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Tree and shrub branches subjected to cantilever loads such as intercepted snowfall
undergo, in addition to the familiar instantaneous elastic bending, a conspicuous
retarded-elastic bending, which is commonly 30–50% of their instantaneous bending
and occasionally even more. The resultant bending creep that occurs after loading
also often includes a slow, time-dependent irreversible bending. These phenomena
occur quite generally among woody plants of different major biomes, taxonomic
groups, and structural types. We give some of branch bending viscoelasticity’s basic
physical properties such as load dependence and stress relaxation. These properties
belong to the secondary walls of branches’ xylem (wood) cells; some properties differ
notably from those reported for primary cell walls, a difference for which we propose
explanations. A method for separating the overlapping time courses of retarded-elastic
and time-dependent irreversible bending shows that multiple retarded-elastic (“Kelvin”)
elements of branches span a wide range of retardation times (a retardation spectrum,
approximate examples of which we calculate), and that irreversible bending can occur
in different cases either only in the first few h after loading, or more extensively through
24 h, or (rarely) for several days. A separate time-independent irreversible bending,
permanent set, involving a substantial yield stress, also occurs. In three species of
shrubs rapid irreversible bending began only several (up to 24) h after loading, implying
an unusual kind of viscoelasticity. Deductions from the dynamics of bending suggest
that retarded elasticity can help protect branches against breakage by wind gusts during
storms. Irreversible bending probably contributes both to the form that tree and shrub
crowns develop over the long term, involving progressive increase in the downward
curvature and/or inclination of branches, and also to certain other, more specialized,
developmental changes.

Keywords: biophysics, mechanics, viscoelasticity, retarded elasticity, irreversible strain, branch bending, cell-
wall, instantaneous elasticity

INTRODUCTION

The elasticity of woody-plant branches toward bending under cantilever loads seems obvious, and
a number of papers have used bending moduli, measured or inferred for branches, to analyze or
predict branches’ behavior under loadings such as by snow (e.g., Schmidt and Pomeroy, 1990),
ice, wind (e.g., Sellier and Fourcaud, 2009), or further shoot growth (e.g., Alméras et al., 2002).
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However, the viscoelastic (time-dependent) aspects of branch
bending seem, from the botanical literature, to be largely
unappreciated. These aspects include a rather conspicuous
retarded-elastic component, often accompanied by a certain
amount of irreversible bending. Although the botanical literature
contains elegant accounts both of plant axial bending (Niklas and
Spatz, 2012, pp. 161–174) and of viscoelasticity (Niklas, 1992,
pp. 93–102; Niklas and Spatz, 2012, pp. 134–144), the only plant
material that these accounts mention as showing viscoelasticity
is the thin primary walls of growing cells. We have found almost
no descriptions of woody branch viscoelasticity in the botanical
literature, or elsewhere.

The occurrence, in wood, of retarded elasticity was recognized
long ago (Kitazawa, 1947; Grossman, 1954; Kollmann, 1961;
Kollmann and Coté, 1968). This is relevant to woody branch
bending because these structures typically owe their mechanical
support mainly to their xylem’s (wood’s) thick secondary cell
walls. Although some contemporary expositions of wood’s
mechanical properties do not even mention the time-dependent
component of its elasticity (e.g., Mattheck and Kubler, 1995;
Bowyer et al., 2007), it has been studied rather extensively
(e.g., Schniewind, 1979; Dinwoodie, 2000; Ouis, 2002, and
refs. there cited), and is recognized as “mechanical damping”
in the literature on swaying of tree trunks in winds (e.g.,
Sellier and Fourcaud, 2009). In order specifically to characterize
the mechanical basis of branch bending, Hogan and Niklas
(2004) made bending measurements on strips of linden (Tilia
americana) wood. These nicely demonstrated this wood’s
viscoelasticity, including both retarded-elastic and irreversible
bending, but did not include other features, nor the species
breadth, upon which we report here. Several more recent studies
model wood cells’ viscoelastic behavior (Engelund and Svensson,
2011; Huc and Svensson, 2018, and refs. there cited).

We first encountered viscoelastic branch bending while
investigating the bending responses of arctic tundra shrubs to the
imposition and removal of snow loads. In testing, for comparison,
woody species from other latitudes and biomes, we found that the
kinds of viscoelastic behavior found in arctic shrubs mostly occur
quite generally in branches from all biomes. This paper describes
these kinds of behavior (plus a few notable exceptions that we
discovered), illustrated by data from a number of species from
different biomes. The concepts that embrace this information are
needed for analyzing fully the behavior of tree and shrub branches
and trunks in response to the kinds of loading they are subject
to, as well as for explaining certain developmental aspects of the
over-all form of many tree and shrub crowns.

As background and for use in what follows, Figure 1 depicts
the type of mechanical models employed in rheological theory
(Findley et al., l976/1989) to represent, by analogy, viscoelastic
behavior and to derive its quantitative characteristics. When a
pulling (tensile) or a pushing (compressive) load is imposed
upon the model in Figure 1A, which is called the “standard
solid” (Findley et al., l976/1989) or “general linear substance”
(Jaeger, 2012), it will undergo an immediate elastic extension
or contraction (respectively) of the upper, unrestricted spring
(instantaneous elastic strain), followed by a gradual, time-
dependent further movement (“creep”) as the dashpot (piston in

FIGURE 1 | Rheologically conventional mechanical models representing
quantitative features of viscoelasticity. Arrows show the directions in which
tensile or compressive stress is applied. Double lines represent rigid yokes
that couple two mechanical components together in parallel. (A) “Standard
solid” model consisting of a Kelvin element (below: retarded elasticity), in
series with an unretarded spring (above: instantaneous elasticity). (B) The
same in series with an unrestricted dashpot (“steady-flow viscosity”) enabling
the material to also deform irreversibly (“Burgers model”). (C) “Generalized
standard solid” model containing, in series, multiple Kelvin elements with
different viscosities and/or compliances.

viscous fluid-containing cylinder), under the load that initially
acts on it, extends or contracts, allowing the spring that is in
parallel with it to do the same. This gradually shifts the imposed
load from the dashpot onto that spring until this latter comes
to bear the entire load, ending further displacement. If the
model is then relieved of its load, the unrestricted spring will
immediately return to its original length (instantaneous elastic
recovery), but the second spring (restricted by the dashpot)
can do so only by the load that it still bears, time-dependently
driving a reverse displacement of the dashpot. This latter recovery
shows that the previous post-loading creep was reversible, and is
hence termed a “retarded elastic” strain. This kind of behavior
is characteristic of woody branch bending, as shown below. The
parallel combination of a spring and a dashpot in Figure 1A is
termed a “Kelvin” or “Voigt” element.

The occurrence of irreversible bending during branch
cantilever loading can be included in the rheological model by
inserting in series, as at the top in Figure 1B, a second, “steady-
flow” dashpot. This, being unrestricted by any in-parallel spring,
will extend or contract whenever a load is imposed, adding an
irreversible (unrecoverable) strain to the elastic (recoverable)
strains developed in the other elements of the system under a
load. This is called a “Burgers” model (Findley et al., l976/1989).
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The modeled elements just noted reflect molecular mechanisms
for supporting (or resisting) imposed forces and for recovering
after being relieved from them.

Besides compression and extension of xylem cell wall material
on the lower and upper sides, respectively, of a branch subjected
to a cantilever load, bending could also involve changes in the
shape of wood cells or even some degree of collapse or of
separation of cells on the respective sides, or also flow, through
the stem cross section from one side of the stem toward the
other, of water that is located within the cell walls or lumens
(cell chambers) (“poroelasticity,” cf. Hu and Suo, 2012). The
total of these effects, to whatever extent they occur and resist or
allow bending, are collectively represented by the conventional
viscoelastic parameters reviewed above. One other, the St-Venant
element, will be introduced in the Discussion.

