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Bamboo are woody grass species containing important economic and ecological
values. Lei bamboo (Phyllostachys violascens) is a kind of shoot-producing bamboo
species with the highest economic yield per unit area. However, identifying different
varieties of Lei bamboo based on morphological characteristics is difficult. Microsatellites
play an important role in plant identification and genetic diversity analysis and are
superior to other molecular markers. In this study, we identified 18,356 expressed
sequence tag-simple sequence repeat (EST-SSR) loci in Lei bamboo transcriptome
data. A total of 11,264 primer pairs were successfully designed from unigenes of all
EST-SSR loci, and 96 primer pairs were randomly selected and synthesized. A total
of 54 primer pairs were used for classifying 16 Lei bamboo varieties and 10 different
Phyllostachys species. The number of polymorphism alleles among the 54 primer
pairs ranged from 3 to 12 for P. violascens varieties and 3 to 20 for Phyllostachys.
The phylogenetic tree based on polymorphism alleles successfully distinguished 16
P. violascens varieties and 10 Phyllostachys species. Our study provides abundant EST-
SSR resources that are useful for genetic diversity analysis and molecular verification of
bamboo and suggests that SSR markers developed from Lei bamboo are more efficient
and reliable than ISSR, SRAP or AFLP markers.

Keywords: Phyllostachys violascens, transcriptome, microsatellites, varieties, genetic diversity

INTRODUCTION

Bamboo is an economically important member of the woody grasses. It includes 88 genera and
more than 1,400 species worldwide; 34 genera and 534 species are in China (Wu and Raven, 2006).
Given the considerably fast growth, strong carbon fixation capability and edible shoots, bamboo
has worldwide ecological and economic value.

The classification and nomenclature of plants are mainly based on morphological characteristics,
such as roots, stems, leaves and flowers (Lichtenthaler, 1987). Flower morphology is the most
important (PDCress and Staden, 1998). The identification and classification of bamboo is vital for
germplasm collection and conservation (Soderstrom and Calderon, 1979). However, bamboo has
a long juvenile phase, with the flowering interval of some species being up to 120 years (Janzen,
1976), which prevents the classification of bamboo when using only flower morphology. Moreover,
morphological characteristics sometimes are not very reliable because they are affected by ecological
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factors, which leads to confused classification and reclassification
of various accessions of bamboo (Das et al., 2007).

Microsatellites or simple sequence repeats (SSRs),
characterized by high polymorphism, wide distribution in
genomes, co-dominance and reproducibility, have been
frequently used for genetic analysis (Goldstein and Schlötterer,
1999). For instance, 69 varieties of taro (Colocasia esculenta) were
successfully separated by expressed sequence tag-SSR (EST-SSR)
primers (You et al., 2015). Eleven varieties of Lycium were
verified by EST-SSRs (Chen et al., 2017). SSR markers have been
used to study genetic diversity, genetic distance and classification
of bamboo species (Kaneko et al., 2008; Mukherjee et al., 2010;
Lin et al., 2011; Jiang et al., 2013; Dong and Yang, 2014; Zhao
et al., 2015; Abhishek et al., 2016).

Lei bamboo (Phyllostachys violascens) has higher economic
value per unit area than other bamboo species with edible
shoots (Liu et al., 2001). Lei bamboo has many varieties that
differ in shoot time, shoot yield per unit area and pathogen
resistance. Lin et al. (2011) classified different P. violascens
varieties by using inter-simple sequence repeat (ISSR), sequence-
related amplified polymorphism (SRAP), and amplified fragment
length polymorphism (AFLP) markers. However, some varieties
cannot be differentiated by just one molecular marker method
(Lin et al., 2011). Therefore, the development of accurate and
efficient molecular markers for classifying different varieties in
Lei bamboo is important.

Previously, we sequenced the transcriptome of P. violascens
(GenBank Accession No. SRX5137626) by using Illumina Truseq
and assembled 132,678 unigenes. We identified EST-SSR loci as
well as primer pairs based on these data. The major objective
of this study was to develop efficient EST-SSR markers for
classifying Lei bamboo varieties as well as Phyllostachys species.
These markers may be applicable for bamboo taxonomic study,
genetic diversity analysis and evolutionary research.

