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Plant pathogens have evolved various strategies to enter hosts and cause diseases.
Particularly Neofusicoccum parvum, a member of Botryosphaeria dieback consortium,
can secrete the phytotoxins (-)-terremutin and (R)-mellein during grapevine colonization.
The contribution of phytotoxins to Botryosphaeria dieback symptoms still remains
unknown. Moreover, there are currently no efficient control strategies of this disease,
and agro-environmental concerns have raised increasing interest in biocontrol strategies
to limit disease spread in vineyards, especially by using some promising beneficial
bacteria. Here, we first examined in planta the biocontrol capacity of Bacillus subtilis
PTA-271 against N. parvum Np-Bt67 strain producing both (-)-terremutin and (R)-
mellein. We then focused on the direct effects of PTA-271 on pathogen growth and
the fate of pure phytotoxins, and explored the capacity of PTA-271 to induce or prime
grapevine immunity upon pathogen infection or phytotoxin exposure. Results provided
evidence that PTA-271 significantly protects grapevine cuttings against N. parvum
and significantly primes the expression of PR2 (encoding a β-1,3-glucanase) and
NCED2 (9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis)
genes upon pathogen challenge. Using in vitro plantlets, we also showed that
PTA-271 triggers the expression of salicylic acid- and jasmonic acid-responsive
genes, including GST1 (encoding a glutathione-S-transferase) involved in detoxification
process. However, in PTA-271-pretreated plantlets, exogenous (-)-terremutin strongly
lowered the expression of most of upregulated genes, except GST1. Data also indicated
that PTA-271 can detoxify both (-)-terremutin and (R)-mellein and antagonize N. parvum
under in vitro conditions. Our findings highlight (-)-terremutin and (R)-mellein as key
aggressive molecules produced by N. parvum that may weaken grapevine immunity
to promote Botryosphaeria dieback symptoms. However, PTA-271 can efficiently
attenuate Botryosphaeria dieback by enhancing some host immune responses and
detoxifying both phytotoxins produced by N. parvum.
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INTRODUCTION

Causal agents of grapevine trunk diseases (GTDs) are very
damaging for viticulture since their effect leads to plant death,
and to date no grape variety is known to be resistant (Surico
et al., 2006; Bertsch et al., 2013; Spagnolo et al., 2014; Fontaine
et al., 2015; Magnin-Robert et al., 2016). Botryosphaeria dieback,
one of the most threatening GTDs (Bertsch et al., 2013), is
caused by several Botryosphaeriaceae fungi, including Diplodia
seriata, Diplodia mutila, and Neofusicoccum parvum (Úrbez-
Torres, 2011; Larignon et al., 2015). Because of the diversity
of these hemibiotrophic fungal pathogens and their virulence
characters, understanding the interactions that lead to the disease
symptomatology is a major challenge in viticulture. Moreover,
the virulence of Botryosphaeriaceae is highly variable within
the same species, depending on plant tissue, grapevine cultivar,
and environmental conditions (Úrbez-Torres, 2011). A common
feature is that Botryosphaeriaceae fungi are mainly found in
woody tissues but not in leaves, drawing the hypothesis that
secreted fungal toxins delocalized via the xylem sap to the
leaves could be involved in the emergence of foliar symptoms
(Mugnai et al., 1999). Indeed, several secondary metabolites have
been characterized in the Botryosphaeriaceae species (Djoukeng
et al., 2009; Evidente et al., 2010; Andolfi et al., 2011; Abou-
Mansour et al., 2015), and particular attention has been paid to
Neofusicoccum spp. regarding its aggressiveness (Úrbez-Torres,
2011). Compounds belonging to two chemical families, the
dihydroisocoumarin (R)-mellein and the epoxytoluquinol (-)-
terremutin as well as their derivatives are considered as the
most phytotoxic (Abou-Mansour et al., 2015). Both (R)-mellein
and (-)-terremutin were detected in wood from vines with
Botryosphaeria dieback symptoms (Abou-Mansour et al., 2015),
and the produced amounts of (R)-mellein were proportional to
pathogen aggressiveness (Ramírez-Suero et al., 2014).

(R)-Mellein and its derivatives have been isolated not only
from pathogens of grapevine, but also from those of apple, pine,
citrus and tomato, and are known for their toxicity in different
tissues during plant development (Venkatasubbaiah et al., 1991;
Parisi et al., 1993; Cabras et al., 2006; Djoukeng et al., 2009;
Evidente et al., 2010). It has been shown that (R)-mellein induced
partial necrosis on grapevine leaves and calli (Djoukeng et al.,
2009; Ramírez-Suero et al., 2014; Abou-Mansour et al., 2015),
and inhibited the growth of wheat embryo culture (Keller et al.,
1994). The (R)-mellein derivative methylmellein also exerted
a strong antigerminative effect on garden cress (Chooi et al.,
2015), while 6-hydroxymellein as a key precursor of (+)-terrein
exerted a phytotoxic effect leading to necrotic lesions on fruits
(Zaehle et al., 2014; Gressler et al., 2015). (-)-Terremutin and
its precursor 6-methylsalicylic acid (6-MSA) as non-host-specific
phytotoxins induced necrosis in leaf tissues of grapevine and
Arabidopsis thaliana, and showed a mild-antibacterial activity
(Venkatasubbaiah et al., 1992; Ding et al., 2010). Similarly, the
(-)-terremutin derivative terreic acid also showed an antibacterial
activity (Yamamoto et al., 1980; Han et al., 2010) and was
suspected to be an important antibiotic compound in soil (Chen
et al., 2016). In mammals, terreic acid can affect cell’s immunity
(Kawakami et al., 1999).

Attention was further paid to the role of fungal toxin systems
in the modulation of the plant immune response leading to
plant tolerance or susceptibility to pathogens (Pusztahelyi et al.,
2015). In this context, (R)-mellein and (-)-terremutin were
shown to induce a late expression of defense-related genes
in grapevine calli, including Pathogenesis Related (PR) genes
and those involved in the detoxification of reactive oxygen
species (Ramírez-Suero et al., 2014; Abou-Mansour et al., 2015),
but the extent of these responses remained lower compared
to those induced by total extracellular pathogen compounds
(Ramírez-Suero et al., 2014). More recently, it has been shown
that various defense-related genes are not upregulated in
grapevine artificially infected with N. parvum (Reis et al., 2016;
Spagnolo et al., 2017). However, in naturally Botryosphaeria-
infected grapevine in vineyards, abundant PR proteins and
antioxidant enzymes, as well as stilbene accumulation were
reported in the brown striped wood (Spagnolo et al., 2014).
Similar trends of gene expression and protein upregulation
were observed in grapevine leaves infected with another
GTDs, namely Esca-complex (Magnin-Robert et al., 2011;
Spagnolo et al., 2012). Interestingly, Magnin-Robert et al.
(2016) showed the accumulation of (R)-mellein and derivatives
in Esca-symptomatic grapevine tissues. However, unlike other
pathogens that use specific polyketides as virulence mediators
(Uppalapati et al., 2007; Dalmais et al., 2011), to date no
relationship was clearly established between (R)-mellein or (-)-
terremutin accumulation and modulation of the host immune
response.

