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Motivation: Pentatricopeptide repeat (PPR) is a triangular pentapeptide repeat domain
that plays a vital role in plant growth. In this study, we seek to identify PPR coding genes
and proteins using a mixture of feature extraction methods. We use four single feature
extraction methods focusing on the sequence, physical, and chemical properties as well
as the amino acid composition, and mix the features. The Max-Relevant-Max-Distance
(MRMD) technique is applied to reduce the feature dimension. Classification uses the
random forest, J48, and naive Bayes with 10-fold cross-validation.

Results: Combining two of the feature extraction methods with the random forest
classifier produces the highest area under the curve of 0.9848. Using MRMD to reduce
the dimension improves this metric for J48 and naive Bayes, but has little effect on the
random forest results.

Availability and Implementation: The webserver is available at: http://server.malab.
cn/MixedPPR/index.jsp.

Keywords: pentatricopeptide repeat, mixed feature extraction methods, maximum relevant maximum distance,
random forest, J48, naive bayes

INTRODUCTION

Pentatricopeptide repeat (PPR) proteins include tandem repeats of degenerate 35-amino-acid
motifs (PPR motifs) (Chen et al., 2018; Rojas et al., 2018). They form a class of nuclear-encoded
proteins arranged in series by multiple repeating units (Li and Jiang, 2018). PPR proteins play a
vital role in plant growth and development, and are widely found in eukaryotes and terrestrial
plants (Ruida et al., 2013; Wang et al., 2018a). The majority of PPR proteins have mitochondrial
or chloroplast localization sequences at the N-terminus, making them an ideal model for studying
plant cytoplasmic and nuclear interactions (Wang et al., 2008b). Because of the importance of PPR,
this study uses machine learning methods to predict sequences in this class of protein.

As PPRs are proteins, protein prediction methods are applicable to PPR. To predict proteins,
some algorithm must be employed to extract features from the sequences. With the development
of bioinformatics, many feature extraction methods have been developed. The extraction methods
are divided into two categories. Based on amino acid composition, only consider the sequence
information and the properties of the amino acids. The second, based on protein structure,
considers both sequence information and spatial structure information. The N-gram model is a
probabilistic language model based on the Markov assumption (Zhu et al., 2015; Lai et al., 2017;
Wei et al., 2017a). Chou et al. (Chou, 2010) proposed a method based on the pseudo amino acid
composition (Pse-AAC) that has since been used to predict various protein attributes, such as
structural class (Sahu and Panda, 2010; Zhu et al., 2018), subcellular location (Wang et al., 2008b;
Yang et al., 2016), essential protein (Sarangi et al., 2013), protein secondary structural content
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(Chen et al., 2009), T-cell epitope (Zhang et al., 2015), and
protein remote homology (Liu et al, 2013, 2015a, 2016a).
Liu et al. (2014) enhanced this method by reducing the
amino acid alphabet profile, and proposed the physicochemical
distance transformation (PDT) (Liu et al, 2012), which is
similar to PseAAC. The position-specific scoring matrix (PSSM)
(Jones, 1999; Kong et al., 2017) contains abundant evolutionary
information and is generated by the Position-Specific Iterated
Basic Local Alignment Search Tool (PSI-BLAST) (Altschul and
Koonin, 1998; Altschul et al., 1998). Kumar et al. (2007) were
able to extract features according to amino acid or dipeptide
composition, PSSM, and four-part amino acid compositions.
Classifiers such as support vector machines, random forests, and
artificial neural networks can be applied to the extracted features.

In this study, four feature extraction methods and three
classifiers are used to predict PPR proteins. The four feature
extraction methods not only consider sequence information, but
also include the properties of amino acids. We combine these
feature extraction methods, and then use the Max-Relevance-
Max-Distance (MRMD) method to reduce the dimension. The
overall process is shown in Figure 1.

METHODS

Dataset

For this study, a dataset was extracted from UniPort using the
key word “pentatricopeptide repeat” to search the sequences.
This search produced 534 reviewed samples, which we used as
the positive set. Based on this positive set, we then constructed
a negative set as follows. First, we found the Uniport ID of
proteins, which have the following symbol: |. Second, we used the
Uniport ID to query the proteins’ PFAM family. Each sequence
belongs to a PFAM family, and similar sequences belong to the
same family. After finding all the PFAM families of the PPR
positive samples, duplicate PFAM families were deleted to obtain
a non-repeating positive family set. We then deleted the positive
samples in all families, leaving a set of negative families. Finally,
we used the longest protein sequence in each negative family as
the negative samples. From the above steps, we obtained 21,960
negative sequences. As some sequences may be redundant, we
used CD-HIT (Fu et al., 2012) to reduce the data with a threshold
of 0.7 and deleted sequences that included illegal characters. The
final dataset contained 487 positive samples and 9,590 negative
samples.