Although in work with artificial materials such as synthetic
polymers the various kinds of viscoelastic behavior are regarded
as purely mechanical (physical) processes, with unchanging
parameters, the objects tested here are living, biological
specimens whose behavior can be subject to biologically caused
variations. While the present measurements deal with physical
behavior, certain observed changes that we encountered in
branch viscoelasticity that may be of biological origin will be
noted later; variability and reproducibility of the ordinary elastic
behavior of these specimens may also, unknowingly, be affected
by biological variations.

The goal of this study is to quantitatively evaluate the
viscoelastic behavior of branch bending under cantilever loads,
across a range of woody species. Although, depending on the
branch, either a standard solid or a Burgers model qualitatively
imitates the branch bending studied here, it turns out that
quantitatively neither model agrees at all accurately with branch
bending. We show below that a considerably more complicated
model, involving a spectrum of Kelvin elements with different
time constants, plus at least two kinds of irreversible bending, is
needed to account for branch bending. The biological significance
of these components is considered in the Discussion.

MATERIALS AND METHODS

Plant Material
Stem segments usually between 25 and 30 cm long and
6–9 mm in diameter were harvested from shrubs and from the
lateral branches of trees, located either in natural vegetation
in the states of Alaska, Washington, California, Arizona or
New Mexico, or (for natives of other states or countries) in
greenhouses or in outdoor horticultural plantings in one of
the mentioned states. After removing any leaves, the segments
were kept moist within plastic bags at 3–5◦C until used. Species
identities were ascertained from general botanical knowledge
of the authors and/or by reference to local floras (Hultén,
1968; Hitchcock and Cronquist, 1973; Carter, 1997; Cody, 2000;
Karlsson, 2000; Baldwin et al., 2012) and, for greenhouse and
horticultural plantings, to manuals of cultivated plants (Bailey,
1949; McMinn and Maino, 1956; Rehder, 1986/2001; Sibley,
2009). Generally at least 4 branches from any given species,

usually from different individuals, were tested in the standard
bending assay. Supplementary Table S1 gives source and native
habitat information for species for which individual bending data
are given here.

Bending Assay
The basal end of a stem segment 25–35 cm long and usually
between 6 and 10 mm in diameter was clamped firmly in an
apparatus (Figure 2) after a pin about 1.5 cm long had been
inserted into the xylem at the segment’s apical end to act as a
position pointer. On record paper mounted immediately behind
the stem (Figure 2G) we marked the pointer pin tip’s elevation
initially, and after a load initially giving usually 3–4 cm of
downward deflection was hung momentarily from the segment’s
apical end and immediately removed (giving a “permanent set”
deflection), and then over time when, and after, the same load
was re-applied and left in place, and when and after it was
later removed. All bending experiments described here were
performed at about 21◦C, except where noted otherwise.

Each stem segment’s deflections were later measured, on the
record, to the nearest 0.5 mm and entered into a spreadsheet from
which time course plots could be obtained.

The fresh weight of each branch segment was determined
before and after the bending test, and later its dry weight
by drying to constant weight at 60◦C, to verify that, despite
some evaporative water loss during the bending tests, the
segment’s water content remained >30% of its dry weight, a
range over which branches’ viscoelastic properties are essentially
independent of water content (Dinwoodie, 2000, pp. 54–55).
Its length and its apical, midpoint and basal diameters were
also measured.

Additional, significant details of our bending measurement
technique are given in Supplementary Material.

Stress Relaxation
A stem segment long enough that its tip would extend just beyond
the bending apparatus’ frame (Figure 2D) and rear panel (E)
was mounted in the apparatus, with record paper positioned
immediately behind the stem’s pointer tip by sliding the paper-
bearing plexiglas panel (F) outward (to the right in Figure 2).
The segment’s tip was connected vertically to a spring balance
sensitive to ±2 g (Homs Model 2 Laboratory Scale, 1000 × 10 g
scale, Douglas Homs Corp., Belmont, CA, United States) which
was held directly above the stem tip by a 3-prong clamp that was
attached to the portion of the clamping rod (C) that extended
above the top of the apparatus’ frame. By raising the spring
balance at zero time, the stem tip was deflected upward and its
elevation was marked immediately on the record paper, and the
spring balance’s load was recorded. The distance of the spring
balance above the branch tip was adjusted, over time, to maintain
the tip at its initial post-deflection elevation, while the load
registered by the spring balance was recorded at intervals between
the mentioned adjustments.

Load Dependence
This was determined by applying successively increasing loads to
a given specimen. For each load the sequence of steps described
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FIGURE 2 | Apparatus used for bending experiments. (A) Branch segment being measured, with apically inserted pin whose elevation is recorded on record paper
G immediately behind the specimen. (B) Weight (load). (C) Rod to which branch segment’s basal end, protected by a hard, semicylindrical polyethylene sleeve, is
clamped by the bar-to-bar clamp. (D) Frame made from 2 × 4” timber. (E) Rear plywood panel, in front of which (behind branch segment) rides plexiglas panel (F),
to which record paper (G)’s corners are attached by “Scotch” tape. Wood strips (H) hold (F) vertical, but allow it to be slid laterally (arrows) for non-overlap of records
from successive parts of experiment. (J) Stabilizing feet project beyond sides of frame. Width of apparatus, 45 cm.

above under “Bending assay” was followed, except that the branch
was unloaded 30 min after post-loading creep had begun, and
post-unloading recovery was followed also for just 30 min, after
which the next higher load was applied and the same sequence of
steps was followed.

After the final 30 min recovery period, the branch was loaded
with a moderate weight (substantially below the maximum that
had previously been applied) which remained in place for 12 h
or more, to attain nearly complete response of most of the
specimen’s Kelvin elements. It was then unloaded and followed
for another 12 h or more until its retarded recovery was complete.
This gave the ratio (r) between its retarded recovery after, and
before, the first 30 min after unloading. Based on the geometry
of exponential progress curves for alternating 30 min periods
of load and no load, as compared with complete loading and
unloading equilibration, the retarded recovery during each of the
30 min unloading periods after different loads was multiplied by
the factor (1 + 2r) to give approximately what the full retarded-
elastic recovery deflection for that load would have been if that
loading had lasted long enough for complete equilibration with
the load and if the subsequent post-unloading recovery had gone

to completion. The factor (1+ 2r) holds if the complete retarded-
recovery’s first t1/2 was not longer than the loading and unloading
interval (30 min in this case), as was true for the branch segments
tested in this work.

The increments in permanent set and time-dependent
irreversible bending during the 30 min loadings were very small
(compared to the instantaneous, creep, and recovery deflections).
The most useful display of these irreversible bending data was to
plot the cumulative deflection, i.e., the sum of all the individual
irreversible increments, from each successive load, from the first-
imposed load up to and including that for the given data point.

Retarded Recovery Curve-Fitting
The curve-fitting program of KaleidaGraph1 was used, employing
either of two methods. The first method started with the sum of
6 terms, each like equa. (1), with initially pre-chosen bi values
spread evenly over the time range of the recovery time course
data, for which terms the computer calculated the set of ai values
that gave the best fit to the data points that could be obtained

1Synergy Software (2014) KaleidaGraph, Version 4.5.2 (Mac). www.synergy.com
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from those bi values, and then repeated this calculation iteratively
after the operator adjusted some of the bi values (and/or added
an additional exponential term) on a trial-and-error basis until
the best possible fit, usually a near-perfect or perfect fit, was
obtained. A “perfect fit” means a calculated curve that passes
directly through, or at least touches, all of the recovery time
course data points.