Grapevine like herbaceous or perennial plants can be
colonized by an immense number of microbial organisms in
the rhizosphere and aboveground parts (Trotel-Aziz et al.,
2008; Pinto et al., 2014; Zarraonaindia et al., 2015). Some of
these microorganisms can exert either beneficial or detrimental
effects (Möbius and Hertweck, 2009; Schroeckh et al., 2009;
Pusztahelyi et al., 2015; Zeilinger et al., 2015, 2016). In
asymptomatic and symptomatic GTDs-affected grapevines, the
bacterial communities also differed in necrotic and non-
necrotic tissues. This microbial shift can impact the tolerance
or susceptibility of the vine wood to fungal attacks (Bruez
et al., 2015). Indeed, some bacteria belonging to Bacillus spp.
(i.e., B. subtilis PTA-271), Pseudomonas spp. and Pantoea spp.
isolated from healthy vineyards, are known to induce systemic
resistance against the necrotroph Botrytis cinerea (Magnin-
Robert et al., 2007; Trotel-Aziz et al., 2008; Verhagen et al.,
2011). Beneficial bacteria can directly inhibit pathogen growth
and prime plants for enhancing their basal immunity (Verhagen
et al., 2004, 2011; Trotel-Aziz et al., 2008; Bakker et al.,
2013; Gruau et al., 2015; Aziz et al., 2016). The complex
patterns of microbial interactions occurring inside/outside the
plant might thus ensure the beneficial outcome of plant
association with beneficial/mutualist bacteria in the dieback
context. Since 2000, several biocontrol agents have been tested
against the numerous pathogens responsible for GTDs, the most
efficient to date being antagonistic bacteria and fungi (Haidar
et al., 2016; Mondello et al., 2018). For instance, Trichoderma
spp. generally showed high efficiency in wound protection
against all GTDs pathogens (Di Marco et al., 2002, 2004;
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John et al., 2008; Halleen et al., 2010) as well as Bacillus spp.
(Schmidt et al., 2001; Halleen et al., 2010; Kotze et al., 2011;
Rezgui et al., 2016). The benomyl-resistant mutant Fusarium
lateritium strain was especially effective as a wound protectant
against Eutypa lata (McMahan et al., 2001; John et al., 2005).
This strain can degrade in vitro some phytotoxins involved
in the expression of foliar symptoms, namely eutypine, 4-
hydroxybenzaldehyde, and 3-phenyllactic acid produced by
E. lata and pathogens from Esca consortium (Christen et al.,
2005). In contrast, the rhizospheric Pythium oligandrum was
shown to reduce Phaeomoniella chlamydospora wood necrosis
(Esca complex) by stimulating host plant defenses (Benhamou
et al., 2012; Yacoub et al., 2016).

Although several biocontrol agents were successfully tested
against GTDs pathogens (Mondello et al., 2018), few studies
tried to decipher mechanisms involved in plant protection against
Botryosphaeria species and their aggressive molecules. Especially,
the molecular mechanisms underlying induced protection, and
the extent by which beneficial bacteria modulate grapevine
immunity and detoxification of the virulent-phytotoxins (R)-
mellein and (-)-terremutin, remain largely unknown. In this
study, we first examined the capacity of the beneficial bacterium
B. subtilis PTA-271 (hereafter PTA-271) to counteract grapevine
infection by a N. parvum strain producing both (-)-terremutin
and (R)-mellein (namely N. parvum-Bt67). We then focused
on the effects of PTA-271 on pathogen’s growth and removal
of pure phytotoxins from growth medium. We finally explored
the capacity of PTA-271, which was initially isolated from
grapevine rhizosphere, to induce or prime grapevine immunity
upon pathogen inoculation or after plant exposure to exogenous
phytotoxins.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Three-node-long cuttings of grapevine (Vitis vinifera L.,
cv. Chardonnay) were collected from 10-year-old plants in
Pommery’s vineyards in Reims (France) and kept in a cold
chamber at 4◦C for 1 month. Cuttings were surface-sterilized
with 0.05% cryptonol (8-hydroxyquinoline sulfate) and rooted
as described by Lebon et al. (2005). They were placed in 350 mL
pots containing the soil Gramoflor Special (Gramoflor GmbH
& Co. KG, Vechta, Germany) in a culture chamber (25◦C
day/night, 60% relative humidity, and 16 h photoperiod at
400 µmoles/m2/s) and watered twice a week. Only cuttings that
have developed roots were conserved for further experiments.

Grapevine plantlets (V. vinifera L. cv. Chardonnay, clone
7535) were produced from nodal explants transferred on 15 mL
of agar-modified Murashige-Skoog (MS) medium (Trotel-Aziz
et al., 2008) in 25-mm test tubes. Plantlets were grown at 25◦C
day/night, with a 16/8 h photoperiod.

Bacterial Growth and Treatment
Bacillus subtilis PTA-271 (GenBank Nucleotide Accession No.
AM293677) was isolated from the rhizosphere of healthy field-
grown Chardonnay grapevines in Champagne area, France

(Trotel-Aziz et al., 2008). Bacterial growth starts by adding 100 µl
of the glycerol stock suspension to sterile Luria Bertani (LB)
medium, before incubating at 28◦C under continuous shaking
(75 rpm). Experiments were performed with the bacteria at
the exponential growth phase. After centrifugation (5000 g,
10 min), the pellet was washed once and resuspended in
sterile 10 mM MgSO4 medium. Bacterial density was measured
by spectrophotometry at 450 and 650 nm, and the mean
concentration was adjusted with sterile MgSO4 medium before
treatment.

Bacterial suspension was applied twice at the root level of
cuttings at a final concentration of 108 cfu/g soil. The first
inoculation was performed when cuttings were 8 weeks old
and the second inoculation when cuttings were 10 weeks old.
Control cuttings were thus similarly drenched twice with MgSO4
solution.

For in vitro-plantlets, bacterial suspension was adjusted to 108

cfu/mL with sterile liquid MS medium then added in new sterile
25-mm culture-tubes (15 mL per tube). Six-week-old plantlets
were then transferred in these new tubes for 2 weeks of bacterial
treatment in a growth chamber at 22◦C with a photoperiod
16/8 h. Control plantlets were transferred in liquid MS medium
without bacteria under the same conditions.