To overcome this imbalance in the dataset, we randomly
extracted 10 sets of negative samples, and averaged the results
of 10 experiments using these 10 sets. Among the negative
sequences, the longest had 35,214 amino acids and the shortest
had 11 amino acids. The positive sequences ranged from 196
to 1,863 amino acids in length. Thus, we divided the negative
samples into four parts according to their length, and extracted
487 sequences from these four parts in proportion.

Feature Extraction Methods

Based on Sequence, Physical, and Chemical
Properties

This method can extract 188 features (hereinafter referred to as
188D) covering sequence information and amino acid properties

Positive samples
Negative samples

( ACC ) [ Kmer )

Feature Extraction Methods

Combine the
features

ixed Feature Extraction Methods

imensionality NO
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FIGURE 1 | Overall process of the method described in this paper.

(Zhang et al.,, 2012; Song et al., 2014; Xu et al., 2014). The first
20 features are the frequency of 20 amino acids in the protein
sequence. Furthermore, the content, distribution, and dipeptide
composition are essential in protein predictions (Song et al.,
2014). We divided the 20 amino acids into three groups according
to their properties which were shown in Figure 2.

The amino acids were divided into three groups according to
their properties, and then we calculated the proportion of the
three groups in the sequences for eight properties, giving 3 x 8
= 24 features to be extracted (Cai et al., 2003; Lin et al., 2013).
Next, we identified the distribution of the three groups of amino
acids at five positions (beginning, 25, 50, 75, and end), giving
a further 3 x 5 x 8 = 120 features to be extracted (Cai et al.,
2003). Finally, we calculated the number of the three types of
dipeptides containing two amino acids from different groups,
so another 3 x 8 = 24 features will be extracted. Therefore,
the algorithm produces 20 + 24 + 120 + 24 = 188 features
(Lin et al., 2013).
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FIGURE 2 | Three groups of amino acids divided according to properties.
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FIGURE 3 | Comparison of AUCs among the four feature extraction methods and three classifiers.

Pse-in-One

The other three methods are implemented by Pse-in-one, which
was proposed by Liu (Liu et al., 2015b) and BioSeq-Analysis (Liu,
2018). We briefly introduce these methods in this section.

Kmer

Similar to the N-gram model, kmer extracts features using the
amino acid spacer. This method uses the frequency of k adjacent
amino acid fragments to reflect the sequence composition of the
protein. Since there are 20 possibilities for each position, 20
features can be extracted. For example, when k = 2, the feature
is the frequency of amino acid fragments that have two amino

acids in the sequence. It can be expressed as follows (Liu et al.,
2008):

kmer

kmer fkmer
Jook

Frmer =

Auto-cross covariance

The auto-cross covariance (ACC) transforms the protein
sequence to a certain length by measuring the relationship
between any two properties of the amino acids (Dong et al., 2009).
ACC includes two parts: the auto covariance (AC) calculates
the relevance of the same property between two residues along
sequence intervals of length Ig (Dong et al, 2009), and the
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cross-covariance (CC) measures the differences between two
properties (Guo et al., 2008). For a protein sequence P, the
transformation can be written as (Liu et al., 2016b):

= [‘pla(pZ’ T "pN*lg]T

where N represents the number of amino acid properties and ¢,
is calculated as (Liu et al., 2016¢):

L-lg

1 _ _
on = AC (i, lg) = m E (Si,j - Si)(si,j+lg - S
j=1

CC transforms the sequence to the vector set:

P =0, ,</?N*(N—1)*lg]T

and then calculates (Guo et al., 2008):

L-lg

1 _ __
CC (il,i2,1g) = N—Tg Z (Sinj — Si1)(Sizjtg — Siz)
=1

N

where i denotes the residues, L represents the length of the

sequence, S;; is the score of the j-th amino acid with respect to the

i-th property, and S; is the average score for i along the sequence.
In this study, we selected three properties and set Ig = 2.

Parallel correlation pseudo amino acid composition
Parallel correlation pseudo amino acid composition (PC-Pse-
AAC) considers composition, properties, and sequence orders
(Chou, 2010; Xiao and Chou, 2011).

