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Host-plant resistance to insects like thrips and aphids is a complex trait that is difficult

to phenotype quickly and reliably. Here, we introduce novel hardware and software to

facilitate insect choice assays and automate the acquisition and analysis of movement

tracks. The hardware consists of an array of individual T-mazes allowing simultaneous

release of up to 90 insect individuals from their individual cage below each T-maze with

choice of two leaf disks under a video camera. Insect movement tracks are acquired with

computer vision software (EthoVision) and analyzed with EthoAnalysis, a novel software

package that allows for automated reporting of highly detailed behavior parameters and

statistical analysis. To validate the benefits of the system we contrasted two Arabidopsis

accessions that were previously analyzed for differential resistance to western flower

thrips. Results of two trials with 40 T-mazes are reported and we show how we arrived

at optimized settings for the different filters and statistics. The statistics are reported

in terms of frequency, duration, distance and speed of behavior events, both as sum

totals and event averages, and both for the total trial period and in time bins of 1 h.

Also included are higher level analyses with subcategories like short-medium-long events

and slow-medium-fast events. The time bins showed how some behavior elements are

more descriptive of differences between the genotypes during the first hours, whereas

others are constant or become more relevant at the end of an 8 h recording. The three

overarching behavior categories, i.e., choice, movement, and halting, were automatically

corrected for the percentage of time thrips were detected and 24 out of 38 statistics

of behavior parameters differed by a factor 2–6 between the accessions. The analysis

resulted in much larger contrasts in behavior traits than reported previously. Compared

to leaf damage assays on whole plants or detached leaves that take a week or more to

complete, results were obtained in 8 h, with more detail, fewer individuals and higher

significance. The potential value of the new integrated system, named EntoLab, for

discovery of genetic traits in plants and insects by high throughput screening of large

populations is discussed.
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INTRODUCTION

Breeding for host-plant resistance has gained much interest in
recent years due to the increasing bans on the use of chemical
pesticides. A crucial element in the breeding process is the
accurate estimation of the resistance level of large populations of
plant accessions (Eigenbrode and Trumble, 1994). This requires
robust phenotyping systems that can accurately screen many
different plant lines in a high-throughput manner (Kloth et al.,
2012; Goggin et al., 2015).

Current phenotyping methods mainly focus on costly,
labor-intensive and time-consuming end-point measurements
of feeding damage or insect performance (reproduction and
mortality). Clip-on cage techniques are not effective with thrips
as they easily escape. Conventional visual rating systems that
score feeding damage often do not allow precise quantification
and are sensitive to subjectivity and inconsistency of the
scoring process, although recently a more objective method was
reported (Visschers, 2018). Usually experiments are, therefore,
done in greenhouses with an open choice situation that suffer
from environmental effects. An alternative, automated high-
throughput and controlled process to phenotype host-plant
resistance to thrips would therefore greatly aid research and the
breeding process for thrips-resistant cultivars.

We have recently demonstrated the value of automated
video tracking of peach aphid (Myzus persicae) (Kloth et al.,
2015) and Western flower thrips (F. occidentalis) to establish
host-plant resistance levels in Arabidopsis (Arabidopsis thaliana)
(Thoen et al., 2016) and locate associated genes in Genome
Wide Association Study (GWAS) populations (Kloth et al., 2016,
2017; Thoen et al., 2017). Those studies were, however, done in
microtiter plates that were not suitable for T-maze applications,
nor for the study of whole leaves, and suffered from poor
detection due to condensation of water droplets on the inside of
the plastic cover after a few hours. In thrips choice experiments,
movement and halting in a two-choice setting was only reported
using the sum total time or speed of all movement or halting
events, and not the event averages which would have given more
detailed and differentiating information of the nature of halting
ormovement behavior (Thoen et al., 2016). All studies so far were
further sensitive to differences in detection percentages (tracking
efficiency). Extraction, of more detailed behavior categories, that
could distinguish short and long or fast and slow moving or
halting events, were only reported in the aphid studies, as this
required a large amount of extra offline manual processing and
ad hoc programming work. Not analyzing the more detailed
behavior information contained in the thrips tracks, however,
neglects important details of animal behavior that can be far
more informative than sum totals (Benjamini et al., 2010; Kloth
et al., 2017). The goal of the development of the EntoLabTM

phenotyping system presented here was to overcome these
shortcomings, and automate the data extraction and statistical
analysis. Here, we validate its utility for the study of thrips in a
T-maze setting. It involves a camera, camera stand, illumination,
and EthoVision R© software, plus newly developed T-maze array
hardware, and EthoAnalysisTM software for automated data
extraction and statistical analysis. This system is shown with

fewer insects to deliver larger contrasts that are more accurate
and significant compared to the previous report (Thoen et al.,
2016). Furthermore, it provides more detailed insight in the
behavior of insects like thrips on different plant genotypes.
With two accessions the system is operated using the following
workflow:

1. T-maze array experiment: video recording of thrips behavior
in a fully controlled environment. Leaf discs of two accessions
are placed into each of the parallel T-maze arenas. In each
arena, one insect is placed and behavior is video-recorded over
a time span of 8 h.

2. Extracting video tracks: EthoVision video-tracking software
is used to determine the position, zone, and velocity of each
insect in each video frame during the complete run of the
experiment.

3. Analysis of behavior statistics: EthoAnalysis is used to convert
raw tracking data exported from EthoVision into zone-
specific movement and halting events, and to generate higher
level behavior statistics, that are less sensitive to differences
in tracking efficiency (detection) between genotypes. The
statistics include zone preference, average velocity, total
time moving/halting, short/medium/long moving and halting
duration and slow/medium/fast moving events, mostly also
per hourly time bin. For these choice assays, the differences
between the behavior statistics in the two zones containing
the genotypes are modeled in order to establish differences in
insect preference between two genotypes.