MATERIALS AND METHODS

Plant Materials
Young leaves of 16 varieties of P. violascens (cv. Jianye,
cv. Panggan, cv. Violascens, cv. Notata, cv. Zaoyuanzhu,
cv. Flavistriatus, cv. Hongke, cv. Xiye, cv. Viridisulcata, cv.
Linanensis, cv. Kuoyeqingtou, cv. Anhuihongke, cv. Flavicaginis,
cv. Qingke, cv. Atrovaginis, cv. Anhuiensis) were sampled
from the Bamboo Garden of Zhejiang Agriculture and Forestry
University (Lin et al., 2011). Young leaf samples of nine
Phyllostachys species (P. glabrata, P. verrucosa, P. bambusoides, P.
aurea, P. edulis, P. virella, P. rivalis, P. parvifolia, and P. nidularia)
were collected from the China Bamboo Expo Park in Huzhou,
Zhejiang province, China.

Marker Loci Detection and SSR Primer
Pair Design
MicroSAtellite (MISA)1 was used for SSR mining in the
assembled contigs (Thiel et al., 2003). The minimum number

1http://pgrc.ipk-gatersleben.de/misa/misa.html

of repeats used to select the SSRs was 10 for mononucleotide
repeats, 6 for dinucleotide repeats, and 5 for tri-, tetra-, penta-,
and hexanucleotide repeats. The Perl program Primer3.02 (Rozen
and Skaletsky, 2000) was used to design Primer pairs with the
design principles of length 18 to 27 bp and about 20 bp, melting
temperature (Tm) 57◦C to 63◦C, and PCR product size 100 to
280 bp.

DNA Extraction and EST-SSR Marker
Amplification
Total genomic DNA was extracted by using the cetyltrimethyl
ammoniumbromide method (Porebski et al., 1997) and verified
by electrophoresis on 1% agarose gel. PCR amplification was
carried out in a 20-µl volume containing 50 ng template DNA,
2 µl of 10 × PCR buffer (Mg2+ free), 1.2 µl MgCl2 (20 mM),
1 µl sense primer (10 pmol), 1 µl anti-sense primer (10 pmol),
2 µl dNTP (10 mM), and 0.5 µl rTaq DNA polymerase (5 U,
TAKARA). The PCR program consisted of an initial step of 95◦C
for 5 min, followed by 33 cycles of 95◦C for 30 s, 55◦C for 30 s,
and 72◦C for 1 min and a final extension at 72◦C for 10 min
(Rossetto, 2001). The PCR products were loaded on 1-mm-thick
non-denaturing gels of 8% polyacrylamide (Acr/Bis = 29:1). The
electrophoresis buffer contained 1 × TBE (100 mM Tris–HCl,
83 mM boric acid, 1 mM Na2EDTA, pH 8.0) (Han et al., 2010);
the 20 bp DNA Ladder Dye Plus (Takara Biomedical Technology,
Beijing) was used as a size standard.

PCR Product Sequencing
Silver nitrate stain gel was used for selecting suitable SSR
primers (Panaud et al., 1996). The desired bands were accurately
excised and subsequently purified by using the SanPrep Column
DNA Gel Extraction Kit (Sangon, Shanghai) (Tang et al., 2010).
The purified DNA bands were ligated with pMD-18-T vector
(TaKaRa, Beijing) and sequenced by the Sanger method (Tang
et al., 2010; Zhai et al., 2014). The PCR sequence similarity rate
was more than 98% with transcriptome sequences applied.

Data Processing and Genetic Analysis
According to PAGE results, the absence or presence of bands
was scored as zero or one in all SSR loci and two binary
qualitative data matrices were generated (Rohlf, 2000; You et al.,
2015). Dendrograms were constructed on the basis of these
two binary qualitative matrices with the method unweight pair
group method with arithmetic mean (UPGMA) selected for
clustering and maximum number of tied trees set to 100. Before
dendrogram construction, pairwise coefficients were calculated
according to the Jaccard similarity coefficient method (Kosman
and Leonard, 2005). The above-mentioned data processing,
coupled with principal coordinates analysis (PCoA) involved
using NTSYSpc v2.1 (Rohlf, 2000). The bootstrapping analysis
repeat was 1,000 performed with the software FREETREE
V.0.9.1.50 (Pavlícek et al., 1999). Bootstrap values more than
50 are listed on the dendrogram (Zhu et al., 2012; Zhai et al.,
2013). In this study, we constructed three phylogenetic trees:

2https://sourceforge.net/projects/primer3/
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16 P. violascens varieties independently, 10 Phyllostachys species
independently and combination with 16 P. violascens varieties
and other 9 Phyllostachys species.

