.50 244 198 335 572 1,058 2,538

NRN 0.49 0.70 0.23 0.02 −0.01 0.21 0.25 3.25 – – – – – – –

NVN 0.44 0.66 0.46 0.04 0.38 0.21 1.92 1.63 0.56 199 143 242 413 765 1,834

NF 0.49 0.70 0.34 0.05 0.14 0.20 1.33 2.10 0.23 1,157 1,134 1,913 3,267 6,046 14,498

FV 0.57 0.76 0.25 0.03 0.11 0.17 1.23 1.90 0.21 1,081 1,418 2,393 4,087 7,562 18,133

PH 0.90 0.95 0.46 0.04 0.38 0.18 1.18 0.77 0.56 202 146 246 420 777 1,864

CD 0.90 0.95 0.45 0.03 0.40 0.22 1.46 0.90 0.61 149 112 189 322 596 1,429

SD 0.01 0.10 0.16 0.01 0.06 0.26 1.14 2.90 0.14 1,658 3,363 5,674 9,692 17,934 4,306

RFS 0.50 0.71 0.36 0.04 0.23 0.24 1.52 2.01 0.39 394 370 624 1,066 1,973 4,730

MU 0.30 0.55 0.28 0.03 0.03 0.27 0.62 3.13 0.06 14,775 17,841 30,107 51,424 95,152 228,177

MC 0.72 0.85 0.31 0.05 0.12 0.19 1.31 2.15 0.21 1,313 1,434 2,421 4,134 7,650 18,345

Rus 0.61 0.78 0.31 0.04 0.26 0.22 1.50 1.34 0.46 221 237 40 684 1,265 3,033

Cer 0.38 0.62 0.44 0.05 0.31 0.30 1.45 1.55 0.47 304 231 390 666 1,233 2,957

LM 0.30 0.55 0.30 0.04 0.18 0.24 1.34 1.71 0.33 476 536 904 1,544 2,858 6,852

Vig 0.70 0.84 0.34 0.04 0.21 0.19 1.38 1.39 0.36 440 437 738 1,260 2,332 5,592

h2phen, heritability estimated from phenotypic data; ryy , accuracy of the selection obtained by the REML/BLUP method estimated from phenotypic data; h2a , genomic heritability; sdh,

standard error of the h2a estimates; rgy , predictive capacity of GS; sdr , standard error of the rgy estimates; b, prediction bias; sdb, standard error of the b estimates; rgg, selective

accuracy of GS; nQTL, estimate of the number of QTL controlling the trait; rggd , desired selective accuracy; Ni, number of individuals evaluated to obtain a desired rggd ; Y, yield; LL, leaf

length; LW, leaf width; BL, plagiotropic branch length; NRN, number of reproductive nodes; NVN, number of vegetative nodes; NF, number of fruits per plagiotropic branch; FV, fruits

volume per plagiotropic branch; PH, plant height; CD, canopy diameter; SD, stem diameter; RFS, ripening fruits size; MU, maturation uniformity; MC, maturation cycle; rus, incidence

of rust; Cer, Incidence of cercosporiosis; LM, leaf miner infestation; Vig, vegetative vigor.

FIGURE 2 | SNP molecular markers distributed throughout the UNIGENES from the EST sequences of Coffea arabica and the 11 chromosomes and the

“chromosome 0” of Coffea canephora. “Chromosome 0” consists of a set of non-ordered sequence scaffolds (Denoeud et al., 2014).

Number of QTL
The number of QTL that controlled the trait (nQTL) ranged
from 149 to 17,758 for canopy diameter (CD) and leaf width

(LW), respectively (Table 3). The agronomic traits showed to be
controlled by a large number of QTL. The nQTL estimated for
grain yield and coffee rust incidence, which are the main traits in
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a coffee breeding program, were 751 and 221, respectively. These
results showed an inversely proportional relationship between
selective accuracy (rgg) and number of QTL.

Number of Individuals to Obtain a Desired
Selective Accuracy
The estimate of the number of individuals (Ni) required to obtain
a desired selective accuracy (rggd) is presented in Table 3. Results
confirm the requirement of the evaluation of more individuals
when high rggd estimates are intended. Based on the data, 322–
53.701 of individuals should be evaluated for canopy diameter
(CD) and leaf width (LW), respectively, to obtain a selective
accuracy estimate of 0.7, considered as of high magnitude
(Resende and Duarte, 2007). For most of the traits, more than
1,000 individuals must be evaluated to obtain rggd equal to 0.7.