For validation of the system, we used two wild A. thaliana
accessions, Cur-3 and Rmx-A180. In the previous study Cur-3
was shown to be much more resistant to thrips in choice settings
with Rmx-A180 as susceptible reference genotype (Thoen et al.,
2016). In that study, the behavior of Western flower thrips (F.
occidentalis) was recorded in 88 parallel arenas the size of a single
6mm microtiter-plate well filled with two half leaf discs. The
results were found to be consistent with choice assays with whole
plants and detached leaves in which damage levels were assessed.

In this follow up study, we introduce a novel parallel arena
plate with T-maze type designs. The two leaf discs each occupied
their own 6mm well and were separated by a central well from
which simultaneous access by a single thrips individual was
possible after shifting a gate plate. EthoAnalysis subsequently
provides a number of filters to automatically remove entire
records or specific events based on various quality criteria.
Setting these filters and tuning their parameters generally allows
navigating between data quality and data quantity. Additionally,
for some behavior statistics, EthoAnalysis requires insect specific
parameters, like time intervals for probing vs. feeding to be set.
We discuss the potential contribution of the EntoLab system to
studies in the field of plant-insect science and resistance breeding.

MATERIALS AND METHODS

Plants
We used Arabidopsis thaliana as host plant species. Accessions
Rmx-A180 (CS76220, collected by J. Bergelson, latitude 42,036,
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longitude −86,511, Michigan, USA) and Cur-3 (CS76115,
collected by F. Roux, latitude 45,000, longitude 1,750, France)
were used for this study. For insect assays, plants were grown
from seeds in small plastic pots (5 cm diameter) on pasteurized
soil (4 h at 80◦C; Lentse potgrond, Lent, The Netherlands) in
a climate room (21 ± 1◦C, 50–70% relative humidity; 8 h:16 h
L:D photoperiod; light intensity 200 µmol m−2 s−1). For both
reported experiments, ten 5-weeks-old plants were used. From
each plant the top 4 youngest leaves large enough to produce 4
leaf discs of 6mm were harvested. Leaf discs of both genotypes
were subsequently randomly combined but their leaf position
was recorded in the software to allow analysis of such aspects if
desired.

Insects
TheWestern flower thrips [Frankliniella occidentalis (Pergande)]
used in this study were collected from chrysanthemum flowers
in a climate chamber (25 ± 1◦C, L:D 16:8). In the experiments
non-synchronized adult females were used, that were starved
overnight in Perspex tubular cages closed on one side with gauze
and on the other side with two layers of stretched sheets of
Parafilm containing a droplet of water to enable drinking. Thrips
were anesthetized with CO2 and placed on ice just prior to
experiments.

T-maze Array Plate
A novel T-maze array plate was designed to allow easier and
controlled high throughput T-maze behavior studies with insects
using leaf discs. The T-maze array setup was created by stacking
multiple layers of micro-machined and laser cut Perspex in a
holder (Figure 1). In the bottom cage plate cold-anesthetized
insects are placed row by row and retained there by covering
the cages with a gate plate. The gate plate prevents the insects
from entering the top arena plate until it is pushed into the stack
by about ∼1 cm at the start of the trial, so that the holes in the
gate plate simultaneously create access to all 90 arenas of the
arena plate. Each arena consists of three separate circular zones
of 6mm diameter, arranged in a row. The zones are connected
through 2mm wide and deep tunnels. The two outer zones are
4mm deep, while the center zone cuts through the plate, and is
used to release the insects into the arena from the cage below. Leaf
discs are placed on 20µl water in the two outer zones. To prevent
condensation, the glass cover plate was coated with indium tin
oxide and heated to 27–30◦C by applying a voltage. The coating
did not affect the transparency of the glass. The whole plate stack
was placed in a holder and mounted for video recording. In this
study only 40 of the 90 available parallel T-maze arenas were
used, because for a simple comparison of just two genotypes
40 replications are more than enough. A blue color filter with
excised holes in the positions of the leaf discs was placed on
top of the arena plate below the cover plate to equalize the light
intensities from areas with and without leaves (Figures 1B, 2B).
This improved the tracking success when the insects weremoving
between zones with a high contrast of direct and leaf disc filtered
backlight (data not shown).

Video-Tracking Setup and Experiment
Thrips behavior was recorded with a digital video camera
(Basler acA2040-25gc, 1′′ CMOS sensor, Kowa LM35HC lens,
35 mm/F1.4). A backlight unit (LED panel 30 × 30 cm, 24V
and 18W, 5,000K) was used to illuminate the arenas. The
arena plate with T-maze arenas was mounted ∼1 cm above
the backlight unit, with ventilation in between to prevent
heating. Room temperature was kept constant at 21–22◦C.
Videos were recorded at the maximum resolution of 2,046 ×

2,046 pixels at 10 video frames per second using Debut Video
Capture software (version1.88, http://nchsoftware.com/capture/
index.html). Eight-hour recordings of 40 parallel two-choice
assays were run (Figure 2B). For each arena, leaf discs of 6mm
from both accessions (Cur-3 and Rmx-A180) were placed on
20 µl of water in alternating arms of the T-maze. A section
of 4 × 10 arenas was filmed representing a size of 108 ×

100mm, implying a resolution of ∼20 pixels/mm or 50 micron
per pixel.