We consider a protein sequence P containing L amino acids.
The sequence can be represented by 20 + A features as:

T
FVpseacc = [%1, X2, - > X2042]

where A is a distance parameter that reflects the effect of the
amino acid sequence-order (Pan G. et al., 2018).

The first 20 features are the frequencies at which 20 amino
acids appear in the sequence. The other features are given by (Mei
and Zhao, 2018):

YLFeML A

O = e (k=)
T
® (AirAi+k) = Z I (A ) - I 1+k))
I/ (A — 20 I (Rn)
jy = A Znm

(Rm)

\/Zk 1 I] (Rk) Z

where A; represents the i-th amino acid in the protein sequence,

and k denotes the distance between two amino acids along

the protein sequences. T is the number of physicochemical

properties, and I; (A;) is the j-th property of A;. Ij’ (A;) indicates

the original physicochemical property score of amino acid A;

with respect to property j, and R, represents the 20 amino acids.
In this study, we selected three properties and set A = 2.

Mixed Feature Extraction Methods

The Max-Relevance-Max-Distance (MRMD) (Zou et al., 2016;
Qu et al., 2017; Wei et al., 2017b) technique was used to reduce
the dimension. We used the Pearson correlation coefficient
(PCC) to measure the relevance and the Euclidean distance
function to identify instances of redundancy.

The PCC can calculate continuous variables and is easy to
implement. Therefore, the PCC (Ahlgren et al., 2014) was used to
measure the relationship between the features and the target class
in the MRMD feature dimension reduction method. The formula
for the PCC is (Zou et al., 2016):

1 —N _ _
= o1 k=1 Ok = X) (k= ¥)

PCC( ,Y)
\/N 1Zk 1 k=) \/N 1Zk 1(xk—x)

- - =
where x; represents the kth element in X, and X, Y are
vectors composed of each instance’s features. Thus, the maximum
relevance of the ith feature is:

- =
max MR; = |PCC(F1‘, Ci) |

The Euclidean distance is given by:

max MD; =

We selected features according to:
max(MR; + MD;)

As the PCC increases, the relationship between the features and
the target classes becomes stronger. The greater the distance
between features, the less redundancy exists in the vectors. The
final feature set created by this method has less redundancy and
greater correlation with the target set (Xu et al., 2016, 2018; Jiang
etal, 2017; Wei et al., 2017¢).

FEATURE SELECTION METHOD

Classifiers

We used three classifiers in this study: random forest (RF), naive
Bayes (NB), and J48. The classifiers can be implemented in
WEKA, which is based on the Java environment.

J48

The J48 method is a decision tree algorithm based on C4.5
(Mohasseb et al., 2018). Decision trees (Quinlan, 1986) are a
graphical approach using probability analysis. J48 is a kind of
supervised learning, whereby each sample has a set of attributes
and a predetermined label. By learning about the samples, a
classifier can be taught to generate classification results for new
instances (Rondovic et al., 2019).
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In each step, decision trees select an attribute to split. Ideally,
the optimal attribute should be selected so that the samples
included in the branch nodes of the decision tree belong to the
same class (Kothandan and Biswas, 2016; Zhong et al., 2018).
The selection of attributes is an important problem, and many
methods have been derived for this purpose, such as information
gain, and information gain ratio. The C4.5 method uses the
information gain ratio to select which attributes to split.

Random Forest

Ensemble learning is an effective technique that has been applied
to many fields of bioinformatics (Li et al., 2016; Liu et al., 2016d,
2018; Zhang et al., 2016a; Tang et al., 2017; Pan Y. et al., 2018;
Wang H. et al,, 2018; Wei et al,, 2018a,b). The RF approach
(Wang S. P. et al., 2018) is an ensemble learning method that
employs many decision trees, with the output result dependent
on “votes” cast by each tree. The construction process is as
follows.

First, we determine the quantity of decision trees (m), the
depth of each tree (d), and the number of features (f) used by each
node. Then, n samples are selected at random from the samples
set. In addition, f features are randomly selected, and the selected
samples use these features to build decision trees. This step is
repeated m times to give m decision trees, forming the random
forest. Each decision tree classifies each sample, so each decision
tree outputs a value. For classification problems, the final result
is the class that has the most votes. For regression problems, the
final result is the average of the output of all decision trees (Song
etal., 2017).

Naive Bayes

NB (Rajaraman and Chokkalingam, 2014; Deng and Chen, 2015)
is a classical classifier based on conditional probability. The most
important component of NB is the Bayesian rule, which is given
by (Yu et al,, 2015):

p (A|B)) p(B))
Yoi1p (A|B)) p(B))

where p (Bj|A) represents the conditional probability of event
B; occurring under event A. p(B;) is the marginal probability of
independent event B;.