Markers Density
GS predictive analyses using different marker densities, in
general, evidenced the increase in selective accuracy (rgg) when
using a larger number of SNPs (Table 4). However, when the
optimal number of markers was reached, which maximizes the
rgg estimates, selective accuracies decreased with the increase in
the number of markers.

Efficiency of GS
The efficiency of GS analysis in relation to phenotypic selection
is presented in Table 4. The GS analysis was not performed
for number of reproductive nodes (NRN) since the estimate
its predictive capacity was close to zero (Table 3). Results
demonstrated the possibility of reducing the cycle time by 50%.
In nine traits, GS wasmore efficient than the phenotypic selection
when reducing the selection cycle time from 24 to 12 years,
including coffee rust incidence (Rus), cercosporiosis incidence
(Cer), and leaf miner infestation (LM).

DISCUSSION

Genetic Parameters From Phenotypic Data
Heritabilities (h2phen) and selective accuracies (ryy) of 18 coffee

trees agronomic traits were estimated from phenotypic data. The
magnitude of the h2phen estimates for most traits was considered

as from intermediate to high. Heritability represents how much
of the phenotypic variation is due to genetic influences (Krueger
et al., 2008). Traits with lower heritability are usually controlled
by more genes, and therefore, the selection is more complex.
In general, the traits evaluated showed ryy of high magnitude.
Accuracy depends mainly on the ratio between the mean residual
variation and the genotype variation. In its turn, the mean
residual variation depends on the number of replications and
the control when conducting the experiments (Resende and
Duarte, 2007). Selective accuracy reflects the quality of the
information and approaches used in genetic values prediction.
This measure is associated with the precision of selection and
refers to the correlation between predicted genetic values and true
genetic values of individuals. The higher the selective accuracy
in the evaluation of an individual, the higher is the evaluation
confidence and genetic value predicted for the individual.

For non-normally distributed traits such as Ripening fruit
size (evaluated by a score scale ranging from only 1 to 3) or
Maturation uniformity (1–4), the technique called Generalized
Linear Model should be used. This was done and the results
did not differ so much from those got by using the standard
procedure of Linear Mixed Model. This is in line with theory,
which preconizes that the higher the number of score scale
classes, the smaller the benefit from using the Generalized
Linear Model technique. For small class numbers, the expected
theoretical benefits are below 10%.

Quality Control of Molecular Markers
The coffee trees belonging to breeding populations were
genotyped. More than 20,000 SNPs were identified, which were
widely distributed in the genome and all coffee chromosomes.
This number of identified SNPs is higher than those that have
been published so far. From expressed sequence tag (EST) of
C. arabica, C. canephora, and C. racemosa, 7,538 SNPs were
identified, and 180 were selected for validation in C. arabica
and C. canephora accessions from Puerto Rico (Zhou et al.,
2016). In another work, 952 SNPs were located on a genetic
map of C. arabica (Moncada et al., 2016). From Ethiopian C.
arabica collection and some Brazilian cultivars, 6,696 SNPs were
identified and 2,587 with quality were selected for Genome-wide
association studies (GWAS) (Sant’Ana et al., 2018).

Genomic Heritability
From the information of the GS predictive equations, genomic
heritability (h2a) were estimated, showing low or moderate
magnitudes and a standard error equal to or lower than 0.05.
Traits with low heritability are expected to present lower
predictive capacity (Legarra et al., 2008). Heritability estimate
allows predicting the progress to be obtained with the selection.
The lower the heritability of the trait, the more complex is the
selection of traits, and consequently, the lower is the capacity
to correctly predict phenotypes of individuals not sampled for
model computation. This fact was demonstrated in simulations
by Grattapaglia and de Resende (2011), who verified that the
increase in the heritability of the trait leads to an increase in the
accuracy of the GS.

Predictive Capacity
The correlation coefficient or predictive capacity (rgy) and the
regression coefficient or prediction bias (b), associated with
observed phenotypic values and predicted genetic values, are
practical measures of the ability of the methods to make accurate
and unbiased predictions, respectively (Resende et al., 2014b).
The results for h2a and rgy showed a high positive association,
with a correlation coefficient of 88%. As observed in this work,
the association between predictive capacity and heritability has
been reported by other researchers (Cavalcanti et al., 2012; Gois
et al., 2016). Prediction bias for most of the evaluated traits
showed a b estimate close to the unit. This result indicates that the
prediction was unbiased and therefore effective in predicting the
true magnitudes of the differences between individuals (Resende
et al., 2012a).
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TABLE 4 | Selective accuracy estimated from different densities of SNP markers and efficiency of genome-wide selection (GS) in relation to phenotypic selection in a

Coffea arabica breeding population.