Fungal Strain and Growth
The N. parvum strain Np-Bt67 (Reis et al., 2016) isolated from
Portuguese vineyards (Estremadura area) is inscribed in HIA
collection (Lisbon University, Portugal). Fungi was maintained
on potato dextrose agar (PDA, Sigma, Saint-Quentin-Fallavier,
France) plates and stored at 4◦C. Resulting mycelium was plated
on PDA medium and incubated in the dark at 22◦C for 7 days
before used to inoculate cuttings.

Production and Quantification of
Phytotoxins
(R)-mellein (log Kow ∼ 2.5) and (-)-terremutin (log Kow
∼ 0) were extracted and purified from a 10-day-old culture
of the Np strain, according to Abou-Mansour et al. (2015).
Both toxins were prepared as concentrated stock solutions
in sterile MS or 10 mM MgSO4 medium and stored in the
dark at 4◦C. Before each experiment, daughter solutions were
prepared for the biological experiments, and the phytotoxin
concentrations were determined before and after treatment using
HPLC coupled to a diode array detector (Ultimate 3000 Dual-
Gradient, Dionex, Voisins-le-Bretonneux, France). Analyses
were done on a C18 reversed phase column (100 mm× 3 mm,
5 µm, Kromasil 100, Dionex) using isocratic elution with
acetonitrile (ACN, LC–MS quality, Merck, France) and water
(H20) containing 0.1% phosphoric acid (H3PO4). Detection
was recorded at 210 and 273 nm for (R)-mellein and (-)-
terremutin, respectively. Phytotoxin identification was confirmed
by UV spectrum and retention time; (R)-mellein was eluted
with 1 mL/min of ACN:H2O 60:40 v/v at 3.8 min, while
(-)-terremutin was eluted with 0.7 mL/min of ACN:H2O 10:90
v/v at 5.8 min. Concentration was determined using standard
curves.
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Fungal Inoculation and Disease
Expression
Cuttings pretreated 1 month with bacteria were then wounded
(5 mm diameter, 1 mm deep) at 12 weeks old at the second
node of the green stem and inoculated with a 3 mm diameter
mycelial plug from the 7-day-old culture of Np-Bt67 strain.
Inoculation site was then covered with moisten hydrophilic
cotton before sealing with parafilm. Without bacteria, cuttings
were pretreated 1 month with MgSO4, then pathogen-inoculated
also at 12 weeks old using the same method. To confirm that
lesions were really due to pathogen infection and not to the
injury, controls were inoculated with sterile 3-mm PDA plugs.
After inoculation, cuttings were kept in the same culture chamber
conditions to quantify Botryosphaeria dieback symptoms at
4 months post-inoculation. As potentially indicative, phytotoxins
were also extracted from the same leaf powder (1 g FW in
5 mL of methanol – LC–MS quality, Merck, France – for 1 h at
37◦C before analysis in supernatant as described below) at least
twice in triplicates, and phytotoxins were not detectable in leaves
of infected cuttings. At 4 months post-inoculation, symptoms
of Botryosphaeria dieback were evaluated by measuring both
the canker and necrotic surface area on green shoots as
described by Espinosa et al. (2009) and Laveau et al. (2009),
and by quantifying the percentage of dead branch for inoculated
cuttings.

Evaluation of Direct Effect of B. subtilis
PTA-271 on N. parvum Growth
PTA-271 grown in LB medium was inoculated (5 µL drop at
109 cfu/mL) on the one side of a Petri plate (9 cm diameter)
containing PDA medium, then incubated at 28◦C in the dark.
After 24 h, a mycelium plug of 4-day-old pathogenic fungus
was co-inoculated on the other side of PDA plates, and the
plates were incubated in the same conditions. Controls are PDA
plates with a mycelium plug and a LB-drop incubated until
mycelial growth reached the edge of the control plate. The
same experiment was also performed at 22◦C as an optimal
temperature for pathogen growth (Trotel-Aziz et al., 2008),
while 28◦C was optimal for PTA-271 growth. Antagonistic
effect was characterized by an inhibition zone around bacterial
colony.

Detoxification Assays With B. subtilis
PTA-271
PTA-271 was collected at exponential phase in LB medium,
diluted to reach a final density of 104 to 2 × 108 cfu/mL,
and centrifuged at 5000 g (4◦C, 15 min). Pellet was then
resuspended either in a sterile MS medium (nutrient rich) or
in a 10 mM MgSO4 medium (nutrient poor) containing or not
(R)-mellein 350 µg/L ( = 100%) or (-)-terremutin 750 µg/L
( = 100%). Detoxification tests were performed after assessing
the toxicity of (R)-mellein and (-)-terremutin on both bacteria
and plantlets (see data in Supplementary Figures S1, S2). For
both molecules, no toxic effect was observed from 0 to 1500 µg/L
neither on the plant nor on the bacterium. Detoxification assays
were done in triplicate at 28◦C under continuous shaking for

72 h. Percentage of each phytotoxin was determined daily in
both bacterial pellet and supernatant (culture medium) obtained
after centrifugation. Phytotoxins were extracted from bacterial
pellet with acetone (HPLC quality, VWR, France) by shaking
for 48 h in darkness at 4◦C. Mixture was then centrifuged
(5000 g, 15 min, 4◦C) and clean supernatant was collected
for direct phytotoxin analysis with HPLC as described before.
(-)-Terremutin as a highly hydrophilic molecule was directly
analyzed in the culture medium by direct injection into HPLC
system. However, (R)-mellein was extracted from the culture
medium with hexane (10:2 v/v, extraction yield > 90%). After a
vigorous shake of 1 min, the upper organic phase was directly
used for (R)-mellein analysis with HPLC. Two controls were
carried out: living bacteria in a toxin-free medium as a biological
control, and medium containing only toxin without living
bacteria as a physicochemical control.

Treatment of Grapevine Plantlets With
(R)-Mellein and (-)-Terremutin
To investigate phytotoxin’s capacity to modulate plant immunity,
6 weeks old plantlets were treated with bacterial suspension
in liquid MS medium at the root level. After 2 weeks,
roots of were washed three times in sterile liquid MS, then
plantlets were transferred in a new sterile liquid MS medium
supplemented or not with (R)-mellein 350 µg/L or (-)-terremutin
750 µg/L for 72 h under growth chamber conditions. Controls
consisted of 8 weeks old plantlets on MS medium, further
transferred for 3 days on liquid MS medium with or without
phytotoxins.