EthoVision Video-Tracking Settings and
Export
We tracked thrips behavior with EthoVision R© XT 11.5
video tracking and analysis software (Noldus Information
Technology BV, Wageningen, The Netherlands, www.noldus.
com/ethovision) at 3.33 frames/s. Each leaf disc was assigned
to a specific zone (Z1 and Z2); in addition, there was a neutral
zone that did not contain leaf material (Z3). Dynamic subtraction
and center-point detection were used as detection methods, with
a dark contrast of 8–255. Subject size detection was limited to
the range of 40–385 pixels. Pixel smoothing was set to medium.
Moving thresholds were not set because EthoVision was only
used for tracking and not for event analysis. Raw data files with
genotypes in a “Genotype” column separated by a “$” sign were
exported per subject for analysis in EthoAnalysis as .txt files for
each arena (ca 1Mb per arena per hour).

EthoAnalysis Extraction of Behavior Events
From Tracking Data
The video tracking software EthoVision produces series of track
samples (set at 3.33 samples/s, 10800/h) for all insects/arenas
as described before (Thoen et al., 2016). Each track sample
contains an (x,y)-coordinate, a velocity, and an indication of the
current zone in which the insect resides unless the tracking is
not successful because EthoVision could not detect the insect,
in which case the sample is recorded as not detected. These
track files were imported by EthoAnalysis, a software package
developed by Wageningen Plant Research.

Supplementary Data File 1 provides screenshots of how the
software processes the data in steps based on consecutive tabs. In
the “Project” tab with a new project a dialogue box is given where
the experiment should be named and the location of the data
indicated. A summary of genotypes and experiments (arenas) is
given once data are added in the other tabs. In the “Input data”
tab (Supplementary Data File 1) trials and experiments can be
added or removed. Crucial are the import settings which require
a value for the look-ahead window, and the velocity threshold.
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FIGURE 1 | The T-maze array set up. (A) The T-maze array consisted of stacked layers of Perspex plates topped with a heated glass cover. It was lit from below with

a backlight and monitored from above with a camera. (B) Cross section of one single T-maze arena of the complete array of 90. The bottom compartment of a cage

plate closed with a gate plate, that could create access to the arena plate by sliding it to the left. The T-maze arena consisted of two leaf disk zones with disks placed

on 20 µl water, a blue filter with holes in the position of the leaf discs, and a heated cover plate made of glass.

The look-ahead window exists to ignore minor drops below the
velocity threshold within a movement event, or single spikes
above the velocity threshold while halting and is an important
tool to accurately follow the unique behavior of specific insects.
Based on these settings EthoAnalysis software translates these
raw track data into series of zone-specific behavior events of
three types: halting, moving, and not-detected (events that do
not contribute to the calculation of behavior statistics) using the
following procedure:

• Start at the first track sample at the beginning of the trial with
amovement state unknown and process the track file sample by
sample in time.

• Iterate over the sample records using the following decision
rules:

A. Determine themovement state of the current sample based on
these rules:

1. Current state is moving if either of the following two
conditions is met:

◦ Start moving: The previous state is not moving and the
current velocity is greater than or equal to the velocity
threshold and any of the next n samples (the look-ahead
window) has a velocity greater than or equal to the velocity
threshold. This protects both the moving and halting states
from short halting or movement spikes.

◦ Remain moving: The previous state is moving and any
velocity in the current or the next n samples is greater than
or equal to the velocity threshold.
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FIGURE 2 | Determining the behavior state and zone position of thrips. (A) Histogram of the velocity distribution of one thrips in a selected arena to aid in selecting

proper thresholds for the determination of movement and halting events (velocity in mm/s); (B) Zoom of 12 arenas of the T-maze array with the two Arabidopsis

accessions Cur-3 (1) and Rmx-A180 (2) in alternating positions. Arrows indicate the position of thrips individuals. The central empty well provided the access route of

thrips from the cage plate below; (C) View on the left of the 2D arena shape position trace (red line) and on the right the 1D thrips zone position (zones 1–3 for Cur-3,

Rmx-A180 and other) and velocity traces (black line) and movement state (green band for moving and red for halting) for a selected time interval (ca 18min): thrips per

arena are assigned to either a movement or halting state based on the velocity threshold and look-ahead window settings. The second panel is a Y-zoom of the

velocity trace. It shows the effects of the velocity threshold (0.05 mm/s) and filters. All movement events in zone 1 and 3 are removed by applying all filters because in

those zones they do not start and end with halts within the zone.

2. Else, if the current state is not recognized as moving, the
current state is halting if either of the following two conditions
is met:

◦ Start halting: The previous state is not halting and the
current sample has a positive detection.

◦ Remain halting: The previous state is halting and any
sample in the current or the next n samples has a positive
detection.

3. Otherwise, if the current state is not recognized as moving or
halting, the current state is set to not-detected.

B. If the current movement state is not equal to the
previous movement state or the current zone is not
equal to the previous zone, then add a new event
for the previous state with its start time, end-time,
and, if moving, the distance moved during this
event.
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From these series of events, the various behavior statistics
are extracted (see section below about the calculation of the
behavior statistics). An optional feature is to check “Recover
halting from non-detected events.” If checked, then halting
events interrupted by a period of non-detection (due to tracking
failure) are recovered and merged into a single halting event.
More specifically, for each event-triplet of halting, non-detect,
and halting, the start-position of the second halt event should lie
within a given radius of the end-position of the first halt event
for this merging to occur, otherwise merging cannot take place.
The radius-size is defined by the total displacement (i.e., distance
between start-point and end-point) within the first halting event.
This option is checked by default in order to obtain more reliable
data with less non-detect time [not detected (n.d.) was in the
range of 10% in these experiments]. It is essential to check the
“multiple zones” option to process the data in the format of the T-
maze nature of the experiment in which zones can be contrasted
against each other.