TRAIT Number of SNPa Years for GS analysisb

1.000 4.000 8.000 12.000 16.000 20.000 20.477 12 24

Y -0.08 0.10 0.21 0.25 0.27 0.26 0.25 0.68 0.34

LL 0.14 0.18 0.22 0.07 0.12 0.16 0.12 0.37 0.18

LW 0.00 0.26 0.11 0.27 0.22 0.19 0.06 0.18 0.09

BL 0.42 0.44 0.50 0.51 0.51 0.56 0.50 1.13 0.56

NRN 0.03 0.04 −0.07 0.12 0.09 0.06 −0.01 – –

NVN 0.44 0.33 0.43 0.44 0.46 0.50 0.56 1.68 0.84

NF 0.08 0.18 0.29 0.33 0.27 0.25 0.23 0.67 0.33

FV 0.23 0.27 0.30 0.24 0.21 0.19 0.21 0.55 0.28

PH 0.56 0.48 0.58 0.57 0.48 0.54 0.56 1.17 0.59

CD 0.37 0.48 0.52 0.58 0.59 0.57 0.61 1.28 0.64

SD −0.03 0.14 0.16 −0.04 −0.02 −0.05 0.14 2.77 1.38

RFS 0.33 0.47 0.30 0.40 0.31 0.36 0.39 1.09 0.54

MU 0.07 0.15 0.17 0.09 0.01 0.25 0.06 0.22 0.11

MC −0.07 0.11 0.01 0.27 0.10 0.18 0.21 0.49 0.25

Rus 0.19 0.42 0.40 0.24 0.24 0.38 0.46 1.18 0.59

Cer 0.39 0.37 0.35 0.36 0.41 0.44 0.47 1.52 0.76

LM 0.23 0.28 0.23 0.23 0.27 0.26 0.33 1.20 0.60

Vig 0.27 0.46 0.43 0.37 0.49 0.37 0.36 0.86 0.43

aSelective accuracy estimated from different densities of SNP markers; bEfficiency of genome-wide selection (GS) in relation to phenotypic selection; Y, yield; LL, leaf length; LW, leaf

width; BL, plagiotropic branch length; NRN, number of reproductive nodes; NVN, number of vegetative nodes; NF, number of fruits per plagiotropic branch; FV, fruits volume per

plagiotropic branch; PH, plant height; CD, canopy diameter; SD, stem diameter; RFS, ripening fruits size; MU, Maturation uniformity; MC, Maturation cycle; Rus, Incidence of rust; Cer,

Incidence of cercosporiosis; LM, Leaf miner infestation; Vig, Vegetative vigor.

Selective Accuracy of GS
The selective accuracy estimates of GS (rgg) were of low to
moderate magnitude (Resende and Duarte, 2007). Selective
accuracy (rgg) refers to the correlation between the true genotypic
value of the genetic treatment and that estimated or predicted
from the phenotypic information (Gois et al., 2016). The
adequate rgg values are close to the unit. The lower the
absolute deviations between the parametric genetic values and
the estimated or predicted genetic values, the higher is the
accuracy (Resende and Duarte, 2007). The value of this measure
indicates how accurate the model is in estimating the GEBV.

The low magnitudes of rgg observed in some traits can
be explained by the reduced population size and, mainly, by
the effective population size. However, for being a perennial
species with a high maintenance cost, an increase in the
population sizemay hinder the breeding program. In studies with
wheat populations, the increase in population size increased the
selective accuracies estimates (Heffner et al., 2011a,b).

A high correlation was observed between the estimates of rgg
and h2a (82%). A positive correlation between selective accuracy
and heritability has also been reported for yellow rust and stem
rust in wheat (Ornella et al., 2012).

The success of genomic selection is influenced by several
factors, which consequently interfere with the selective accuracy
of a GS model, such as the training population size, the actual

population size, markers density, trait heritability, and number

of QTL controlling the traits (Grattapaglia and de Resende,
2011; Desta and Ortiz, 2014). Among these factors, heritability
and number of QTL controlling the trait are inherent to the
genetic architecture of the trait (Resende et al., 2014b). Moreover,
the genetic structure of the population may influence genomic
predictions (Zhang et al., 2010; Li et al., 2014; Wang et al.,
2014). In this sense, the different allelic frequencies between
subpopulations can produce false associations betweenmolecular
and phenotypic data (Price et al., 2010) and thus overestimate
heritability and reduce selective accuracy (Riedelsheimer et al.,
2012; Wray et al., 2013).