In the meantime, phytotoxins were quantified from plantlet’s
incubating medium as described before, and extracted from
shoot and roots with methanol (weight/volume: 1/5) in darkness
under continuous shaking for 48 h at 4◦C. The homogenate was
then centrifuged at 5000 g for 15 min at 4◦C and the clean
supernatant was directly used for phytotoxin analysis by HPLC.
All experiments were repeated four times at least in triplicate.
Two different controls were carried out: living plants in a toxin-
free medium and medium containing only toxin without living
plants.

RNA Extraction and qRT-PCR Analysis
Leaf samples from cuttings and shoots from plantlets were
collected respectively at 4 days post-inoculation with pathogen
and at 3 days post-treatment with phytotoxins, ground in liquid
nitrogen then stored at −80◦C. Total RNA were extracted
from 50 mg of leaf powder for cuttings or from 100 mg of
powdered plantlet shoots with PlantRNA Purification Reagent
according to manufacturer instructions (Invitrogen, Pontoise,
France), and DNase treated as described by Gruau et al.
(2015). RNA quality was checked by agarose gel electrophoresis,
and total RNA concentration was measured at 260 nm for
each sample and adjusted to 100 ng µL−1. First-strand
cDNA was synthesized from 150 ng of total RNA using
the Verso cDNA synthesis kit (Thermo Fisher Scientific,
Inc., Waltham, MA, United States). PCR conditions were
those described by Gruau et al. (2015). Quantitative RT-PCR
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was performed with Absolute Blue qPCR SYBR Green ROX
Mix according to manufacturer instructions (Thermo Fisher
Scientific, Inc., Waltham, MA, United States), in a BioRad
C1000 thermocycler using the BioRad manager software CFX96
Real Time PCR (BioRad, Hercules, CA, United States). A set
of 13 defense-related genes, selected for their responsiveness
to pathogen or priming state induced by beneficial bacteria
(Spagnolo et al., 2012, 2014; Gruau et al., 2015; Magnin-Robert
et al., 2016), was tracked by quantitative reverse-transcription-
polymerase chain reaction (qRT-PCR) using specific primers
(Supplementary Table S1). qRT-PCR reactions were carried out
in duplicates in 96-well plates in a 20-µl final volume containing
Absolute Blue SYBR Green ROX mix including Taq polymerase
ThermoPrime, dNTPs, buffer and MgCl2 (Thermo Fisher
Scientific, Inc., Waltham, MA, United States), 280 nM forward
and reverse primers, and 10-fold diluted cDNA according to
the manufacture’s protocol. Cycling parameters were 15 min
of Taq polymerase activation at 95◦C, followed by 40 two-step
cycles composed of 10 s of denaturation at 95◦C and 45 s of
annealing and elongation at 60◦C. Melting curve assays were
performed from 65 to 95◦C at 0.5◦C·s−1, and melting peaks
were visualized to check amplification specificity. EF1 and 60SRP
genes were used as references and experiments were repeated
five times. Relative gene expression was determined with the
formula fold induction: 2(−11Ct), where 11Ct = [Ct TG (US)
– Ct RG (US)] – [Ct TG (RS) – Ct RG (RS)], where Ct is
cycle threshold, Ct value is based on the threshold crossing
point of individual fluorescence traces of each sample, TG is
target gene, RG is reference gene, US is unknown sample,
and RS is reference sample. Integration of the formula was
performed by the CFX Manager 3.0 software (BioRad). The genes
analyzed were considered significantly up- or down-regulated
when changes in their expression were > 2-fold or < 0.5-fold,
respectively. Control samples for the cuttings model are cDNA
from leaves of cuttings untreated with bacteria and inoculated
with sterile PDA plugs (1x expression level), while for the
in vitro model it corresponds to shoots from plantlets grown on
MS medium without PTA-271 and phytotoxins (1x expression
level).

Statistical Analysis
To quantify phytotoxins, standard curves were first established
with pure phytotoxins through titrations repeated at least three
times from two independent experiments. Biocontrol assays
with cuttings model were repeated at least three times with at
least 10 cuttings per treatment. The confrontation tests between
PTA-271 and fungal pathogen were triplicated in experiments
conducted twice. Detoxification assays with in vitro PTA-271
or in vitro plantlet model were repeated four times with
each sample at least triplicated. Data are means ± standard
deviations. Analyses of gene expression by qRT-PCR were
repeated five-times from independent experiments. RNAs were
extracted from powdered 20 leaves of 10 grapevine cuttings,
and from powdered shoots of four plantlets. Results correspond
to means ± standard deviation from one representative out
of at least three showing the same trends. Statistical analyses
were carried out using the SigmaStat 3.5 software. For

treatment effect, mean values were compared by Tukey’s test
(P < 0.05).

RESULTS

B. subtilis PTA-271 Attenuates
Botryosphaeria Dieback Symptoms in
Grapevine Cuttings
PTA-271 was used to evaluate its capacity to control the
occurrence of Botryosphaeria dieback symptoms. Bioassays with
Chardonnay cuttings from control or bacteria-pretreated plants
at root level further inoculated with Np-Bt67 showed that
PTA-271 significantly reduced the dead branch development
(Figure 1A) by approximately 50% compared to non-bacteria
pretreated plants (Figure 1E). Similarly, the size of canker
(Figure 1B) and those of external and internal stem lesions
(Figures 1C,D) were reduced in PTA-271-pretreated cuttings
after challenge with Np-Bt67. Both canker and stem lesions were
reduced by about 63 to 75% compared to non-bacteria pretreated
plants (Figures 1F–H). These results indicate that PTA-271 could
efficiently protect Chardonnay cuttings from the N. parvum
strain Np-Bt67.

B. subtilis PTA-271 Antagonizes
N. parvum and Detoxifies Both
(R)-Mellein and (-)-Terremutin
In regard to in vitro test with pathogen mycelium, results showed
that PTA-271 clearly antagonizes Np-Bt67 by a fungistatic effect
compared to control treatment at 28◦C (Figure 2A) in both time
points. Antifungal effect was detected approximately 4 days after
pathogen inoculation at 22◦C (Figure 2B). Thereafter, mycelial
growth increased progressively and became comparable to the
control.