For various reasons, it may also be necessary to exclude
certain types of events for analysis. Minor insect displacements
on the zone boundarymay cause artificial consecutive halting and
moving events. Similarly, movement events containing extreme
(unrealistic) velocities can be caused by video tracking hick
ups, e.g., when a dirt particle or an optical reflection similar in
size with the insect is confused with the insect. EthoAnalysis
contains a number of “event filters” which change such events
to non-detect events and therewith exclude them from analysis
(Figure 2C). The effects of the filters are discussed below.

EthoAnalysis Filtering of Records
To obtain high-quality data it is important to remove records
with insects that are either dead or obviously less active compared
to the rest. For this purpose “Record filters” are used to
automatically exclude records based on inactivity, detection
percentage, and event count (Supplementary Data File 1, Filters
tab). When applying these criteria all records are immediately
updated and the table shows which records are deleted on which
grounds. In the case of this experiment, the following criteria for
record removal were applied:>3,600 s inactivity,<50% detection
and <1,000 events. Three records were removed based on these
settings in trial 3, all on the basis of event count. In experiment
3 there were on average 1,161 halts and 1,569 moves. More
moves than halts can occur when insects move from one zone
to another: that splits one movement into two parts. Once
records are imported it is possible to inspect their quality using
a velocity histogram (Figure 1A). This can also serve to guide
modifications to the velocity threshold setting. Changing settings
requires recalculation which took about 30 s for this experiment
with 120 records and 8 h of recording.

EthoAnalysis Calculation of Behavior
Statistics
The behavior statistics (Supplementary Data File 1, Behavior
statistics tab) are extracted from the series of behavior events.
The software contains a number of behavior statistics that can be
extracted for all events of the complete trial, but some of these
statistics are also of interest when looking at the statistics per
zone, per hour, per zone/hour, or per type of behavior event,

e.g., event duration category (short/medium/long) or movement
velocity (slow/medium/fast). For the analysis, the robust zone-
specified behavior events were selected.

EthoAnalysis Statistical Analysis
In the experiments, the two genotypes Cur-3 and Rmx-A180
were assessed inmultiple trials, where each trial containsmultiple
choice arenas. Each arena consists of a single leaf of a plant from
Cur-3 in one zone, and a single leaf from a Rmx-A180 plant in
the other zone. In each trial 4 leafs of 10 plants of either genotype
were used and the positioning of leafs in arenas is completely at
random.

Suppose that the underlying means of some behavior statistic,
such as the duration detected per zone, are µA and µB for Cur-
3 and Rmx-A180, respectively, and the observed values in an
arena are yA and yB. Choice experiments, like the one described

here, are commonly analyzed by modeling the log ratio log
(

yA
yB

)

using normal errors, see, e.g., Elston et al. (1996). However, the
disadvantage of the log ratio analysis is that it cannot properly
handle zero observations. Moreover, observations very close to
zero frequently popup as outliers in such analyses. Alternatively,
a (conditional) logit model can be used, see, e.g., Hauber et al.
(2016). In this approach, the log ratio is rewritten as logit(πA),
where πA =

µA
(µA+µB)

, i.e., the mean for Cur-3 relative to the sum

of the means. For behavior statistics, such as duration detected
per zone, πA can be interpreted as the probability of being in the
zone with Cur-3. Information about this parameter is contained
in the conditional distribution of yA given the sum yA + yB,
for which it is natural to assume a quasi-binomial distribution
resulting in logistic regression.

Both the log ratio analysis model, which is a linear mixed
model (LMM), and the logit analysis model, which is a
generalized linear mixed model (GLMM), are included in
EthoAnalysis. The logit model is implemented by means of an
iterative re-weighted restricted maximum likelihood (IRREML)
algorithm as proposed by Schall (1991). The LMM within this
iterative procedure is fitted using the lmer function in the R
package lme4 (Bates et al., 2015).

For the analyses in this paper, the logit model was applied
to all behavior statistics to generate predictions of the ratios
between means. Confidence intervals of these ratios and p-
values were constructed using Satterthwaite’s degrees of freedom
approximation method [implemented in the R package lmerTest
(Kuznetsova et al., 2017)]. To account for differences between
plants, random effects for plants of Cur-3 and for plants of Rmx-
A180 were added to the model. For analyses over multiple trials,
a random effect for trial was included as well. The analysis was
done using the EthoAnalysis software (version 1.3.0.6) which
internally makes use of the lm function of a local installation
of R (version 3.1.2) (Supplementary Data File 1, Analysis and
Output tabs).

RESULTS

Optimizing EthoAnalysis Input and Filter
Settings
We performed a sensitivity analysis on various input and filter
settings in EthoAnalysis to test how these settings affected the
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contrasts between both genotypes for the 38 different traits
extracted from the tracks (Tables 1, 2). At the basis of each
comparison was the optimized F1 analysis. The robustness of that
analysis was explored by altering settings one by one and usually
in steps of two.