Number of QTL
The traits evaluated presented large numbers of QTL (nQTL). An
inversely proportional relation was observed between nQTL and
selective accuracy (rgg). This fact can be justified by the increase
in the predictive complexity in function of the larger number
of genes controlling the trait. When several genes affect a trait,
their effects are usually small, and, consequently, the accurate
estimation is challenging (Goddard, 2009). This phenomenon
evidences the importance of using high-density SNP markers
in the predictive analyses, aiming to identify SNP in linkage
disequilibrium with all the QTL controlling the traits of interest.
Studies with forest species (Grattapaglia and de Resende, 2011;
Iwata et al., 2011) and maize (Riedelsheimer et al., 2012) revealed

Frontiers in Plant Science | www.frontiersin.org 8 January 2019 | Volume 9 | Article 1934

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Sousa et al. Genomic Selection in Coffea arabica

no relationship between the number of QTL and the phenotypic
or genotypic accuracy.

Number of Individuals to Obtain a Desired
Selective Accuracy
Most of the analyzes traits required the evaluation of more than
1,000 individuals to obtain a selective accuracy of 0.7, considered
by Resende and Duarte (2007) as of high magnitude. The larger
the number of individuals genotyped, the more reliable estimates
of the SNPs effects are obtained since each individual is a is a
repetition.

Markers Density
The results of the predictive analyses using different markers
densities revealed the increase in the selective accuracy (rgg) with
the increase in the number of SNPs. The increase in the markers
density guarantees the conservation of marker-QTL associations
and allows obtaining high selective accuracies (Desta and Ortiz,
2014). Marker density is determined primarily by the extent of
the linkage disequilibrium (LD) and sample size. Therefore, if the
number of markers used is reduced, the population size should be
increased (Grattapaglia and de Resende, 2011). However, when
the optimal number of markers was reached, which maximizes
the rgg estimates, the selective accuracy decreased with the
increase in the number of markers. Results were similar to
those of other researchers (Fernando et al., 2007; Cavalcanti
et al., 2012), where the increase in the number of markers did
not show a linear relationship with the accuracy of the GS.
Studies with simulated data have demonstrated that the use of
a large number of markers led to a reduction in the limitation
imposed by the small size of the training population (Resende,
2008).

Efficiency of the GS
The results of the efficiency of the GS in relation to phenotypic
selection showed the possibility of reducing the selection cycle
time by 50% for nine evaluated traits. This reduction allows the
breeders to maximize the genetic gains per unit time, besides
early selection (Asoro et al., 2013; Simeão Resende et al., 2014;
Yabe et al., 2018). By applying this strategy, breeders will be
able to eliminate undesirable genotypes and focus efforts on
potential genotypes, and therefore reduce maintenance costs for
breeding populations in the field. The fact that selection based
on phenotypic data is more efficient than genomic selection
for some traits can be explained by the number of evaluated
genotypes.

Genomic selection uses much more information on parentage
than phenotypic selection, which is based on pedigree. Then
genomic heritability and accuracy of genomic selection can
sometimes be higher than those parameters from phenotypic
selection. And this can be explained by the many more genetic
relationship in the G (the genomic relationship matrix) than in
A (the genetic relationship matrix based on genealogy). This
increase in the amount of information by using the genomic
matrix G can, sometimes, lead to better and more precise
estimations, and predictions. This fact can explain the differences

between the results from genomic and phenotypic approaches
observed in our paper. Another aspect is referring to the ability
of SNPs to capture causal variants associated to the traits. Some
markers are more informative for some traits than for others.
This can explain the different behaviors presented by the different
traits.

PERSPECTIVES ON THE USE OF GS IN
COFFEA ARABICA

With globalization and a significant increase in the world’s
population, the demand for techniques to assist breeders in
the development of new cultivars has intensified. In this sense,
the elucidation and use of genomic information, including
GS studies, allows the access to genetic information, which is
potentially useful for coffee breeding programs. The increased
knowledge of the genetic variation in breeding populations
will reduce the time and resources intended to development a
new cultivar. Moreover, it will enable the selection of breeding
lines/cultivars of superior quality, which are more adapted and
productive.

CONCLUSION

Genome-wide selection proved to be promising for C. arabica
breeding for reducing the selection cycle time. Agronomic
traits are highly complex; they are controlled by several QTL,
and present low genomic heritabilities, evidencing the need to
incorporate genomic selection methodologies in the breeding
programs of this species.
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