We also investigated whether PTA-271 can affect fungal
toxins, (R)-mellein and (-)-terremutin exogenously applied to
their culture medium. Results showed that the percentage of both
(R)-mellein and (-)-terremutin was significantly decreased in the
presence of PTA-271 (Figure 3). The (R)-mellein decrease was
effective after a 48 h latency period in the presence of PTA-
271 at 108 cfu/ml, and reached 40% after 72 h of exposure
(Figure 3A). Similar effect was observed after 72 h of incubation
with PTA-271 at low (104 cfu/ml) or high (2 × 108 cfu/ml)
bacterial density (Figure 3B). In addition, the bacterium seems
to be effective to remove (R)-mellein, whether suspended in MS
medium or in the less nutrient rich MgSO4 medium. The amount
of (R)-mellein decreased significantly with the high bacterial
density whether in MS medium or in the less nutrient rich MgSO4
medium (Figure 3C). Interestingly, the (-)-terremutin decrease
was effective after a 24 h latency period in MS medium in the
presence of PTA-271 at 108 cfu/ml to reach 50% after 72 h
(Figure 3D). Such a (-)-terremutin decrease was not observed in
the presence of the bacterium at lower density (Figure 3E), or
in the less nutrient rich MgSO4 medium compared to MS one
(Figure 3F).
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FIGURE 1 | The beneficial bacterium Bacillus subtilis PTA-271 attenuates the characteristic Botryosphaeria dieback symptoms induced in Chardonnay cuttings by
the Neofusicoccum parvum strain Np-Bt67. One month pretreated grapevine cuttings with PTA-271 (Bs, 2 × 108 cfu/g soil) and non-bacteria pretreated ones (Ctl)
were inoculated with pathogen mycelium (+Np-Bt67). Non-infected plants were inoculated with sterile medium without pathogen (Control). Compared to PTA-271
treated healthy asymptomatic cuttings (A), the infected symptomatic cuttings showed the typical Botryosphaeria dieback symptoms: dead branch (A,E), stem
canker (B,F), stem internal necrosis (C,G), and stem external necrosis (D,H) that were photographed (A–D) and quantified (E–H) at 4 months post-inoculation. Data
are means ± standard deviation (SD) for at least three independent experiments with 10 biological replicates per treatment. Vertical bars with different letters are
significantly different (Multiple Comparison procedures with Tukey’s test, P < 0.05).

B. subtilis PTA-271 Strongly Primes the
Expression of a β-1,3-Glucanase After
N. parvum Inoculation in Grapevine
Cuttings
In leaves of control cuttings inoculated with Np-Bt67, data
from qRT-PCR (Figure 4 and Supplementary Figure S3)
showed that, except for PR1 (1.4-fold expression), the
expression of defense genes responsive to salicylic acid (SA)
including PR2, PR5, and PR10 was significantly up-regulated
from 6.6- to 7.3-fold. Expression of PAL (phenylalanine
ammonia-lyase) and STS (stilbene synthase) involved in the
synthesis of phytoalexins was also increased by 1.6- and
3.5-fold, respectively. In the meantime, expression of GST1
encoding a glutathione-S-transferase putatively involved
in the detoxification process, and that of PR3 and PR4 as
responsive to jasmonic acid/ethylene (JA/ET), was upregulated

by 2.7-, 3.3- and 1.3-fold, respectively. Data also showed a
low upregulation of the NCED2 gene involved in abscisic acid
biosynthesis (1.6-fold), while that of LOX9 was not upregulated
by N. parvum.

The ability of PTA-271 to enhance grapevine immunity
was addressed. Gene expression levels after pretreatment
with PTA-271 was similar to control plants, before pathogen
challenge (Figure 4 and Supplementary Figure S3). However,
after Np-Bt67 inoculation, bacteria-pretreated plants showed a
significant priming of PR2 (encoding a β-1,3-glucanase), NCED2
and PAL expressions compared to non-bacteria pretreated plants.
PR2 mRNA level was more markedly primed in the leaves
(23.7-fold). However, only slight differences were observed
regarding transcript levels of LOX9, GST1, and STS, while the
expression levels of PR1, PR3, PR4, and PR10 did not change
in bacteria-treated plants compared to control after pathogen
infection.
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FIGURE 2 | Antagonistic activity of B. subtilis PTA-271 toward the N. parvum strain Np-Bt67. The beneficial bacterium PTA-271 (Bs) and the N. parvum strain
Np-Bt67 (Bt67), co-inoculated on the opposite sides of PDA plates, were incubated at 28◦C (A) or 22◦C (B). Pictures of representative plates among nine were
taken from 4 to 13 days depending on mycelial growth. Top photographs are the plates without bacteria (pathogen control) and bottom ones are the plates
co-inoculated with pathogen and Bs. Antagonism effect is characterized by an inhibition zone between the bacterial colony (right side) and the fungus (left side).

FIGURE 3 | Detoxifying capacity of B. subtilis PTA-271 (Bs) toward the purified (R)-mellein (A–C) and (-)-terremutin (D–F) from N. parvum. Phytotoxin concentrations
were determined as remaining percentages in the bacterial incubating media either: (A,D) daily form MS medium containing PTA-271 (Bs) at 108 cfu/mL, or (B,E)
72 h post-exposure to two distinct bacterial densities 104 and 2 × 108 cfu/mL in MS, or (C,F) 72 h post-exposure to the two distinct incubating media
Murashige-Skoog medium (MS) and MgSO4 with Bs at 2.108 cfu/mL. Data are means ± SD of three independent experiments, each with triplicates. The toxin
controls (Ctrl) indicated none physicochemical disappearance. Phytotoxins were not detectable inside bacterial pellet. Vertical bars with different letters are
significantly different (Multiple Comparison procedures with Tukey’s test, P < 0.05).

N. parvum Phytotoxins Repress
PTA-271-Mediated SA- and
JA-Responsive Gene Expression in
Grapevine Plantlets
To focus on the repression of gene expression induced by PTA-
271 after toxin application, we first examined how the bacterium
affects gene expression in plantlets leaves. Data (Figure 5 and
Supplementary Figure S4) showed that PTA-271 alone induced
significant changes in the expression of genes responsive to JA/ET
(PR3, PR4, LOX9), SA (PR1, PR2, PR5, GST1, PR10) or abscisic
acid ABA (NCED2, involved in ABA synthesis) compared to
control plantlets. Transcript level was increased from 2.4- to
6.9-fold for JA/ET-responsive genes, from 2.0- to 5.8-fold for

SA-responsive ones, and by 4.3 for NCED2. Expression of PAL
and STS was also increased by 2.2 and 2.3-fold, respectively,
and to a lesser extent for CHI (chalcone isomerase) and NPR1.1
(non-expresser of PR1) reaching 1.3- and 1.9-fold expression,
respectively.