In the second method the computer calculated both ai and
bi values for 4 terms like equation (1), which it summed as in
equation (2) (the curve-fitting program could handle at most
only 4 bivariate terms). This method gave less perfect fits, but
is mentioned because all its coefficients’ values were obtained
without any operator direction. Its results agreed qualitatively
with the Method 1 results in that its terms were spread, by the
computer’s choice, over the several log decades of the recovery
curve data, as deduced from data in Table 1, below. Method 2’s
less perfect agreement with the data points indicated that more
than 4 terms were needed to obtain a perfect fit.

Additional information about details of our curve-fitting are
given in Supplementary Material, and an example of retarded-
recovery curve-fitting by each of the above methods is shown in
its Supplementary Figure S1.

Retardation Spectra
Recovery values [ε(t)s] for any given branch’s post-unloading
retarded-recovery time course’s best curve-fit equation (most
perfect fit that we obtained, to the recovery data), were, without
that equation’s CL factors, entered into the computer using
a time scale of 2.154-fold intervals (=101/3) extending over
the ca. 4-decade time range of the data. Each such set was
differentiated by the computer with respect to log10t over each
of the mentioned intervals to obtain, following equation (4), an
estimate of fractional compliance per unit of log time [ρ(τ)] for
each interval. The computer then drew a smooth curve, of its
choice, through a plot of these calculated points.

RESULTS

Examples of typical responses, to a cantilever load, of branch
segments from several woody species at 21◦C are shown in
Figure 3. The bending response to a load and to its subsequent
removal consists of the following components:

(a) A usually small, and often negligible, “permanent set” or
irreversible bending upon initially applying the load and
immediately removing it. For most of the branches in the
data included here, at the loads we normally employed,
permanent set was too small to appear in the plots
presented. It became significant at higher loads (see later).

(b) An immediate (“instantaneous”) bending when the load
was reapplied and left in place.

(c) A time-dependent additional bending (“creep”) of
gradually declining rate that in most cases reached
completion within about 24 h, but sometimes only declined
by that time to a low but non-zero rate.

(d) When the load was then removed, an immediate, partial
recovery from bending that was generally equal, or close,

to (b), indicating that (b) and (d) represent instantaneously
reversible, i.e., “instantaneous” elastic, bending.

(e) A time-dependent, post-unloading further recovery
toward the branch tip’s initial elevation, which ceased
usually within about 24 h after unloading. This recovery
was qualitatively, and in many cases quantitatively,
a mirror image of the time-dependent post-loading
creep (c), indicating that time-dependent recovery, and
presumably a corresponding part of (c), are due to retarded
elasticity. The recovery occurring during this phase of
the experiment is sometimes called “creep recovery” or
“strain relaxation.”

(f) A usually small, and sometimes negligible, deflection,
below the branch tip’s initial (post permanent set)
elevation remained after post-unloading recovery
ceased. This remainder represents an irreversible
deformation that occurred during the period subsequent
to loading. This will hereafter be called time-dependent
irreversible bending.

Whenever significant time-dependent irreversible bending
was found at the end of a loading/unloading test, the creep
component (c) under load was larger than the retarded elastic
recovery (e) after unloading, by about this same amount.
This suggests that when significant post-loading irreversible
bending is detected after a load has been imposed and
then unloaded, this irreversible strain developed gradually,
along with the development of retarded-elastic bending during
phase (c), but did not increase after unloading (phases d
and e). This agrees with rheological theory which holds that
irreversible strains develop only while external forces are being
imposed (Findley et al., l976/1989). Thus, when irreversible
bending occurs during post-loading creep (c), this creep is
evidently a composite of retarded-elastic plus time-dependent
irreversible bending (both of these falling within the general term
viscoelasticity).

The occurrence of retarded, in addition to instantaneous,
elastic bending of intact, attached branches of trees or shrubs
out of doors can easily be demonstrated by hanging a suitable
weight onto a distal part of an inclined or horizontal branch
system and measuring, over time, the weight’s elevation above
the ground surface (Figure 4). The extent of deflection here was
much greater than in Figure 3 (even though loads were similar),
because here an entire branch system was bending, rather than
the relatively short, isolated stem segments used in our bending
apparatus (Figure 2). Minor air motions that occur frequently
outdoors significantly perturb the elevation of an entire branch,
probably explaining Figure 4 curve’s departure from the simple
concave form in Figure 3.

The time courses in Figure 3 exemplify a general phenomenon
in woody branches. We have obtained bending records
comparable to Figure 3 from many other woody species
from all the major natural biomes. Branches from shrubs
and trees gave mean retarded-elastic relative to instantaneous
compliances that were not significantly different. However,
the ratio of mean retarded-elastic to instantaneous elastic
compliance (expressed as a%) was significantly larger in
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FIGURE 3 | Time courses of cantilever load-induced bending of branch
segments, ca. 30 cm long, from three tree species. (A) Populus tremuloides
(“Poptre”); (B) Liriodendron tulipifera (“Lirtul”); (C) Umbellularia californica
(“Umbcal”). Loads were applied at zero time, and removed at ↑. The first data
point below 0 deflection, at zero time, shows the “instantaneous” (≤3 s)
deflection. Subsequent marker points show subsequently occurring creep
(post loading), and instantaneous and retarded recovery post unloading. The
early, rapid, post- loading and -unloading parts of these curves are very steep
because of the long time scale needed to show the later, much slower parts of
the creep and recovery responses. “Irrev.” denotes irreversible bending
(double-headed arrows) that had occurred during the period under load.

hardwoods (flowering plants or Angiosperms) (47.3% ± 1.14
(SE), n = 168 species) than in softwoods (Gymnosperms, mostly
conifers) (34.4% ± 1.74, n = 31 species) (1-way ANOVA,
F1,197 = 21.7202, P = < 0.0001). For irreversible bending rate,
on the other hand, because of much greater variation in the
data a difference between hardwoods and softwoods was only
marginally significant (mean for hardwoods 2.30± 0.286 % per h
and for softwoods 1.13 ± 0.083; 1-way ANOVA, F1,197 = 3.0343,
P = 0.0831).

Although the bark of woody branches almost invariably
contains mechanical tissues (phloem fibers; cork), the bending
of temperate and boreal tree and shrub branches more than

FIGURE 4 | Bending of an attached branch of the shrub Salix glauca,
outdoors, when a 266 g weight was hung from the branch 125 cm from its
basal end. Distance of the weight’s attachment point above ground was
measured repeatedly to record the response to loading and unloading.

about 6 mm in diameter (as tested here) seems to be governed
mainly by the elastic properties of their xylem. In a few cases
we were able to strip off the bark from such a branch and
found that both instantaneous and retarded components of its
elastic compliance increased only modestly. With one branch of
the willow Salix pulchra, for example, bark removal increased
the instantaneous compliance (ratio of bending deflection to
load) by 17% and the retarded compliance by 25%, whereas
stripping another branch of this species increased both of
these compliances by only 7%. Removing the stem’s most
peripheral mechanical layer would be expected to increase
the stem’s bending compliance, since this layer undergoes the
greatest strain (extension or compression) of any of the stem’s
tissue layers during bending and therefore tends to bear the
largest tensile or compressive stress (on the stem’s upper or
lower sides, respectively). However, that these stems’ bending
behavior was basically the same before and after removing their
bark implicates their xylem as principally responsible for their
elastic behavior.

Stress Relaxation
Materials that have significant retarded as well as instantaneous
elasticity, as in Figure 1A, can undergo stress relaxation, a time-
dependent decline in stress after the object has been deformed
(strained) to a certain extent and is then held at that level
of strain while measuring the load that holds it at that strain
(Findley et al., l976/1989). Study of Figure 1A will show that
the standard solid model should undergo stress relaxation under
these circumstances.