Effects of the Velocity Threshold and Look-Ahead

Window Settings
The look-ahead window and the velocity thresholds that are
applied to the velocity trace of each arena jointly determine
the classification into moving and halting events. For a
first estimation EthoAnalysis provides frequency histograms
of all measured velocities per individual insect (Figure 2A;
Supplementary Data File 1). From the camel shape of most
histograms the velocity separating halting and moving behavior
can roughly be deduced (Figure 2A). Most commonly at the
dip of the camel shape we observed a velocity of around 0.05
mm/s. To explore the sensitivity of the system we also evaluated
thresholds that were both higher (0.1mm/s) and lower (0.025 and
0.012 mm/s) in steps of 2. The velocity threshold setting was also
affecting the number of selected records (Table 1). Inspection
showed that at least three velocity tracks were indeed poor
and correctly deleted from the analysis. The table contains 38
parameters related to the recorded movement and halting events.
The results of the statistical analysis are given in the table with
the red/yellow color indicating various degrees of significance
[log10(p)]. The table shows how the velocity threshold affects
the significance of certain parameters more or less strongly.
Often less significance in one parameter is complemented with
more significance in another one. The most significant p-values
(∼10−10) were found at velocity threshold 0.025 mm/s for
average movement distance and duration (F1 vs. F2–4).

The setting of the look-ahead window around 4 was
subsequently explored by also testing 1, 2 and 8 frames-ahead
of an original one (time window of 0.3–2.4 s). Both the longer
and shorter look-ahead windows yielded results quite similar to
a look-ahead window of 4 frames but on average 4 frames was
optimal (Table 1, F1 vs. F6, F7).

Effect of Event Categories on Movement and Halting

Duration, Frequency and Velocity
Kloth et al. (2017) have shown with aphids that it is insightful to
subdivide halt events into event categories of different duration
to specifically investigate the more frequent test probing phase
that is interrupted (<3min) separate from the less frequent
succesful probing phase that continues into sustained feeding
(>25min). In EthoAnalysis this type of detailed analysis of
behavior is accessible for both halting and moving events. Short,
medium and long intervals can be defined by setting two time
thresholds that separate short and medium and medium and
long and which can be evaluated in terms of average and total
duration and frequency. In the case of Western flower thrips,
which is a frequently moving species, 2 and 10 s for halts and
2 and 5 s for movements appeared optimal for creating the
most significant behavior distinctions between both accessions.
Velocity categories were tested and found to yield relevant

differences at the thresholds of 0.025 mm/s and 0.075 mm/s
(Table 2, F1 vs. F8-F10).

Effect of Event Filters
Due to the strict assignment of all events to specific zones in
two-choice assays, every moving/halting event terminates when
the subject leaves a designated zone even though the movement
continues. This leads to about 30–40% more moves than stops in
the F1 settings of this experiment. The first event filter we applied
was a filter for extreme velocity events that result from tracking
artifacts. This removed 10% of all moves in experiment 3. Table 2
(F11 vs. F1) shows that filtering out those events improved
the statistics related to movements a little bit. Filtering out
consecutive halts and movements due to zone boundary effects
made little overall difference, but strongly reduced significance of
the best statistic of average movement duration (F12 vs. F1). This
can be explained by the fact that the highest speeds and longest
distances and moves to other zones are generated on the most
resistant genotype. Removing those zone transition data actually
creates a bias toward “normal” behavior to accept the genotype
for feeding and strongly reduces the number of events on the
resistant genotype with resultant decreases in significance of the
contrast. A similar and even larger effect is observed by the option
to filter out “incomplete events” (F13 vs. F1), which are events
that are interrupted by a non-detect state.

Different Behavior Statistics in a Choice
Arena
Using the optimized settings above we compared two
independent experiments in Figure 3 for an impression of
the variation between genotypes and between experiments in the
values of different statistics and their significance.

Average Movement Duration, Velocity and Distance
The average duration of movement events is the most distinctive
feature of thrips behavior between these two genotypes with
highly significant scores of P = 10−10 in the best experiment
3 with 39 samples (Tables 1, 2). Comparing this with the
independent experiment 2 (using the same F3 settings for
both experiments) here also average movement duration yielded
the best significance score. Interestingly the contrasts for this
movement duration trait differed less than a factor 2: apparently
the frequent measurement at every move creates a very reliable
average for each arena (Figure 3). In experiment 3 the significant
differences appeared to reside mostly in the >5 s moves which
were dominant in the resistant Cur-3 genotype, but this
relationship was not visible in experiment 2. This may be due to
the fact that arena averages were based on a very high number of
ca 200 movement events per hour which are obviously reduced
when the data are split into the three subcategories (Figure 3).
The average distance of movement events was also a highly
significant feature of thrips behavior. Movement duration and
distance are a function of velocity, but the average velocity
differed less strongly between the genotypes (30–50%) than
duration and distance. Yet, it is interesting to note that the insects
were moving faster on average on the resistant genotype.
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TABLE 1 | EthoAnalysis settings to evaluate the effect of velocity threshold and look-ahead window on the significance of the statistics [log10(p)].

Marked beige to red are significant [log10 (p) < −1.3 ∼ p < 0.05], marked gray are not significant [log10 (p) > −1.3 ∼ p > 0.05]. F1-F7 are different analyses on the same data. Marked

blue are the settings that were tested.
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TABLE 2 | EthoAnalysis settings to evaluate the effect of event categories and event filtering on the significance of the statistics [log10(p)] in trial 3.

Marked beige and red are significant [log10(p) < −1.3 equivalent to p < 0.05], marked gray are not significant [log10(p) > −1.3 equivalent to p > 0.05]. F1, F8–F13 are different analyses

on the same data. Marked blue are the settings that were tested.
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FIGURE 3 | Effect of independent experimental replication (experiments 2 and 3) on the log2 of RMX180/Cur3 value ratios and the value ratios across experiments

per genotype and on the significance of the statistics (N = 39–40). Marked in red are significant [log10(p) < −1.3 ∼ p < 0.05], marked gray are not significant [log10(p)

> −1.3 ∼ p > 0.05]; the settings of analysis F3 (Tables 1, 2) were used to compare both experiments.