After a subsequent exposure to toxins, most of the defense
genes induced by PTA-271 were repressed. (-)-Terremutin
and (R)-mellein significantly repressed the expression of genes
responsive to JA/ET (PR3, PR4, LOX9) and SA (PR2, PR5, PR10),
and that of PAL and STS (involved in phenylpropanoid pathway).
(R)-mellein additionally repressed the expression GST1, another
gene responsive to SA. Expression of the SA-dependent PR1
gene was the sole gene still over induced in PTA-271 treated
plantlets after toxin application, as in control plantlets treated
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FIGURE 4 | B. subtilis PTA-271 strongly primes PR2 gene in leaves of grapevine cuttings after infection with the N. parvum strain Np-Bt67. Twelve weeks old
plantlets untreated or pretreated with PTA-271 were both infected with sterile PDA plugs (Control and Bs, respectively) or with mycelium plugs of Np-Bt67 (Ctl +
Np-Bt67 and Bs + Np-Bt67, respectively). Transcript levels of defense-related genes were monitored by qRT-PCR in leaves at 4 days post infection. Results are from
one representative replicate among three independent experiments showing the same trends. Different letters indicate significant differences. PR3 = class IV
chitinase (chit4c); PR4 = PR-4 type protein; LOX9 = lipoxygenase 9; PR1 = pathogenesis-related protein 1; PR2 = class I β-1,3-glucanase; PR5 = thaumatin-like
protein; GST1 = glutathione-S-transferase 1; PR10 = pathogenesis-related protein 10; PAL = phenylalanine ammonia lyase; STS = stilbene synthase;
NCED2 = 9-cis-epoxycarotenoid dioxygenase 2.

with both toxins. Expression of another SA-dependent GST1
gene was the sole gene still over induced in PTA-271 treated
plantlets after (-)-terremutin application, as in control plantlets
treated with (-)-terremutin. In contrast, expression of the ABA-
dependent NCED2 gene was the sole gene still over induced in
PTA-271 treated plantlets after each toxin application, while not
significantly in control plantlets treated with toxins.

(R)-Mellein and (-)-Terremutin Are
Mobilized or Accumulated Differently by
PTA-271-Pretreated Plantlets
To investigate the fate of phytotoxins in the incubating medium
of plantlets, control and PTA-271-pretreated plants were exposed
to (R)-mellein or (-)-terremutin at their root level. As shown
in Figure 6A, (R)-mellein quickly decreased in the MS growth
medium of control plantlets. The amount of (R)-mellein
decreased by about 83.5% within 24 h and by 97.5% after
48 h. In planta (Figure 6B), roots accumulated about 50% of

(R)-mellein within 72 h. Experiments with PTA-271-pretreated
plantlets showed a partial (R)-mellein removal even after 72 h
exposure (Figure 6A), thus confining 20% of (R)-mellein in the
incubating medium (Figure 6A), while only 20% of (R)-mellein
was accumulated inside the plantlet roots (Figure 6B).

Supplied (-)-terremutin also decreased significantly from
plantlets incubating medium (Figure 6C), especially after a 24 h
period of exposure, to reach about 35% from 48 h. At 72 h, no
apparent accumulation of (-)-terremutin was noticed in plantlet
tissues (Figure 6D). With PTA-271-pretreated plantlets, a similar
trend appeared for (-)-terremutin removal from the MS medium
(Figure 6C), without any apparent accumulation inside the plant
tissues (Figure 6D).

DISCUSSION

The contribution of (R)-mellein and (-)-terremutin to N. parvum
aggressiveness was strongly suspected in grapevine, considering
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FIGURE 5 | (R)-mellein and (-)-terremutin repress the B. subtilis-PTA-271-induced immune responses in grapevine plantlets. Eight weeks old plantlets untreated or
pretreated with PTA-271 were further challenged with MS medium (Ctl and Bs, respectively) supplemented with (-)-terremutin (Ctl+T and Bs+T, respectively) or
(R)-mellein (Ctl+M and Bs+M, respectively). Transcript levels of defense-related genes were monitored by qRT-PCR in plantlets shoots after 3 days of exposure.
Results are from one representative replicate among five independent experiments showing the same trends. A three-color scale was used to show the expression
level of each gene. Red shades indicate overexpression and deep red corresponds to an induction factor of 7.94 or more; white represents the basal expression
level and signifies that the expression level is not different from the Control; blue shades symbolize repression and dark blue corresponds to a 0.22-fold induction or
less. Legends for genes are as in Figure 4. CHI = chalcone isomerase; NPR1.1 = non-expresser of PR genes 1.

FIGURE 6 | Fate of (R)-mellein and (-)-terremutin from plantlets incubating medium or from medium of B. subtilis-PTA-271-pretreated plantlets. Eight weeks old
plantlets treated with PTA-271 were transferred in a new MS medium containing (R)-mellein (Bs + M) 350 µg/L (A,B) or (-)-terremutin (Bs + T) 750 µg/L (C,D). The
same experiment was performed with non-bacteria pretreated plantlets, then transferred on (-)-terremutin 750 µg/L (Ctl + T) or (R)-mellein 350 µg/L (Ctl + M).
Phytotoxin concentrations were determined either: daily in the plant culture media from 0 to 72 h (A,C), or 72 h post-exposure as percentage accumulated in shoots
(S) and roots (R) (B,D). Data are means ± SD of three independent experiments, each with triplicates (at least four plantlets by replicate). The toxin controls indicated
none physicochemical disappearance. Phytotoxins were not detectable inside bacterial pellet. Vertical bars with different letters are significantly different (Multiple
Comparison procedures with Tukey’s test, P < 0.05).

their detection in the wood and leaves of Botryosphaeria dieback
affected plants (Abou-Mansour et al., 2015) while their secreting
pathogens were exclusively wood-confined (Mugnai et al.,
1999). However, the role of such phytotoxins in Botryosphaeria
infectious process and their potential control by beneficial
microbes remain unknown. In this study, we used a N. parvum
strain that produces both (R)-mellein and (-)-terremutin, as
well as these purified toxins, to understand their role in the

N. parvum aggressiveness. We also investigated the capacity
of the beneficial bacterium B. subtilis PTA-271 to counteract
Botryosphaeria dieback symptoms, and explore whether the
bacterium can affect pathogen growth, detoxify pure toxins and
prime grapevine immunity after pathogen infection.