The classification principle is that use the Bayesian rule to
calculate the posterior probability of an object based on its prior
probability, and then select the class with the largest posterior
probability as the class to which the object belongs. In this
method, all features are statistically independent. So according to
the above formula, we can get the following formula:

p(BilA) =

PO, pily)
p(y‘-xlr ,Xn) - p(xl)p(x2)~~~p(_xn)

Then, the above formula can be converted into:
y =arg max PO | [ pxily)
i=1

Where, y represents class variables and x; represents features.
represents the predicted class.

Measurement

As we have an imbalanced dataset, we use the area under the
receiver operating characteristic (ROC) curve (AUC) and the
F-Measure to evaluate the performance of the classifiers.

The abscissa of the ROC curve is the false positive rate (FPR),
and the ordinate is the true positive rate (TPR). AUC is the area
under the ROC curve, which always has a value of less than one
(Lobo et al., 2010; Pan et al., 2017; Wei et al., 2018d). As the ROC
curve is generally above the straight line y = x, the value of AUC
tends to be greater than 0.5 (Fawcett, 2005). The larger the value
of AUC, the better the classification performance.

The F-measure (Nan et al, 2012) is a weighted harmonic
average of precision and recall. This metric, which is often used
to evaluate the quality of classification models, is computed as
follows:

. TP
precision = ——
TP + FP

TP
recall = ———
TP + FN

(o + 1) precision*recall
F — measure

a?(precision + recall)
Typically, @ = 1, so that:

Fl— 2precision*recall
~ precision + recall

RESULTS AND DISCUSSION

Experiments were conducted using 10-fold cross-validation (Wei
et al., 2018¢; Zhao et al.,, 2018), whereby the dataset is divided
into 10 sections, with nine parts used to train the model and the
remaining one used for testing. This process is repeated 10 times,
and the average of all the tests gives the final result.

Results Using Individual Feature Extraction
Methods

In this section, we discuss the performance of each individual
feature extraction method. The four feature extraction methods
focus on different aspects. 188D considers information about the
sequence composition and amino acid properties, whereas kmer
considers the frequency of amino acid fragments in the sequence.
ACC considers three properties, hydrophobicity, hydrophilicity,
and mass, and PC-PseAAC considers the amino acids’ distance
and properties. Table 1 presents the results using these methods
with each classifier.

From Table 1, it is clear that the performance is generally
good. RF produced the best performance, especially with the
kmer feature extraction method, achieving an AUC score of
0.9826. J48 has the worst performance, although this method
attained an AUC score of 0.8710 when used with PC-PseAAC. NB
performed best with the PC-PseAAC feature extraction method.
Obviously, RF is better than J48. This may be because the random
forest uses results from multiple decision trees, thus avoiding
some exceptional cases.
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Performance of Joint Feature Extraction
Methods

Next, we connected the feature extraction methods to give six
new feature sets: 188D + ACC (206D), 188D + kmer (588D),
188D + Pse-AAC (210D), ACC + kmer (418D), ACC + Pse-
AAC (40D), Pse-AAC + kmer (422D).

Table 2 presents the results given by mixing the features. And
we add the best performance of single into Table 2, which can
make a more intuitive comparison. From the table, we can see
that the performance using the RF classifier is slightly better than
for the single 188D method. The highest AUC is 0.9820 and the
lowest AUC is 0.8554.

TABLE 1 | PPR prediction results using a single feature extraction method.

Method Classifier AUC F-Measure
188D RF 0.9788 0.9448
J48 0.8684 0.8786
Naive bayes 0.907 0.8192
Kmer RF 0.9826 0.9492
J48 0.8284 0.8312
Naive bayes 0.9162 0.8344
Acc RF 0.9524 0.8898
J48 0.8456 0.8406
Naive bayes 0.9428 0.8594
PC-PseAAC RF 0.9752 0.9366
J48 0.8710 0.8740
Naive bayes 0.9678 0.9076

To represent the experimental results more intuitively, they are displayed as a histogram
in Figure 3. Bold values indicates Best result in that experiment results which is a
combination of Method and Classifier.

TABLE 2 | Results from mixing the features.