Figure 5 gives data showing that under a constant bending
strain, stress relaxation occurred in branches of two woody
species which, like all those we have tested, possess instantaneous
plus retarded elasticity (as in Figure 1A).

As will be evident from Figure 1B, if a material can develop
irreversible strain under an imposed stress, this straining capacity
would also contribute to stress relaxation (e.g., Cosgrove, 1997).
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FIGURE 5 | Stress relaxation in cantilever-loaded branch segments from
(A) Salix glauca (“Salgla”) and (B,C) Betula nana (“Betnan”). After initial load
was applied (first marker point), the branches were kept at the
thereby-imposed deflection of about 4 cm while the load that maintained this
deflection was recorded. A repeat run using the branch segment in (B) gave
an almost identical time course. (C) Is for a different branch than that in (B).
Note the offscale ordinate zero-load points for the plots (A,B), showing that
(unlike C) the load remained far above zero at the end of the experiment,
when virtually no further relaxation was occurring.

If the material possesses unrestricted ("steady-flow") viscosity, as
the Burgers model (Figure 1B) does (its upper dashpot, which
is not restricted by any in-parallel spring), stress at constant
strain should eventually relax down to zero. However, the plots in
Figures 5A,B suggest that the load on these branches was relaxing
only down to a level moderately below the initially imposed load,
not to zero. This suggests that these branches did not possess a
steady-flow bending viscosity, or if they do, that this viscosity
increased, with time and/or strain, toward infinity. However, with
another branch (Figure 5C) of the same species as in Figure 5B
(Betula nana), a much larger relaxation occurred. The load seems
to have been declining toward 0, although it had not completely
reached 0 after 4.5 days of relaxation. This branch apparently
behaved, at least qualitatively, like a Burgers model (Figure 1B).

To explore this further, the time course of time-dependent
irreversible bending must be obtained, to do which the time
course of retarded-elastic bending must first be considered.

Time Characteristics of Retarded-Elastic
Bending
Because of the abovementioned overlap, during bending creep,
between retarded-elastic and irreversible bending, the time
courses of these respective deflections must be separated to
obtain either one. The time course of a branch’s retarded-elastic
deflection should be obtainable from the time course of post-
unloading recovery, because in that part of the experiment no
external force is acting to cause irreversible deformation. A basic
point from the Boltzmann superposition principle of rheology
(Findley et al., l976/1989), and from the mechanical models in
Figure 1, is that the time course of a retarded recovery should
be the exact reverse of the time course by which the given
retarded-elastic strain was generated.

Figure 6A gives, on an expanded time scale, the earlier part of
a retarded-elastic recovery, plotted as the difference between the
branch tip’s elevation at any given time (from immediately after
unloading) and its final elevation ca. 24 h after unloading. Now
the time course of retarded-elastic bending, or of retarded post-
unloading recovery, for the “standard solid” model of retarded
elasticity (Figure 1A) should be a simple, exponential approach
(equation 1, below) to the finally attained elevation (Findley

FIGURE 6 | Post-unloading, retarded recovery of a branch segment from
Liriodendron tulipifera. (A) Linear plot of the earlier part of the time course (the
first ∼1/3 of the time to complete recovery, comprising ∼95% of the total
recovery deflection), successive half-times [t1/2(1), t1/2(2), etc.] being marked
by arrows. Difference between the tip’s elevation at various times after
unloading, and its final elevation when recovery ceased about 26 h later, is
plotted (“deflection yet to occur”). (B) Log10 time plot of the same data, with
arrows marking the t1/2s, plus t0.1, and t1/4 (times for 1/10 or 1/4,
respectively, of the complete response to occur).
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et al., l976/1989). Although the progress curve in Figure 6A
may superficially look exponential, it is actually far from it. An
exponential curve approaches its end point with a constant half-
time (t1/2), i.e., a constant time interval to progress from any
given point on the curve to the point that is half as far away from
the variable’s final value. Arrows placed at successive t1/2 points
along the curve in Figure 6A show that the data conflict markedly
with this. Values of t1/2 intervals beyond the first one increase
progressively and substantially.

Plots of these retarded-elastic recovery data against the log
of time (e.g., Figure 6B) generally fell close to, and sometimes
almost exactly upon, a straight line. This has been found
previously for the creep recovery (“strain relaxation”) of various
artificial viscoelastic materials (Krauss and Eyring, 1975, pp. 208–
223) and for related behavior of various biological objects. Data
obtained from log-time plots of duplicate recovery tests on 11
woody species are given in Table 1. The mean time course
(Figure 7) was obtained by averaging fractional recovery times
(Table 1’s columns), for all these recoveries, after normalizing
the data by dividing each fractional time (in min) by that run’s
first t1/2 to correct for different time courses’ midpoints being
positioned differently on the log time scale (this normalization
yielded, for most of the fractional time means, about half the
variance of the raw data). This plot (Figure 7), not surprisingly,
is almost exactly log-linear over most of the range of its data.
It, and the successive t1/2 intervals given in Table 1, show that
the progressive increase in t1/2 values over the course of branch

FIGURE 7 | Average retarded-elastic recovery curve computed from the data
in Table 1. Marker points show the means and SEs (error bars, n = 22, except
17 for 4th t1/2) for the fractional time (FTV) values (t0.1, t1/4, 1stt1/2, 2ndt1/2,
etc.) used in Table 1, each of which was normalized (giving relative [RFTV]
values) by dividing by its curve’s 1st t1/2, putting the 1st t1/2 at the 1 point of
the abscissa’s logarithmic relative-time scale. The values used for successive
time points beyond the 1st t1/2 are the total time up to that point, i.e., the 1st
t1/2 for the given curve, plus the successive t1/2 intervals shown for it in
Table 1 up to that for the t1/2 in question. The error bar shown for the 1st t1/2

is its SE, relative to the mean 1st t1/2, for this FTV in the raw data, before
normalization of the data by dividing by 1st t1/2 values (the normalized 1st t1/2

of course has a zero SE).

retarded-elastic recovery seen in Figure 6A is quite general
among the tested species, although the actual t1/2 values varied
rather widely among them (Table 1).

These findings imply that branches’ retarded-elastic behavior
is due to multiple viscoelastic elements having t1/2s that are
spread over much of the recovery time course beyond its first
t1/2. This spread, furthermore, extends down through most or
all of the early part of the recovery curve preceding its first
t1/2. This is shown by the times required for these curves to
progress 1/10 of (t0.1), or 1/4 of (t1/4), the way to completion
(Figure 7 and Table 1) being much shorter than for a simple,
exponential response (single Kelvin element). For the latter, from
equa. (1) below, t0.1 = 0.301∗t1/2, and t1/4 = 0.584∗t1/2. The
mean t0.1/t1/2 and t1/4/t1/2 ratios given in the next to last row of
Table 1 and plotted in Figure 7 are much less than these numbers,
and significantly so since their SEs are much smaller than their
differences from the respective exponential ratios. These large
departures from the early-time form of a simple exponential
curve imply that the retarded elastic response includes Kelvin
elements with t1/2s far below the response’s first over-all t1/2, i.e.,
close to, and/or possibly even into, the curve’s zero-time or what
in the present type of assay is recorded as the “instantaneous,”
elastic response. Similar retarded-elastic behavior occurs in many
synthetic polymeric materials (Ferry, 1980).