Our data provide evidence that N. parvum Np-Bt67
which produces high amount of (-)-terremutin provoked
Botryosphaeria dieback symptoms within 10 days on grapevine
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cuttings, including dead branch, canker and both external and
internal stem necrosis (Figure 1). Interestingly, after treatment
of cutting at the root level with PTA-271, the Botryosphaeria
dieback symptoms were significantly reduced. The PTA-271-
pretreated plants showed a reduced dead branch of 50% after
Np-Bt67 challenge, accompanied with a strong reduction of
canker and stem lesions. This study reports for the first time:
(i) the expression of a severe form of Botryosphaeria dieback
on Chardonnay plants in controlled conditions, and (ii) that
PTA-271 seems to be a very effective bacterium to protect
Chardonnay plants against a Botryosphaeria pathogen. This
protective effect appears to be related to the ability of the
bacterium to antagonize N. parvum by delaying its mycelial
growth, to detoxify both (R)-mellein and (-)-terremutin, and
to prime few defense genes including PR2 (a β-1,3-glucanase),
NCED2 (involved in ABA synthesis) and PAL at systemic
level after pathogen inoculation. Indeed PTA-271 was initially
isolated from grapevine rhizosphere, while inducing leaf defense
responses (Trotel-Aziz et al., 2008). But Santoyo et al. (2016)
indicates that all of the genera described as common inhabitants
of the rhizosphere, are also bacterial endophytes. Especially
Bacillus sp. is the most commonly isolated species from all kinds
of grapevine tissues including the wood of both Esca-foliar
symptomatic or asymptomatic plants (Bruez et al., 2015). In this
study, PTA-271 succeeds to protect grapevine. Whatever the
inhabiting zone of PTA-271 or its active molecules, PTA-271
impacts were sought both on mycelium and toxins of fungal
pathogen and on plant immunity.

The antagonistic activity of B. subtilis PTA-271 against Np-
Bt67 (Figure 2) showed some dependency on temperature,
since it is only effective at 28◦C. PTA-271 could thus impact
the life cycle of N. parvum, especially at 28◦C since it clearly
appears that PTA-271 grows less at 22◦C while using identical
bacterial densities at day 0. Thus the less fungal inhibition
at 22◦C might result from the fact that PTA-271 grows less
at 22◦C. This fungistatic effect might be explained by the
release of various antifungal compounds by PTA-271, including
surfactins or other lipopeptides which production was shown
to depend on temperature (Ongena and Jacques, 2008; Pinto
et al., 2018). Interestingly, PTA-271 can also detoxify the two
main phytotoxins of N. parvum to different extents (Figure 3).
The detoxifying activity of the bacterium seems to be more
active in a nutrient rich medium for (-)-terremutin, but not for
(R)-mellein. This suggests that (R)-mellein would be directly
metabolized by PTA-271, while (-)-terremutin would require a
co-substrate to be co-metabolized by this bacterium. This is
consistent with the short latency period needed for (-)-terremutin
mobilization from the medium, as already reported for some
organic pesticides (Cycon and Piotrowska-Seget, 2016). It has
been reported that bacteria can use root exudates such as catechin
and coumarin as co-substrates to detoxify recalcitrant organic
molecules in situ (Makova et al., 2006). It is thus speculated
that grapevine and beneficial bacteria might interact together
to improve detoxification process and then ensure an active
protection against Botryosphaeria dieback. However, in the case
of (R)-mellein, its detoxification rate by bacteria is characterized
by a long latency phase followed by a rapid disappearance, even

at a low bacterial density (104 cfu/mL). This latency period would
be necessary for bacteria to express its detoxifying pathways.

Our results also suggested that PTA-271 might prime the
expression of some plant defense genes responsive to different
phytohormone pathways (Figure 4). In leaves of control cuttings
challenged with Np-Bt67, some genes were slightly up-regulated,
especially PR2, PR5, PR10, as SA-responsive genes (Dufour
et al., 2013; Naznin et al., 2014; Caarls et al., 2015), while
the expression of PR4, LOX9, as JA/ET responsive genes
(Hamiduzzaman et al., 2005; Naznin et al., 2014) remained low.
This suggests that the early activation of SA-signaling during
pathogen’s biotrophic phase could antagonize the expression
of JA-dependent-defenses useful for grapevine once pathogen
entered its necrotrophic phase as indicated by Yang et al.
(2015). This could result from the pathogen strategy to overcome
host defenses and thus promote disease. In the same sense, a
late and weak defense’s expression has been already observed
in grapevines developing Botryosphaeria dieback symptoms in
vineyards (Spagnolo et al., 2014). In PTA-271-pretreated plants,
PR2 was highly primed after pathogen inoculation, and to a
weakest extent for LOX9 as JA-dependent, GST1, PAL, and
STS associated to secondary metabolism, or NCED2 involved in
ABA biosynthesis. Interestingly, the expression of PR2 gene is
described to be regulated by various phytohormones such as SA,
JA, and ET (Liu et al., 2010). Up to date, it is still unclear how the
SA-induced cellular changes can influence JA-inducible responses
(Caarls et al., 2015). Pretreatment with PTA-271 might thus up-
regulate PR2 expression in a JA-dependent way. PR2 encodes a
β-1,3-glucanase, which could play an important role in grapevine
defense, either directly, through the degradation of pathogen
cell wall, or indirectly, by releasing oligosaccharide elicitors
that could induce additional plant defenses (Renault et al.,
2000). Although this priming effect essentially but indisputably
concerns more PR2 following Np-Bt67 challenge, it does not
counter balance the PTA-271 priming capacity toward grapevine
pathogens. Indeed, primed plants usually show no enhanced
expression of phenotypic defense traits, but they respond faster
or more strongly following the pathogen challenge inoculation
(Conrath et al., 2006; Goellner and Conrath, 2008), as observed
for PR2 with PTA-271 treated cuttings at this time point of
analysis (4 dpi). Verhagen et al. (2011) also showed a PTA-
271 capacity to induce slight plant leaf defense responses, but
further potentiated upon B. cinerea challenge (from 3 to 7 dpi,
using a plantlet model). We also showed (Trotel-Aziz et al.,
2008) that PTA-271 can stimulate JA/ET-dependent defenses in
grapevine against the necrotrophic fungus B. cinerea. Regarding
the expression of NCED2 primed by PTA-271 upon pathogen
challenge, our data cannot exclude a possible contribution of
ABA biosynthesis to an enhanced JA biosynthesis (Adie et al.,
2007) that remains to be further elucidated.