Estimated Duration Moving
By contrast the total estimated duration moving (corrected for
detection) has less significant results for the aggregated results
compared to some of the subcategories (frequency, velocity
and distance) of this moving duration statistic (Figure 3). The
aggregated total duration moving is less than a factor 2 different
between both genotypes whereas the subcategories with the <2
and 2–5 s intervals are in the range of a factor 2–5 (Figure 3). The
likely reason for this higher significance in these subcategories
is that the durations are not averaged but totalled, and thus
also reflect the choice between genotypes. Apparently, then,
the moves of <5 s, which are associated with feeding on the
preferred genotype, and not related to searching, are the most
significant. This is also reflected in the statistic “estimated

duration moving (at a certain) velocity (threshold).” Here the
moving events are not totalled on the basis of their duration
but their velocity instead. This yields almost a 6-fold difference
between the genotypes for the slowest speeds of <0.05. These
speeds are clearly associated with movements between cells
during feeding: 50µm per second is exactly in the range of
the size of an epidermal cell. Most events were <5 s, based
on the other statistics, so the range of movement was not
more than 250µm much less than the length of the insect
(2mm).

Estimated Distance Moved
Despite the fact that average movement distance differed
significantly between both genotypes, the estimated distance
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moved did not. The average distance moved on the resistant Cur-
3 genotype was much longer but more total distance was covered
on the susceptible genotype simply because more time was spent
there.

Movement Frequency Duration and Velocity
The movement frequency is a way of describing movement
events not in terms of duration or velocity, but simply in terms
of the number of events. It represents just a subtle variation
on the other statistics but assumes neutrality to the values
and provides similar or more significant values. Also here the
subcategories of frequency in terms of the duration and velocity
of the events are given in Figure 3. The frequency of movements
of short duration (<5 s) and low speed (<0.15 mm/s) are most
significantly different.

Average and Estimated Halting Duration and

Frequency
In strong contrast to average movement duration, the average
halting duration, also when split into duration categories, is
hardly or not significantly different between both genotypes
(Figure 3). In the T-maze the thrips can choose either genotype
for halting/feeding. Feeding on the resistant Cur-3 accession
apparently follows the same behavior pattern except that a lower
proportion of the total time is spent on feeding there (3- to
4-fold less, Figure 3). This effect of choice and uniformity of
halting behavior on both genotypes is visible as well in the halting
frequency for different durations: 3- to 4-fold differences are seen
with similar significances and ratios for all categories in both
experimental replications (Figure 3).

Ratio Detection and Halting to Total Trial Duration
The ratio of detection of the thrips individual relative to total
trial duration represents the choice for activities (moving and
halting) on either accession and a conventional way of studying
relative resistance looking at preference. The ratio of detection
is 2-fold more on the susceptible accession and the significance
is reasonable but not as good as reported by the more specific
statistics (Figure 3). Taking out only the component of halting
(excluding moving) does not improve the result (Figure 3).

Ratio Halting and Movement to Detection Duration
Halting and movement to detection duration split up the
comparison of time detected inside a zone into either halting
or moving. The statistics show that on the susceptible genotype
Rmx-A180 a slightly higher proportion of time is spent on halting
and a slightly lower proportion on moving (Figure 3).

Ratio Movement to Halting Duration
Potentially this statistic ratio of movement and halting amplifies
the differences between two tested genotypes and indeed
compared to movement to detection and halting to detection the
differences are combined and larger (around a factor 2). However,
the significance of the difference is not better compared to the
individual statistics so that this ratio statistic is also not as useful
as some of the others offered above (Figure 3).

Western Flower Thrips Behavior in Time
For 14 of the statistics above the EthoAnalysis software also
offers a time course analysis in time bins of 1 h. This feature
is very useful for a quick insight into how the trait values and
significance change in time. Figure 4 shows that most of the 14
statistics have 95% confidence intervals (not taking experimental
design into account) that do not overlap at some or all points
in time during the experiment. Some obvious trends are that
the average movement duration and distance decrease in time
for both genotypes. The estimated duration spent halting and
detection and halting to total trial duration on the other hand
clearly diverge. Apparently, thrips develop a growing preference
for Rmx-A180 over time.

Correlation of Behavior Statistics Within
Experiments
Many of the EthoAnalysis behavior statistics are likely dependent
on each other to some degree, and the purpose of looking at
many is to determine which one across independent experiments
reproducibly best describes the genotype differences. Both
dependence and independence may have causes in genes (both
plant and insect) or environment (assay quality, insect age) or
assay set up (choice vs. no-choice). To test this, the software
automatically generates Spearman correlation tests. We are
showing the results for statistics obtained for Zone 2 (Rmx-
A180) (Figure 5) in the EthoAnalysis software. This diagram
of the correlation between the statistics of all reported traits
for the entire 8 h of the recording shows how specific thrips
behavior parameters correlate negatively (red boxes), positively
(blue boxes), or not (white boxes), within zone 2.

Immediately obvious is the large blue square of positively
correlated parameters of estimated movement and halt frequency
duration and velocity. Exceptions are the estimated duration at
high velocity which correlates only with long distance moved and
the frequency of long halts which correlates with long duration
and correlates negatively with the ratio movement to halting
duration. Average velocity appears to correlate negatively with
most traits except average movement distance and long fast
moves.