Curve-Fitting Analysis of
Retarded-Elastic Recoveries
The rheological model (Figure 1C) that can duplicate the
foregoing kind of progress curve, called a “generalized Kelvin
Model” (Findley et al., l976/1989), consists of multiple Kelvin
elements, in series, having a wide range of “retardation times” (τ),
the temporal parameter generally employed in the mathematical
theory of rheology (τ = 1.443∗t1/2; the t1/2 is simpler for visually
evaluating progress curves like Figure 6 so is mainly used here).
This model includes (like Figure 1A) a single un-retarded spring
to provide for instantaneous elasticity. If, to allow for irreversible
bending, an unrestricted dashpot in series with the other elements
were also included, as at the top of Figure 1B, the model would
be called a generalized Burgers model.

We confirmed that the model in Figure 1C applies to woody
branch retarded-elastic bending by matching, by computer
curve-fitting, their recovery time courses to the equation that
applies to Figure 1C. The retarded-elastic recovery of a single
Kelvin element that has come into elastic equilibrium with a
certain load L and is then unloaded, has the simple exponential
form:

ε (t) =CL∗e−bt (1)

where ε(t) is the bending strain (away from the final elevation)
that remains at time t after unloading, C is the compliance of the
element’s spring, and b is the element’s time coefficient (reciprocal
of its retardation time, τ). Since during a retarded-elastic recovery
the Kelvin elements in a generalized Kelvin model (Figure 1C)
all strain independently of one another, post-unloading behavior
should be the sum of a set of equations (1) where i is a given
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TABLE 1 | Time course parameters for post-unloading retarded elastic recovery of cantilever-bent stems.

Species1 t0.1 t1/4 1st t1/2 2nd t1/2 3rd t1/2 4th t1/2
4

min2

Adenostoma fasciculatum 0.61 ± 0.17 4.8 ± 1.6 64 ± 28 285 ± 5 388 ± 102 675 ± 135

Arctostaphylos glandulosa 0.83 ± 0.38 6.6 ± 6.6 75 ± 15 417 ± 126 820 ± 11 7547

Diospyros virginiana 0.33 ± 0.01 1.8 ± 0.2 27 ± 8 208 ± 53 365 ± 15 400 ± 75

Genista monspessulana 0.72 ± 0.22 12.1 ± 0.9 123 ± 28 300 ± 50 423 ± 8 422 ± 57

Liriodendron tulipifera 0.20 ± 0.02 0.44 ± 0.01 3.9 ± 0.6 31 ± 3 149 ± 14 208 ± 19

Metasequoia glyptostroboides3 0.24 ± 0.12 1.0 ± 0.6 55 ± 36 388 ± 352 532 ± 439 927,8

Morus alba 0.23 ± 0.05 1.2 ± 0.1 8.8 ± 3.2 65 ± 23 143 ± 21 187 ± 13

Populus tremuloides 0.26 ± 0.05 1.2 ± 0.2 15 ± 1 284 ± 99 700 ± 160 5207

Pseudotsuga menziesii3 0.27 ± 0.12 1.0 ± 0.35 13 ± 7 82 ± 40 214 ± 92 253 ± 58

Salix glauca 0.28 ± 0.04 1.1 ± 0.2 11 ± 2 79 ± 4 177 ± 15 1707

Umbellularia californica 0.36 ± 0.11 1.0 ± 0.3 23 ± 14 245 ± 165 425 ± 175 3007

Mean of (tx/1st t1/2) ± SE5 0.022 ± 0.0034 0.092 ± 0.0085 1.0 ± 0 8.2 ± 1.2 19.9 ± 3.7 21.8 ± 3.9

Ratio for exponential curve6 0.301 0.584 1 1 1 1

Numbers are the intervals (in min) between the time of unloading and either the one-tenth time (t0.1), the quarter-time (t1/4), or the first half-time (1st t1/2) or, to the right
of this, the intervals between subsequent half-times (time intervals for the branch tip to progress half way, toward its final elevation, from its elevation at the preceding
halfway point, cf. Figure 6).
1Sources (provenances) of the branches used in this experiment are given in Supplementary Table S1.
2Means for recovery time courses for two different branches of each species,±average deviation from this mean, except for numbers lacking a±, for which see footnote 4.
3These species are softwoods (conifers); all the rest are hardwoods (flowering plants).
4 In 5 of the species (lacking a±) one of the two recovery time courses dropped so close to 0 by the time of a 4th t1/2 interval that this interval could not be reliably
estimated. The similarity, between most of the 4th t1/2 intervals that were estimated, and the preceding 3rd t1/2 interval, would be expected for the final, exponential tail
of a multi-exponential-term retardation spectrum.
5Mean of the ratios of each of the numbers above, to the same row’s 1st t1/2 value, ± SE for this set of ratios, n = 22, except 17 for the 4th t1/2.
6Ratio of the given interval to the 1st t1/2, for a simple exponential time course.
7A 4th t1/2 interval was estimated for one out of the two recovery time courses, for the reason given in footnote 4, so there is no associated ± value.
8The 3rd t1/2 interval for this recovery was also 92 (the two recoveries differed greatly, quantitatively, from one another).

element’s number and n is the total number of elements:

ε (t) =
n∑

i=1

CL∗aie−bit (2)

and where C is now the branch segment’s total retarded-elastic
compliance (sum of the compliances of all its Kelvin elements), ai
is the fraction of that compliance that is associated with element
i, and bi is that element’s time coefficient, the remaining symbols
being as in equation (1).

We obtained excellent fits of this form for recovery time
courses from nine different species (seven hardwoods and
two softwoods), using a curve-fitting computer program that
calculated the best-fitting ai values for a set of six or seven
exponential terms having a range of bi values (see Materials
and Methods). Supplementary Figure S1 gives an example of
recovery time course data fitting by our procedures.

For all of the nine species the component exponential
elements’ t1/2 s were spread over 3–4 decades of the log t scale,
in all cases extending down to t1/2s near or below 6 s. These
results agree with the previously stated implication, from the data
in Figure 6 and Table 1, that branches’ retarded elasticity must
involve multiple Kelvin elements with t1/2s spread over several
decades of log time.

The Retardation Spectrum
For viscoelastic materials generally, and therefore probably for
woody branches in particular, it appears that a continuous set

of numerous Kelvin elements with successively longer t1/2s
best accounts for their elastic retardation, the several discrete
elements with particular t1/2 values that might best match a
retardation time course (as found above) being neither unique
nor necessarily qualitatively different, physically, from one
another. This continuum of retarded elements is termed a
retardation spectrum. In defining it, viscoelastic theory (Findley
et al., l976/1989; Ferry, 1980; Christensen, 1982/2003; Kaschta
and Schwartzl, 1994, and refs. there cited) replaces equation
(2)’s fractional compliance terms ai with a retardation-spectral
compliance function, here denoted ρ(τ), which is integrated over
a range of retardation time corresponding to the extent of the
time course data, time usually being expressed as log10 time
values:

ε (t) =
∫ k

i=j
CL∗ρ (τ)∗ e−t/τd

(
log τ

)
(3)

where symbols are as in equation (2) except that j and k are,
respectively, the lower and upper log time limits of the time
course data, and the coefficient bi is replaced by 1/τ, the reciprocal
of the retardation time (τ) of any component infinitesimal Kelvin
element, whose fractional compliance per unit of log retardation
time is ρ(τ).