RESULTS

Distribution and Frequency of SSR
Markers
A total of 132,678 transcriptome sequences were examined
by MISA software, and 18,356 EST-SSRs loci were identified
in P. violascens. Among these SSRs, 2,239 (11.76%) unigenes
contained more than one SSR locus, and 903 SSRs were presented
in compound formation (Appendix 1 and Appendix 2). These
SSRs were further divided into six different types based on
unit size, that is, 9,099 mononucleotide repeats (mono-), 4,449
dinucleotide repeats (di-), 4,521 trinucleotide repeats (tri-),
235 tetranucleotide repeats (tetra-), 39 pentanucleotide repeats
(penta-) and 13 hexanucleotide repeats (hexa-), accounting
for 49.57, 24.24, 24.63, 1.28, 0.21, and 0.07% of total SSRs,
respectively (Appendix 1).

The repeat motif length of SSR ranged from 10 to 60 bp. The
most abundant was 10 bp (4,462, 24.31%), followed by 15 bp
(3,362, 18.32%), 12 bp (2,166,13.0%), and 18 bp (1,878, 10.23%).
The 60 bp length was the longest SSR loci (Appendix 1).

Within these SSRs, 95 motif types were detected (Appendix 1).
The frequency distribution of the 20 most abundant SSR classical
repeat motifs is in Table 1. Among those motif types, A/T was the
most abundant (43.73%), followed by AG/CT (15.93%) and C/G
(5.84%).

A total of 11,264 primer pairs were successfully designed by
using Primer 3.0 and two Perl scripts of p3_in.pl and p3_out.pl3

from 15,600 unigenes. However, the software primer modeling
failed for 6,189 unigene sequences (Appendix 2). We randomly
selected 96 SSR primer pairs from all SSR primer pairs. Finally,
54 optimal primer pairs (Appendix 3) were used to study a
series of filters: (1) unsatisfactory amplification, (2) unspecific
amplification, and (3) sequence less than 98% similarity in
comparison with the transcriptome. The optimized SSRs were
used to analyze the genetic diversity of 16 P. violascens varieties
and 10 Phyllostachys species.

Genetic Diversity of P. violascens
We used 54 primer pairs for the 16 P. violascens varieties,
generating 399 alleles, which were treated as informative loci
for dendrogram construction (Appendix 4). The number of SSR
alleles was 3 to 12 for one primer pair, and each primer pair had
6.88 alleles, on average.

To test the genetic similarity between varieties, we used
PCoA based on SSR data and found three groups among the
16 P. violascens varieties (Figure 1A). The phylogenetic tree
was further constructed by using NTSYSpc (Figure 2A); the
resulting Jaccard similarity coefficient ranged from 0.73 to 0.98.
Four groups were uncovered in previous research according to
genetic diversity of P. violascens varieties by combining ISSR,

3http://pgrc.ipk-gatersleben.de/misa/primer3.html

SRAP and AFLP marker analysis (Lin et al., 2011). For better
comparison with previous study, the index 0.78 was selected
and four main groups were detected in present study: groups I,
II, III, and IV. Group I contained 10 varieties. Among the 10
varieties, P. violascens cv. Jianye and cv. Linanensis exhibited
far genetic distances from other eight varieties; P. violascens
cv. Hongke and cv. Xiye had very close genetic distance,
with similarity index about 0.98. Among the four varieties
in group II, the greater distant genetic distance was between
P. violascens cv. Kuoyeqingtou and three other varieties. The
groups III and IV contained only one variety each. These results
were largely consistent with the PCoA results, with groups
III and IV in the dendrogram clustered into one group on
PCoA.

Genetic Diversity of Phyllostachys
Bamboo
The above 54 primer pairs were used with the 10 Phyllostachys
bamboo species to verify their cross-amplification potential
in Phyllostachys. The SSR primer pairs of P. violascens were
perfectly applied in other Phyllostachys species. The number
of SSR alleles ranged from 3 to 20, with an average of 11.3
per primer pairs. A total of 656 loci were used to construct
the dendrogram of Phyllostachys; no missing data were found
in the study (Appendix 5). As shown in the phylogenetic tree
(Figure 2B), the Jaccard similarity coefficient ranged from 0.67
to 0.84. In this study, the 10 Phyllostachys species were separated
into three distinct groups: I, II, and III. Group I contained five
species: P. violascens, P. glabrata, P. verrucosa, P. bambusoides,
and P. aurea. The Jaccard similarity coefficient was up to 0.84
between P. violascens and P. glabrata. Group II included two
bamboo species: P. edulis and P. virella. Group III contained three
bamboo species: P. rivalis, P. parvifolia and P. nidularia. Similar
grouping results were shown by PCoA (Figure 1B).