The effect of assay set up on correlations found should be
considered as well. The fact that the insects can choose their
host has a strong effect on some of the ratios found depending
on whether they represent average or cumulative/frequency data.
The choice for the susceptible genotype will increase both the
total movement and halting time on that genotype but not
necessarily the average time of the events.

DISCUSSION

We have developed and evaluated a T-maze array in the
novel EntoLab video tracking and behavior analysis system.
The system makes use of dedicated hardware consisting of
90 parallel T-mazes to which individual insects like thrips
can be admitted simultaneously by opening a gate plate.
The heated cover plate was essential to allow prolonged
recordings without the appearance of condensation droplets. We
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FIGURE 4 | Thrips choice behavior statistics in time (A–N). Overview of 14 different statistics that are automatically indexed per hour by EthoAnalysis. The 95%

confidence intervals are indicated by blue and green shading (excluding effects of experimental design). The results are given for experiment 3 (analysis F1) and are

based on 39 arenas. Estimated values are per hour, corrected for the percentage detection (except frequency), and log-transformed for averaging. The average

detection level was ∼90% in this experiment.
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FIGURE 5 | Correlation diagram of behavior statistics. Colors indicate spearman Rho correlation values, where blue boxes indicate positive correlations and red boxes

negative correlations between traits.

recorded the behavior of the insects on video and subsequently
performed video tracking and computation of position and speed
using EthoVision software. Exported tracks were analyzed by
EthoAnalysis (Supplementary Data File 1). Both the hardware
and software represent a large improvement relative to the
use of microtiter plates and the previous time-consuming data
extraction and manual statistical analysis (Thoen et al., 2016).
In the new set up, with some experience, a powerful statistical
analysis of multiple experiments including some optimization
steps can now be done in 10–20min whereas before ad hoc
R scripts were written taking months to learn and carry out
to obtain a similarly detailed output that we deem relevant to
describe insect behavior (Table 3). With different insect species
it will be easy to modify the size of the T-mazes to properly
accommodate the size of the insects tested as was recently
described for parasitic wasps for example (De Bruijn et al., 2018).

EthoAnalysis significantly extends the capabilities of
EthoVision software for plant phenotyping studies (Table 3).
Firstly, it also analyzes behavior statistics at the event level.
These cannot be obtained directly from EthoVision, but are
shown here to be the most reliable indicators of plant resistance
to thrips. Secondly, filters can be applied in EthoAnalysis that
automatically remove entire records or events with poor data,
so that more reliable records remain. EthoVision only allows
manual filtering of entire tracks based on visual inspection

of deviant records. EthoAnalysis can also redefine input
thresholds without the need to re-run the entire recording, as
with EthoVision. This saves much time when settings must
be adjusted to find the optimum. Post-recording 1D and 2D
track and zone visualizations are available including the event
assignments at any desired zoom level providing feedback on
the effects of specific statistic settings on the assigned behavior
in the recorded track (Table 3). We extracted 38 statistics in
three overarching behavior categories of choice, halting behavior
and movement behavior. In the given example these behavior
parameters related to host-plant acceptance, and comprised
of both dependent and independent statistics with different
qualities to describe the difference between the genotypes.
Eighteen of these statistics are available in time bins of 1 h as
well (Table 3). EthoAnalysis also includes a built-in software
package based on R, that properly transforms data of multiple
experiments and applies the appropriate statistical models to
evaluate behavior parameters, which are visualized in graphs
(Supplementary Data File 2, Table 3).

A relevant question is whether one needs 38 partly dependent
statistics to describe the behavior on these two plant genotypes.
We think it is very helpful for two reasons: First of all, from
these statistics a highly detailed time-resolved view emerges of
how thrips is behaving in the T-maze on the combination of
genotypes. Secondly, the most powerful statistics can be used
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TABLE 3 | Features of EthoAnalysis for analyzing insect behavior.

Event

determination

Post-analysis

• adjusting event thresholds is done on raw track data, this

takes 10–30 s for an 8 h movie depending the total number

of arenas

Behavior

parameters

• Choice (=detection/total trial duration)

• Velocity

• Halting duration + 3 subcategories duration

• Halting frequency + 3 subcategories duration

• Moving duration + 6 subcategories velocity and duration

• Moving frequency + 6 subcategories velocity and duration

• Moving distance

• Event duration halting + 3 subcategories duration

• Event duration moving + 3 subcategories duration

• Event distance moved

• Halting/total trial duration

• Halting/detection duration

• Movement/halting duration

• Movement/detection duration

38 statistics (14 in time bins)

Data filter • Automatic track filtering on inactivity period, detection

percentage, and event count with threshold settings

• Broad variety of event filters. Allows event filters based on

duration of events, consecutive events due to zone

transitions and velocity.

Detection

dependency

Robust statistics that are corrected for the percentage of

detection per subject

Statistics Built-in statistical package and default transformations on

data

Graphical

visualization of

data

Summary tables, graphs per trait, visualization of statistical

models used

Post-recording

video/track

interaction

Fully interactive with a 2D visual tracking trace corresponding

to the arena shape for the selected time period and with a

corresponding 1D velocity trace with velocity threshold and a

color coded assignment of movement, halting events and

zone position. All with immediate feedback of applied filtering

and detection success (red or gray).

to analyze large populations much more efficiently. In a high-
throughput setting one would wish to reduce the number of
replications and also the observation time (for example only
2 h and 10 insects per genotype). In such a setting it becomes
critical to have access to the most informative statistic. In some
cases such statistic information may be obtained in advance for
crossing populations by pretesting the parents, but in the case
of GWAS populations and also many crossing populations it
will generally be a trial and error testing of all statistics to find
which one best generates a particular QTL. This may require
multiple testing corrections of the associated gene found, if all
traits are given equal weight in quantitative genetic studies. One
way to successfully overcome this with multivariate phenotypes
like insect behavior, would be to map summary statistics or
values generated through dimensional reduction methods, like
principle component analyses or discriminant analyses (Horton
et al., 2014).