Method Classifier AUC F-measure
Kmer RF 0.9826 0.9492
188D + ACC RF 0.9820 0.9520
J48 0.8868 0.8886
Nalve bayes 0.9150 0.8294
188D + kmer RF 0.9814 0.9494
J48 0.8554 0.8608
Naive bayes 0.9088 0.8340
188D-Pse-AAC RF 0.9796 0.9490
J48 0.8806 0.8866
Naive bayes 0.9174 0.8368
ACC + kmer RF 0.9848 0.9554
J48 0.8518 0.8538
Naive bayes 0.9252 0.8516
PseAAC + kmer RF 0.9826 0.9504
J48 0.8386 0.8446
Naive bayes 0.9252 0.8532
ACC + Pse-AAC RF 0.9778 0.9402
J48 0.8632 0.8748
Nalve bayes 0.9736 0.9214

Next, we combined kmer with another method. The results
are presented in Table 2. In this case, the best AUC is 0.9848
and the lowest AUC is 0.8386, which are both higher than the
scores achieved using the kmer method alone. RF gives the best
performance, and J48 is again the worst classifier.

The results from combining Pse-AAC with another method
are presented in Table 2. We can see that the overall performance
is worse than in the above cases. With the exception of the RF
results, the performance is worse than when using the Pse-AAC
method on its own. In this case, the best AUC score is 0.9826 and
the worst is 0.8386.

The results from combining ACC with another method are
shown in Table 2. Compared with the results using ACC alone,
the performance has improved, except when using the NB
classifier. RF again gives the best results and J48 gives the worst.
The highest AUC score is 0.9848 and the lowest is 0.8518.

From the above results, we can conclude that RF is the best
classifier for this task, whereas J48 is unsuitable in this case. The
best PPR prediction method is to combine ACC and kmer and
use the RF classifier, which achieves the highest AUC of 0.9848.

Performance Using MRMD to Reduce the

Dimension

Next, we used MRMD to reduce the dimension of the features
considered in section Performance of Joint Feature Extraction
Methods, resulting in six new feature sets. As the features were
randomly extracted from the dataset 10 times, the number
of features after dimension reduction was inconsistent. We
conducted experiments using 10 separate sets of data. We then
selected the feature set with the best AUC performance and
applied this feature set to the remaining nine datasets. The final
results are the average of 10 experiments.

TABLE 3 | Results from reduction the features.

Method Classifier AUC F-Measure
188D + ACC RF 0.9814 0.9520
J48 0.8840 0.8854
Naive bayes 0.9148 0.8240
188D + kmer RF 0.9816 0.9542
J48 0.8652 0.8662
Naive bayes 0.9174 0.8650
188D-Pse-AAC RF 0.9802 0.9478
J48 0.8748 0.8836
Nalive bayes 0.9166 0.8318
ACC + kmer RF 0.9840 0.9556
J48 0.8500 0.8572
Naive bayes s 0.9512 0.8808
PseAAC + kmer RF 0.9820 0.9508
J48 0.8400 0.8400
Naive bayes 0.9412 0.8706
ACC + Pse-AAC RF 0.9778 0.9394
J48 0.8682 0.8830
Naive bayes 0.9738 0.9210

Bold values indicates Best result in that experiment results which is a combination of
Method and Classifier.

Bold values indicates Best result in that experiment results which is a combination of
Method and Classifier.
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The results are shown in Table 3, Figures 4, 5. The highest
AUC value is 0.9840, and the lowest is 0.8400. Again, RF gives
the best performance and J48 is the worst classifier. From the
figures, although J48 has the worst performance, the AUCs have
improved. In particular, using MRMD for dimension reduction
results in better performance by the NB classifier.

CONCLUSION

PPR proteins play an important role in plants. In this study,
we used machine-learning methods to predict this type of
protein. To find the best performance, we used four feature

extraction methods that consider sequence, physical, and
chemical properties as well as the amino acid composition, and
three classifiers. In terms of the individual feature extraction
methods, using kmer with the RF classifier gave the highest
AUC. Next, we combined the feature extraction methods, and
found that RF still achieved the best performance while J48
gave the worst results. Finally, we used MRMD to reduce the
feature dimension. This improved the AUCs for the J48 and NB
classifiers, but had little effect on the RF results. The highest
AUC score of 0.9848 was achieved by combining ACC and kmer
and using RF as the classifier. The webserver is freely available
at: http://server.malab.cn/MixedPPR/index.jsp. In future work,
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FIGURE 4 | AUC when using MRMD to reduce the dimension.
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it can be expected to further improve the performance by
integrating other informative features such as motif-based
features (Li et al, 2010; Ma et al, 2013; Yang et al, 2017),
and validate the reliability of our method using next-generation
sequencing analysis (Zhang et al., 2016b; Liu et al., 2017).
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