DISCUSSION

Characterization of EST-SSRs in
P. violascens
Simple sequence repeat markers have been widely used in
fingerprint construction, genetic diversity analysis and molecular
marker-assisted breeding because of their high polymorphism,
repeatability and codominant inheritance (Ran et al., 2010;
Feng et al., 2018; Shi et al., 2018; Wang et al., 2018).
However, traditional methods for developing SSR markers are
not very efficient (Tang et al., 2010). Next-generation sequencing
technologies can generate massive data, which are good resources
for developing SSR markers in many species including bamboo
(Tang et al., 2010; Abhishek et al., 2016; Zhang et al., 2017).
Nevertheless, SSRs in P. violascen have not been reported because
of lack of transcriptome or genome sequences. In this study, we
identified 18,356 EST-SSR loci from 15,600 unigenes, and a total
of 11,264 primer pairs were designed based on the transcriptome
of P. violascens. Overall, 54 primer pairs were successfully used
for identifying 16 P. violascens varieties and 10 Phyllostachys
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FIGURE 1 | Principal coordinates analysis (PCoA) of Phyllostachys violascens based on EST-SSR data for (A) 16 P. violascens varieties and (B) 10 Phyllostachys
species.

species, so the transcriptome sequences were good resources for
developing SSR markers.

The frequency of SSRs in P. violascens was 1/4.55 kB when
including the mononucleotide repeats, which was close to wheat
(1/5.46 kB) (Peng and Lapitan, 2005) but significantly higher than
in Arabidopsis (1/13.83 kB) (Cardle et al., 2000). Various factors
may affect SSR frequency, including search criteria, software,
as well as species properties (Sorrells, 2005). Tectonic activities
and climate fluctuations during species evolutionary history
contributed to the production and accumulation of genetic
variations. Multi-locus plastid phylogenic analyses of bamboo
revealed that the Bambusoideae began to diversify at about 43.26
million years ago (Mya), followed by the rapid radiation of

the Arundinarieae at about 12–14 Mya, which was supposed to
be induced by the important strengthening of the East Asian
monsoon in the late Miocene (Zhang et al., 2016). Therefore, the
high frequency of SSRs detected in P. violascens may be due in
part to the long and complex evolutionary process of bamboo.

The types of repeat motifs in this study were not uniformly
distributed in the P. violascens transcriptome database (Table 1).
Di- and tri-repeats were the most predominant when excluding
mononucleotide repeats (Table 2). This result differed from
Ma bamboo (Dendrocalamus latiflorus), in which tri-repeats are
the most abundant (Abhishek et al., 2016). In addition, the
proportion of tetra-, penta- and hexanucleotide repeats was
significantly lower in P. violascens than D. latiflorus (Table 2).
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TABLE 2 | Comparison of frequency of microsatellites of Phyllostachys violascens,
Dendrocalamus latiflorus, Arabidopsis thaliana, and Triticum aestivum.

Plant P. violascens D. latiflorus A. thaliana T. aestivum

Total 9,257 22,305 1,070 43,598

Di- 48.06% 16.10% 26.27% 20.77%

Tri- 48.84% 47.70% 73.04% 74.26%

Tetra- 2.54% 26.10% 0.72% 3.36%

Penta- 0.42% 6.90% 0 1.12%

Hexa- 0.14% 3.30% 0 0.50%

The differentiation between P. violascens and D. latiflorus was
likely caused by distant genetic distance. Phyllostachys belong
to the Arundinarieae, a kind of temperate woody bamboo,
and Dendrocalamus is affiliated with tropical woody bamboo
Bambuseae (Soreng et al., 2014). These two tribes diversified at
the beginning of the bamboo evolutionary history and preserved
distinct genetic elements (Zhang et al., 2012, 2016).

As shown in Table 1, the AG/CT motif was the most
predominant di-repeat (17.11%), which was similar to pigeonpea
(16.7%) (Dutta et al., 2011) but higher than wheat (8.7%) (Peng
and Lapitan, 2005) and lower than taro (52.86%) (You et al.,
2015). Among tri-repeats, CCG/CGG was the most abundant
(5.91%), which was consistent with previous findings in taro
(You et al., 2015), rice and maize (Cardle et al., 2000). The
AGC/GCT type (2.94%) was the second most abundant tri-
repeat, which was not common in taro (You et al., 2015), rice
or maize (Cardle et al., 2000). Previous studies showed that the
tri-repeat type of CCG/CGG was a rare motif in dicotyledonous
plants but the most abundant repeat type among the tri-repeats
in monocots (Varshney et al., 2002; You et al., 2015). Our results
verified that many CCG/CGG repeats was a common feature of
monocot plants and the high G/C content plays an important
role in monocots (Morgante et al., 2002; Rota et al., 2005;
Wang et al., 2010).