We can evaluate the way in which the event-based analysis
provides access to the detailed feeding behavior of thrips. A
single feeding event of thrips can be divided in five consecutive
steps: (1) Placing the tip of the mouth cone on the cell surface;

(2) Thrusting the mandible through the plant surface layers;
(3) Inserting the maxillary stylets into the cavity created by the
mandible intrusion; (4) Sucking of the contents of punctured
cells; (5) Retracting stylets and lifting the mouth cone (Kindt
et al., 2003, 2006). Step 3, in which maxillary stylets are inserted
into the created cavity is considered the start of a probing event,
where cell contents are evaluated by the thrips. Only if this test
probe is satisfactory, step 4 (the sustained sucking of contents)
will follow. Feeding events where this last step does not follow,
are thus likely not real feeding events, but just probing events.
These “test probes” might occur more frequently when plant
material is of suboptimal quality for thrips. Given that these
probes were reported to generally take <10 s (Lewis, 1997), we
thought that the relative duration of short and long probes could
serve as a proxy for host plant suitability. However, in this choice
assay the halting event durations were not very different and
only the frequencies were strongly different due to the preference
difference. Apparently, the free choice situation created “normal”
feeding behavior (halting time) on both accessions. We expect,
though, that this could be different in non-choice assays, because
in that case the total time on each genotype is identical.

The selected settings were used to characterize two
experiments with the Arabidopsis accessions Cur-3 and
Rmx-A180. The value ratios of the two replicated experiments
on different days delivered qualitatively very similar results, but
quantitatively exhibited differences in both the absolute values
and value ratios. Apparently, there are environmental batch
effects between consecutive experimental days that can lead to
such differences, and it will be crucial in complex experiments
to deal with that. In an application of the EntoLab system for
association genetics by screening large populations, proper
assay design and mathematical treatment of these variations in
values and ratios will be crucial for high quality results. High
frequent alleles in a plant panel will to some extent compensate
for experimental variation, but obviously it will always be
important that the experimental design and analysis method
should minimize these effects (Kloth et al., 2017). Future studies
for application in plant genetics should, therefore, concentrate
on best practices to minimize or correct for such variation. One
approach could be to achieve complete block design on each
plate. The current set up can contain 90 genotypes once and 10
plates could be tested to obtain 10 replications per accession for
example. Yet with larger populations incomplete block design
will be necessary. In choice assays such modeling approaches
need to take into account genotype × genotype interactions,
however, that can deal with a situation in which the reference
genotype can both be relatively “susceptible” and “resistant”
compared to the contrasted reference.

Heritability is essential in quantitative genetic studies. If
biological variation arises from genetic or environmental effects,
stochastic effects are classified as environmental because they
are not passed on to offspring. But non-heritable effects can be
subdivided into those which can be predicted from measurable
variables, and those that cannot, e.g., stochastic effects (Honegger
and De Bivort, 2018). Reducing the amount of stochasticity in
spontaneous behavior might greatly increase data quality. Data
output from EntoLab can be subsequently analyzed in dynamic
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models that can accurately capture stochasticity, non-linearity
and non-stationary behavior transitions from active to non-active
(Melanson et al., 2017).

Potentially, long recordings also contain information on
changes in thrips preference over time, due to resistance
mechanisms that take a few hours to establish their effects
on thrips, or resistance mechanisms that require induction by
herbivory before defense pathways are activated. An example of
“slow-acting” defense compounds are protease inhibitors, which
can take at least 4 h to result in a significant effect on thrips choice
behavior (Outchkourov et al., 2004). Thrips induced defenses are
mediated by jasmonic acid and trigger the metabolism of a wide
array of defensive compounds, but these can take 24 h to fully
establish (De Vos et al., 2005; Abe et al., 2008, 2009). If such time-
resolved data will be mapped onto plant genomes one would
expect the associated QTLs to change in the course of hours,
providing additional insight into the resistance mechanisms at
work. Alternatively in screenings this induction period could be
mimicked with a prior treatment with jasmonic acid so that data
relevant to induced plants are obtained.

CONCLUDING REMARKS

EntoLab is a promising new instrument for high-throughput
phenotyping insect behavior on plants and other substrates.
We have so far validated the setup in either choice or
no-choice assays for different species of thrips, aphids and
whitefly (Frankliniella occidentalis, Thrips tabaci, Myzus persicae,
Brevicoryne brassicae, Nasonovia ribisnigri, Aphis gossypii, and
Bemisia tabaci) in various combinations on pepper, tomato, water
melon, chrysanthemum, white cabbage, lily, lettuce, and bitter
gourd. A paper describing results with no-choice assays of N.
ribisnigri on whole leaves of lettuce is in preparation. We expect
the potential use of the EntoLab system to extend beyond the
assay of plant material and herbivores. Different arena designs,
insect sizes and test samples can be easily implemented to fit the
universal arena plate holder as was recently shown in a case study
on learning and memory retention in parasitic wasps (De Bruijn
et al., 2018).We hope that the unlocking of behavioral details that
now often go unnoticed will in the future lead to more insight
into the environmental and genetic mechanisms that control it.
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