To accurately deduce a ρ(τ) function from a retarded-
elastic recovery time course ε(t) is mathematically complicated
(Christensen, 1982/2003, and refs. last cited above), and generally
involves higher-order derivatives (e.g., Bazant and Xi, 1995) for
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FIGURE 8 | Approximate retardation spectra calculated for bending of branch
segments from (A) Liriodendron tulipifera, (B) Morus alba, (C) Pseudotsuga
menziesii, and (D) Metasequoia glyptostroboides. The plotted lines are
smooth curves drawn, by computer, through calculated derivative points
2.15-fold apart, spread over the abscissa’s entire time range. These points
were obtained from best-fit curve-fitting equations as described in the text,
but (for clarity) are omitted from this figure. Spectra obtained for additional
species are shown (along with the calculated points on which they are based)
in Supplementary Figure S1. Abscissa values are τ in h, plotted on a log10

scale.

which “static” time course measurements like the present ones
are not sufficiently precise. However, Christensen (1982/2003),
p. 69 showed that a simple formula (his equation 4.71) like the
following can be used to at least roughly calculate ρ(τ)s from ε(t)
values:

ρ (τ) =dε (t)
/

d
(
log10 t

)
(4)

(the α term in Christensen’s equation 4.71 disappears when
differentiation is by the log of t, as here, instead of by t itself
as in his equation). This type of approximation has been used
previously to calculate stress-relaxation spectra (Cosgrove, 1989,
and refs. there cited). Following this formula we used computer-
calculated log-time derivatives of our above-described curve-
fitting equations to obtain approximate retardation spectra for
branch bending, 4 of which are shown in Figure 8. Spectra
for 5 other species whose recovery time courses we analyzed
(Supplementary Figure S2) mostly resembled one or another
of those in Figure 8. All but one had a peak between 1 and
10 h of retardation time, and either a second peak around
0.01 h, or a relatively flat shoulder over the intervening range of
retardation time.

We are now in a position to examine irreversible
branch bending.

Time Course of Irreversible Bending
The type of irreversible bending of branches that we refer to
as permanent set occurs upon an initial, brief application and
removal of a load. If the same load is briefly re-applied it causes no
additional strain. These features imply that permanent set is time-
independent, the usual physical meaning of the term permanent
set (e.g., Rebouah and Chagnon, 2014).

Turning to the time-dependent irreversible bending that
occurs during creep under a steady load, according to rheology’s
superposition principle (Findley et al., l976/1989) this creep
is the sum of the retarded-elastic and irreversible bendings if
they could be followed separately. Therefore, to get the time
course of irreversible bending one should subtract, from the post-
instantaneous deflection at any given time point during creep,
the amount of retarded recovery that occurred at that same (now
post-unloading) elapsed time in the branch’s recovery curve like
Figure 6, since this represents the time course of retarded-elastic
bending unaccompanied by any irreversible bending.

Application of this principle to branches depends on the
timing characteristics of their retarded-elastic behavior being
unchanged between the post-loading period of creep and the
post-unloading period of retarded-elastic recovery. While this
seems generally to be true for artificial polymers, it can be verified
for the biological material of branches only at the level of mutual
consistency between the creep and the strain-recovery curves.
Consistency here means at least that the recovery’s time course
must involve no more deflection, in any period, than the creep’s,
and just as much less deflection as the irreversible bending
deflection that remains after recovery is completed (provided that
no other bending-affecting conditions, such as possibly a freezing
temperature or some biological action on bending, occur prior
to the end of the recovery period). We found this consistency to
be very generally true of branch bending, but with a rare type of
exception noted below.

Figure 9 gives examples of the kinds of irreversible-bending
time courses that we found for different branches, using this
method. In what follows, the “times” numbers within parentheses
give the number of times that each of these different patterns
was encountered among branches from different species. These
patterns included irreversibly bending rapidly just after loading,
but declining within a few h either to (Figure 9A) a zero rate (5
times), or to (Figure 9B) a lower, non-zero rate that remained
approximately steady out to 24 h (6 times); and (Figure 9C)
irreversibly bending almost linearly with time from the start of
the loading test, the rate only gradually declining (5 times). With
respect to irreversible bending the branches in Figure 9C were
apparently behaving, like that in Figure 5C, like a generalized
Burgers model (Figure 1B, amplified as in 1C). One further
temporal pattern of time-dependent irreversible bending is noted
below (Figure 10).

When branches are subject to a loading/unloading cycle
that is repeated one or more times on subsequent days, time-
dependent irreversible bending similar to, or sometimes even
greater than, that which occurred during the first cycle often
recurs in subsequent cycles. Therefore, the capacity for time-
dependent irreversible bending, which according to Figure 9
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FIGURE 9 | Time courses of irreversible bending (upper curves in each panel)
for three species, deduced by subtracting, from the post-loading creep curve
(lower curve in each panel), the progress curve for post-unloading retarded
recovery (difference between the two curves). Plots begin with the first data
point after loading (therefore do not show the instantaneous deflection).
(A) Populus tremuloides (“Poptre”); (B) Liriodendron tulipifera (“Lirtul”);
(C) Salix glauca (“Salgla”).

usually declines or disappears during a first period of loading,
can reappear, over time, during a post-unloading period of a
day or more. A slow, possibly biological, process that gradually
generates capacity for irreversible bending seems to be operating,
in addition to a process that apparently increases steady-
flow viscosity relatively rapidly while irreversible bending is
occurring. This is important to its biological significance, as
noted later.

Long-Continued and Delayed-Onset
Irreversible Bending
With a few species, substantial bending creep continued for long
beyond 24 h after loading. This was clearly due to irreversible

FIGURE 10 | Delayed-onset, long-term irreversible bending of branch
segments of (A) the shrub Dendromecon rigida (“Denrig,” load 234 g); (B) the
shrub Gaultheria shallon (“Gausha,” load 87.7 g); and (C) the shrub
Arctostaphylos densiflora (“Arcden,” load 120 g). Stem segments were loaded
or unloaded, respectively, at the ↓ or ↑ arrows. In (A), T was changed from
+21 to +2.5◦C for one period, during which the bending rate was severely
reduced. (B) After completing its post-unloading recovery from the initial
loading, the specimen was re-loaded with the same weight (“2nd loading”)
which immediately caused a rapid creep similar to that which developed only
after about 8 h beyond the initial loading. (C) The increase in retarded-elastic
compliance that occurred during the period under load is quite conspicuous,
but is also visible in (B). A large fraction of the creep deflections in these
graphs was irreversible, as shown by the limited extent of their post-unloading
recoveries.

bending. Figure 10A gives an example, with the poppy family
shrub Dendromecon rigida. This plot is also noteworthy in
that the early part of this time course suggests that substantial
irreversible bending began only after about 24 h, when an
initially occurring, retarded-elastic deflection had, as usual,
apparently become completed. We encountered this delayed-
onset irreversible bending in two other species, the Ericaceous
shrubs Arctostaphylos densiflora and Gaultheria shallon. We
found it in multiple branches of each of the three species
just mentioned.
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Figure 10B, illustrating this effect in the last-named
species, shows that when the specimen was re-loaded (after
it had recovered from its initial loading) it experienced rapid
irreversible bending from the outset. Thus the decrease in its
resistance against irreversible bending that evidently occurred
several h after it was first loaded, evidently persisted through at
least a short, subsequent unloaded period.

A similarly long-continued, conspicuous irreversible bending,
but without the delayed-onset feature, occurred with branches
of the shrub Forestiera neomexicana and the ash tree Fraxinus
velutina. Their post-loading creep resembled that in the “2nd
loading” curve in Figure 10B, except that their rapid creep
continued for considerably longer (several days) than is shown
in that figure. However, with all these species the creep rate
eventually declined, so was not a simple steady-flow deformation
at constant viscosity.