Deciphering now grapevine immune response using plantlets
directly exposed to (R)-mellein and (-)-terremutin (Figure 5), our
data showed that application of (R)-mellein and (-)-terremutin
resulted in up-regulation of the SA-responsive genes PR1 and
GST1, respectively (Devadas et al., 2002). GST1 is also part
of the array of defense-related genes induced in response to
oxidative burst produced after pathogen infection (Bhattacharjee,
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2012). Contrary to SA-responsive genes, the expression of JA/ET-
responsive genes remained weak as shown previously during
grapevine-Np-Bt67 interaction, or even down-regulated by (-)-
terremutin (i.e., PR3). This can be supported by the fact that
(-)-terremutin is a derivative of 6-methyl-SA (Guo et al., 2014)
as a mobile signal easily hydrolysable to active SA (Park et al.,
2007; Kumar and Klessig, 2008). It is thus tempting to correlate (-
)-terremutin to the necrotrophic stage of Np-Bt67 lifestyle, and to
speculate the mimicking of SA effect to antagonize JA-dependent
defenses. In contrast, (R)-mellein induced both the SA-responsive
PR1 and PR5 and to a weaker extent the JA/ET-dependent
PR4 gene. Thus, (R)-mellein produced by N. parvum might
be mainly in link with the biotrophic and early necrotrophic
stages of pathogen with hemibiotrophic lifestyle (Duan et al.,
2014; Ross et al., 2014; Yang et al., 2015). In PTA-271 pretreated
plantlets (Figure 5), both JA/ET- and SA-responsive genes were
up-regulated, as well as an ABA biosynthetic gene (NCED2) and
phenylpropanoid pathway genes (PAL, STS) in in vitro-plantlets.
These data are in agreement with those of Trotel-Aziz et al. (2008)
using the same plantlet model. However, exogenous application
of (-)-terremutin and (R)-mellein repressed the expression of
almost all of the PTA-271 up-regulated host-defense-genes. The
enhanced expression of GST1 by PTA-271 was weakly repressed
by (-)-terremutin, suggesting that GST could take part to the
detoxification process of (-)-terremutin or maybe in the redox
regulation in SA/JA crosstalk. Some authors have indicated that
overexpression of GST1 might mediate redox changes to prevent
some pathogen aggressive molecules to mimic SA-signaling to
overcoming host immunity (Tada et al., 2008; Vidhyasekaran,
2015). Interestingly, up-regulation of NCED2 by PTA-271 was not
altered by fungal toxins, emphasizing the role of ABA as a central
component to overcome toxin effects by a possible enhancement
of JA synthesis (Adie et al., 2007; Mohr and Cahill, 2007; Spoel
and Dong, 2008). Many studies reported that endogenously
accumulated SA antagonizes JA-dependent defenses, thereby
prioritizing SA-dependent resistance over JA-dependent defense
(Pieterse et al., 2012; Van der Does et al., 2013). Indeed PR1
was the sole gene still over-induced in PTA-271 pretreated
plantlets exposed to each pure toxin. This is consistent with
our hypothesis of a SA mimicking effect to antagonize the
host JA-dependent defenses. Deciphering the extend of cross-
communication in the hormone signaling pathways, through fine
tuning of transcriptional programs, would thus enable to better
understand the mechanisms contributing to grapevine basal and
induced resistances to GTD pathogens. The potential roles of
GST1 overexpressed in the presence of (-)-terremutin, and of
NCED2 upregulated in the presence of PTA-271, would now
merit a greater attention.

PTA-271 beneficial effect might also target grapevine
detoxifying capacity on GTD-secreted phytotoxins. Control
plantlets can mobilize both (R)-mellein and (-)-terremutin when
exogenously applied at the root level (Figure 6). (R)-Mellein
is entirely mobilized and may be accumulated in planta in its
native chemical form, while (-)-terremutin was partly mobilized
and was not accumulated in planta. In contrast, in PTA-271-
pretreated plantlets, only (R)-mellein mobilization was slightly
reduced. Treatment with PTA-271 might thus slow down the

(R)-mellein uptake by grapevine plantlets. The distinct chemical
structures of each toxin still remain to be investigated (i.e., toxin
conjugates), as well as the mechanisms slowing down (R)-mellein
entry in plantlets, to better understand how PTA-271 might exert
its beneficial effects on grapevine’s detoxifying capacity.

CONCLUSION

Altogether, our results provide evidences that (-)-terremutin and
(R)-mellein are usefull molecules for N. parvum that can secrete
them inside the host to fully express its virulent character. Once
inside the plant (-)-terremutin and (R)-mellein may reprogram
grapevine immunity enabling the pathogen to overcome host
defenses and thus promote disease. However, the beneficial
bacterium PTA-271 significantly attenuated the Botryosphaeria
dieback symptoms, by antagonizing N. parvum growth, inducing
plant systemic resistance as shown by the strong PR2 priming
among the few host defense responses in the tested time point,
and detoxifying both (R)-mellein and (-)-terremutin produced by
Np-Bt67.
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FIGURE S1 | Toxicity assessment of (R)-mellein and (-)-terremutin toward
B. subtilis PTA-271 (Bs) in 24 h. PTA-271 was sprayed on PDA plates containing
one central phytotoxin drop (5 µL) from 0 to 60 mg/L for (R)-mellein (M0 to M60)
or (-)-terremutin (T0 to T60).

Frontiers in Plant Science | www.frontiersin.org 11 January 2019 | Volume 10 | Article 25

https://www.frontiersin.org/articles/10.3389/fpls.2019.00025/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2019.00025/full#supplementary-material
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00025 January 23, 2019 Time: 17:27 # 12

Trotel-Aziz et al. Biocontrol to Thwart Botryosphaeria Phytotoxins

FIGURE S2 | Toxicity assessment of (R)-mellein and (-)-terremutin toward
in vitro-plantlets. Eight weeks old plantlets were exposed to MS medium
containing (R)-mellein or (-)-terremutin at concentrations ranging from 0 to
1500 µg/L. Three days post-exposure (dpe) to phytotoxin, toxicity was assessed
through maximum quantum yield of photosynthesis (Fv/Fm), fresh weight and
pigment concentrations. The maximum photosynthetic capacity of the plants was
obtained by measuring the Fv/Fm parameter given by a PAM-Pulse Amplitude
Modulated fluorimeter equipped with the Modfluor v2.00 software (Hansath,
London, United Kingdom) according to the recommendations of Genty et al.
(1990). The content of chlorophylls a, b, and carotenoids was obtained by
colorimetric assay (spectrophotometry at 470, 652.4, and 665.2 nm) after
pigments extraction in pure methanol (20 min at 65◦C) and quantified according to
Wellburn (1994) formulas. Data are means ± SD of three independent
experiments, each with four replicates. None bars were headed with asterisks,

indicating none significant differences (Multiple Comparison procedures with
Tukey’s test, P < 0.05).

FIGURE S3 | B. subtilis PTA-271 primes some defense-related genes in leaves of
grapevine cuttings after infection with the N. parvum strain Np-Bt67. Legend as in
Figure 4. Three-color scale as in Figure 5, with deep red corresponding to an
induction factor of 23.71 or more, and dark blue corresponding to a 0.55-fold
induction or less.

FIGURE S4 | (R)-Mellein and (-)-terremutin repress the B.
subtilis-PTA-271-induced immune responses in grapevine plantlets. Different
letters indicate significant differences. Legend as in Figure 5.

TABLE S1 | Primer sequences used for qRT-PCR analysis of defense-related
genes.
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