Genetic Diversity in 16 P. violascens
Varieties
The genetic diversity of P. violascens germplasm has been unclear.
The classification of 16 varieties of P. violascens previously
involved using three distinct types of molecular markers -
ISSR, SRAP and AFLP individually – but failed (Lin et al.,
2011). When combining ISSR, SRAP and AFLP, these 16
varieties could be identified successfully (Lin et al., 2011). In
the present study, the 16 varieties of P. violascens could also be
distinguished by polymorphic EST-SSR markers, and significant
genetic variations between different P. violascens varieties were
uncovered. These results implied that SSR markers and the
combination of ISSR, SRAP and AFLP markers were more
sensitive than using the ISSR, SRAP and AFLP markers alone.
Considering the convenience of experimental design, the SSR
marker method is more applicable than ISSR, SRAP and AFLP
combined.

In addition, both PCoA and phylogenetic analysis revealed
similar grouping results for the 16 P. violascens varieties based
on SSR markers (Figures 1A, 2A). The cluster results for SSR

markers were similar to combining ISSR, SRAP and AFLP
markers but differed little when using ISSR, SRAP, and AFLP
markers alone (Lin et al., 2011). Hence, the SSR method and
combining ISSR, SRAP and AFLP markers were more reliable
than using ISSR, SRAP and AFLP markers alone. Meanwhile,
the cluster result of SSR was more similar with AFLP than with
ISSR and SRAP markers, which suggests that the AFLP method
was more reliable than ISSR and SRAP methods in classifying
P. violascens.

Transferability of EST-SSR Markers and
Genetic Diversity Among 10
Phyllostachys Species
To test the versatility of EST-SSR markers derived from
P. violascens, the 54 SSR primer pairs were further used to
analyze the genetic diversity of 10 Phyllostachys species. Clear
bands were generated and higher transfer rate (100%) was
detected by using these SSR primer pairs as compared with
Elymus sibiricus (22.40%) (Zhou et al., 2016), Chrysanthemum
nankingense (20%) (Wang et al., 2013), Juglans mandshurica
(30.8%) (Hu et al., 2016), and Neolitsea sericea (16.3%) (Chen
et al., 2015), which implies the availability of SSR markers
in the genus of Phyllostachys. Furthermore, a phylogenetic
tree encompassing all 16 P. violascens varieties and 9 other
Phyllostachys species used in this study was also built based on
the EST-SSRs markers (Appendix 6). The results showed that all
varieties of P. violascens were clustered into one main group and
kept separate with the other Phyllostachys species. The internal
branch structure of the common dendrogram was consistent with
the separate phylogenetic analysis based on the 16 P. violascens
varieties (Figure 2A) and 10 Phyllostachys species (Figure 2B),
confirming the versatility and robustness of the EST-SSR markers
in distinguishing different varieties of P. violascens and different
Phyllostachys species. Therefore, these EST-SSR markers might
be used for classifying different species in Phyllostachys and even
different genera of bamboo.

Figure 2B shows that these 54 SSR primer pairs developed
from P. violascens could successfully distinguish the 10
Phyllostachys species. Phyllostachys has been divided into Sect.
Phyllostachys and Sect. Heterocladae according to the Flora of
China (Wu and Raven, 2006). In this study, 10 species of
Phyllostachys were divided into three groups by using SSR
markers of P. violascens. Groups I and II belonged to Sect.
Phyllostachys and group III belonged to Sect. Heterocladae.
However, species from groups II and III were clustered together.
One reasonable explanation was that Sect. Phyllostachys is
not monophyletic. Alternatively, given the lack of informative
characters, the existence of incomplete lineage sorting, and/or
interspecies hybridization, it is not unexpected that bamboo
species from different sections clustered together based on
molecular markers and genome data (Zhang et al., 2016). As well,
the classification of Sect. Phyllostachys and Sect. Heterocladae
in the Flora of China mainly depended on morphological
characteristics, such as whether the blade was horizontal, reflexed
or erect and whether culm sheaths were covered with spots.
Further studies of the classification of Sect. Phyllostachys and Sect.
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Heterocladae based on both morphological characteristics and
molecular analysis are needed.
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