With at least two of the delayed-onset species their post-
unloading retarded recovery involved upward deflections that
substantially exceeded the downward deflections that occurred at
equivalent times during the initial, post-loading period of creep.
This occurred in all 10 branches of Gaultheria shallon that we
tested. It can be seen by comparing the deflections during the first
2 h of the post-loading and the post-unloading portions of the
“1st loading” time course for this species (Figure 10B), and more
conspicuously by a similar comparison in the bending/recovery
time course shown for Arctostaphylos densiflora (Figure 10C).
With these species, compliances of Kelvin elements that govern
retarded elasticity evidently increased during the initial period
under load, possibly at the time that rapid irreversible bending
began. This apparently violates the subtraction rule, applied
above, for determining the time course of an irreversible bending
that occurs during post-loading creep. However, it does not
invalidate this rule for the vast majority of tested species,
including those in Figure 9.

Load Dependence of Elastic Bending
To complete a description of the kinds of bending distinguished
above we need to know how each of them depend on the applied
bending load. The upper (a) panels of Figure 11 show the effect of
imposed loads on the instantaneous and retarded components of
elastic bending of branches of two hardwoods (Figures 11A,B)
and one softwood (Figure 11C). Both of these components
conformed quite well with Hooke’s Law (strain proportional to
stress, or load) up to a deflection of about 40 mm (for branch
segments about 30 cm long). Over this range of loads and
deflections the instantaneous and retarded components of elastic
bending occurred in nearly constant proportion to one another
as the load was varied.

Above about 40 mm of deflection, concave-upward deviations
from Hooke’s Law (increases in compliance) occurred (least
conspicuously with the softwood, Pseudotsuga menziesii). At
these higher loads the ratio of retarded to instantaneous
deflection also tended to increase noticeably, at least with the
hardwoods [(a) panels in Figures 11A,B].

Whereas in the linear (Hookean) range the instantaneous
deflections upon loading and upon unloading were equal
(as expected; unloading deflections were the negative of the

“unload” numbers plotted in Figure 11), with both of the
hardwoods in the non-Hookean range of deflections, the
instantaneous recovery upon unloading exceeded the branch’s
previous instantaneous deflection upon that load’s application.
This difference increased as the total load was further increased
[(a) panels in Figures 11A,B]. This apparently represented an
increase that occurred during each of these 30 min periods of
loading, in the specimen’s instantaneous elastic compliance. This
was confirmed by subsequently reloading the specimen with a
smaller load, within the Hookean (linear) range. This caused an
immediate deflection that exceeded what had occurred earlier at
this load, by about the same percent as the post-loading increase
in deflection that had occurred at the highest load (in the non-
Hookean range) that had been applied up to that time. While the
increase in instantaneous compliance resulting from loads in the
non-Hookean range correlated well with the non-linear elastic
response, the measured increase in instantaneous compliance
could by itself explain only part of the elastic response curves’
deviation from linearity in this range of loads.

For the softwood branch that we tested (Figure 11C), an
increase in instantaneous compliance during the loading periods
similarly appeared at loads in the non-Hookean range but was
slight, just as were the deviations of the deflections from linearity
with load in that range. A similar progressive-loading experiment
on a different branch of this species gave similar results.

Load Dependence of Irreversible
Bending
Figure 11’s lower (b) panels show the extent of permanent
set and of time-dependent irreversible bending in the loading
experiments just considered. Because of the mostly small
individual irreversible deflections that occurred during the short
periods of successive loadings, the data are plotted as the
cumulative deflection (sum of the successive load-after-load
increments) up to and including each of the plotted loads.

In Figure 11, permanent set was negligible (∼1 mm at one or
two loadings at most) at loads below that at which non-Hookean
elastic behavior began to occur. Above that point it increased
more or less linearly with further increase in load. Permanent set,
therefore, appears to involve a yield stress (Y, a non-zero value
of stress below which little or no irreversible strain occurs, cf.
Barnes, 1999). When additional load is imposed, the specimen
supports it by an irreversible strain that causes an increase in
Y. For all 3 branches in Figure 11 the increase in Y above
its initial value was at least approximately proportional to the
bending deflection.

Occasional branches, other than those used for Figure 11,
gave several mm of permanent set at the more modest load that
was to be used for one of the types of experiment considered
above (involving an instantaneous deflection of 30–40 mm). It
is unclear whether these were instances of a much lower initial Y,
or involve a mechanism different from that of the permanent set
plots in Figure 11, but as noted by Barnes (1999), for many solids
Y is often less sharp or definite than appears in the present plots.

In contrast to permanent set, in these tests time-dependent
irreversible bending occurred progressively from, or
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FIGURE 11 | Dependence, on cantilever load, of (a) instantaneous (“inst.”) and retarded (“ret.”) elastic bending, and (b) permanent set (“perm. set”) and
time-dependent irreversible (“time-dep. irrev.”) bending, of branch segments (with lengths × midpoint diameters in mm) of (A) Diospyros virginiana (“Diovir,”
300 × 6.5), (B) Salix glauca (“Salgla,” 270 × 6.6), and (C) Pseudotsuga menziesii (“Psemen,” 350 × 8.0). Both negative (downward) and positive (upward)
deflections are here plotted as positive numbers. In panels (a) deflections are those that occurred at each of the plotted loads, “load” being the deflection upon
loading and “unload” that upon unloading, plotted together so that deviations between them at higher loads can be easily seen, and “ret.” being an estimate of the
retarded-elastic recovery that would have occurred if both post-loading retarded-elastic bending and post-unloading (of the given load) recovery had gone to
completion, as calculated from the recovery that actually occurred during the 30 min-long post-unloading period as explained in Materials and Methods. In the (b)
panels, deflections shown are cumulative, i.e., the total of all the deflections of the given kind that had occurred up to and including each given plotted load.
Time-dependent irreversible bending’s cumulative deflections extend up to the end of the 30 min period of loading by the weight in question. Dotted lines in (a) are
straight lines that fit the Hookean (linear) part of the instantaneous response to loading and are extrapolated into the non-Hookean region so that the deviation of the
data from linearity can be easily visualized. Data similar to these were obtained, respectively, from a second branch each of P. menziesii and of S. glauca, as well as
from a branch of the shrub S. pulchra.

(in Figures 11B,C) from nearly, the smallest applied loads.
It therefore appears, in comparison to permanent set, to involve
relatively little, or no, yield stress. Since the slope of the plot, at
any point in a cumulative plot of rate vs. load, rather than the
rate itself at that point, relates to the process’s dependence on
load, the concave-upward form of these plots indicates that the
irreversible bending rate increased progressively with load at
least roughly linearly.

DISCUSSION

Our results show that, under cantilever loads, both retarded
and instantaneous elastic bending, as well as two kinds of
irreversible bending, are of general occurrence in woody
branches. Although we found large quantitative variations, in
viscoelastic bending, throughout the range of species tested,
one apparently consistent difference that our data indicate is a
significantly larger average viscoelastic relative to instantaneous
elastic compliance in hardwoods (Angiosperms) compared
with softwoods (Gymnosperms). This might seem surprising,
considering that the xylem of hardwoods, as their name implies, is
stiffer and tougher than that of softwoods. The greater retarded-
elastic compliance of hardwoods might be due to the presence,

in the wood, of cells such as vessel members, fiber-tracheids,
and/or abundant xylem parenchyma that are missing in typical
softwoods.

As mentioned in the Introduction, we have encountered
almost no descriptions of the retarded elasticity of branches in the
botanical literature. However, Alméras et al. (2002) demonstrated
bending creep of apricot tree branches using the simple method
illustrated by our Figure 4. Their Figure 7 did not distinguish
instantaneous elasticity from the important first 10 min of creep,
nor did they report testing, by subsequent unloading, whether the
branches had experienced irreversible as well as retarded-elastic
bending (this seems likely).

Because the elasticity of even a small, woody, non-tropical
branch (∼6 mm in diameter) is due, we found, mainly to
properties of its xylem, it not surprisingly relates to wood’s
known elastic properties. Retarded elasticity, stress relaxation
and irreversible straining of wood have long been known
(Kitazawa, 1947; Grossman, 1954; Grossman and Kingston, 1954;
Youngs, 1957; Kollmann and Coté, 1968). However, viscoelastic
behavior is a relatively minor component of the compliance of
commercially used, air-dry wood (usually ∼12% moisture), as
compared with wet wood (Youngs, 1957; Kollmann and Coté,
1968; Schniewind, 1979; Dinwoodie, 2000; Hogan and Niklas,
2004) or with living, well-hydrated branch segments such as
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those in the present work, around 50% of whose fresh weight
is water.

Features of Woody Branches’ Bending
Elasticity
For the branches we tested, both instantaneous and retarded-
elastic deflections were proportional to cantilever load (i.e.,
followed Hooke’s Law) up to a deflection of about 40 mm (for
branch segments of the dimensions we used; Figure 11). Above
this, elastic deflection increased more than in proportion to load,
i.e., the elastic compliance progressively increased (the xylem
secondary walls’ tensile moduli decreased), with the retarded
compliance increasing even more than the instantaneous.

For the tested hardwoods, the slope of the elastic strain/load
curves in the non-Hookean range of loads increased by more than
50% above that in the Hookean range (Figure 11). This is much
greater than the increase in compliance that we obtained from
stripping the bark from woody branch segments of the size that
we used. Therefore, it appears that the non-Hookean behavior at
higher loads is mainly a property of the secondary walls of xylem
cells rather than of mechanical cells in the bark (fibers, cork).

The elastic bending of branches, supported by the thick
secondary walls of their xylem, contrasts with the elastic
extension of growing primary cell walls, whose tensile modulus
increases, often markedly (compliance decreases), with increase
in tensile stress imposed either by turgor pressure (Kamiya et al.,
1963; Ray and Ruesink, 1963, Figure 3; Steudle et al., 1977;
Büchner et al., 1981) or by an externally applied uniaxial load
(Cleland, 1967; Thompson, 2001, Figures 1, 3). Thus primary
walls become markedly stiffer as elastic strain increases, rather
than Hookean at low strains and becoming weaker at higher
strains, as in our tests on branch bending. This contrast probably
reflects, at least partly, a biophysical difference between primary
and secondary walls that results from the relation between wall
deposition and cell growth in size, as follows.

Xylem cells deposit their secondary wall while at an
unchanging, final (post-elongation) cell size, so all its layers have
the same unstretched length. All the layers therefore begin to
bear stress as soon as any strain occurs, so the modulus, at least
over a certain range of strain, will remain constant (Hookean
straining). Their concave-up, non-Hookean straining at higher
stresses, as in branch bending studied here, presumably results
from a weakening or loss of some interpolymer-chain bonds
under these stresses. This loss is indicated by the increase in
instantaneous compliance that occurred during exposure to non-
Hookean loads (Figure 11).

In contrast, while a cell is growing, each cell wall layer
successively deposited at the plasma membrane surface (Ray,
1967) must have, at the time it was deposited, an unstretched
length equal to the cell’s length at that time, therefore longer
than that of previously deposited layers. As the cell elongates,
the then-existing layers become stretched irreversibly, for which
they must acquire and retain some stress by post-depositional
wall extension, stress which means that their unstretched lengths
remain shorter than that of the wall’s most recently deposited
(stress-less) layer. Because of the loose structure and thinness of

the primary wall, it appears that its layers scarcely support any
compressive stress (indicating this are wrinkles or folds often
visible, in electron micrographs of relaxed primary walls, on their
inner [greatest unstretched length] surface, e.g., Roland et al.,
1982; Evered et al., 2007, Figure 4a). This tends to make the
primary wall’s elasticity non-Hookean, because as it is extended,
starting from a relaxed state, its older, shorter, unstretched layers
are at first the only ones that experience significant tensile stress,
whereas its more recent layers begin to bear significant stress
only as the cell’s overall length is increased beyond these layers’
unstretched lengths. This progressive increase in the fraction
of the cell wall’s cross section that bears substantial tensile
stress results in the wall’s modulus progressively rising with
strain.

Another factor probably contributing to the elastic difference
between primary and secondary walls is that secondary walls’
microfibrils run essentially straight (e.g., Dinwoodie, 2000;
Figure 1.18), and therefore should undergo strain and experience
stress at even the smallest cell wall extensions. In contrast,
electron micrographs of primary walls (Gunning and Steer, 1996;
Zhang et al., 2013) show that their microfibrils tend, when the
wall is in a relaxed state, to run somewhat sinuously in the plane
of the wall, so will start to undergo tensile strain and thus bear
significant stress only after they have become straightened by a
certain amount of preliminary wall strain.

Spatz et al. (1999) proposed that because a secondary wall’s
non-cellulosic matrix’s elastic modulus is much lower than that
of its microfibrils, upon unloading a wall that had been stretched
to its yield point the matrix will tend to go into compression while
the microfibrils remain under tension. This allows, they argue, the
wall to have Hookean elastic behavior, which our work confirms
for woody branch bending. A growing primary wall’s matrix,
however, has a much higher water content and thus a much
lower polymer density, so can be expected, as stated above for
the primary wall as a whole, not to significantly resist, or support,
compression. When compressed its matrix polymers probably
collapse into the normally water-filled, capillary interstices
between them, and its microfibrils probably contract below their
unstretched length with little or no compressive stress by going
into a sinuous course through the matrix. This will allow an
unloaded primary wall to shrink essentially to the unstretched
length of its shortest unstretched layer(s), resulting in strongly
non-Hookean elasticity, for the reasons explained above, when a
tensile load is imposed on it.

Characteristics of Branches’ Retarded
Elasticity
Our retarded recovery time course data imply that multiple
Kelvin elements contribute to the retarded portion of branches’
elasticity, so a generalized Kelvin model (Figure 1C, with many
Kelvin elements), or (better) a retardation spectrum, is needed to
describe fully this behavior. In contrast, Thompson (2001, 2007)
analyzed extension creep of tomato fruit and sunflower hypocotyl
primary-wall skeletons as comprising only 2 Kelvin elements,
but including also a log-time component that could have been
composed of multiple Kelvin elements.
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We calculated approximate branch-bending retardation
spectra (Figure 8 and Supplementary Figure S1) from our
retarded-recovery curve-fitting equations, entered into equation
(4). The spectra extended over about 4 decades of log time,
with a tendency for (usually) modest peaks in the vicinity of
0.01 h (36 s) and 1 h. The differences in τ values across the
spectrum could be due to differences in either spring compliance
(C) or in dashpot viscosity (η), or both, between different
adjustment mechanisms, since τ = C ∗η (or as more often
written, τ = η/E, where E is an element’s tensile modulus).
Two-peaked relaxation spectra of artificial polymers, somewhat
like some of our retardation spectra, have been interpreted
as due primarily to differences in effective viscosity involved,
respectively, in local movement of short polymer chain segments
(short relaxation times) as against the long-distance displacement
of complete chains or of long chain segments between cross-links
or “entanglement coupling” points (long relaxation times)
(Ferry, 1980). Whether something similar applies to plant
secondary walls might be found by an approach similar to that of
Macmillan et al. (2013).

Our retardation spectra indicate substantial compliance
extending down essentially to the zero-time lower limit of
about 3 s for our “static” time course measurements. This
implies that branches’ complete retardation spectra probably
extend down into a time range well below 3 s, a range
that is inaccessible by our measurements but has been found
for a wide range of viscoelastic materials using “dynamic”
measurements of stress as a function of oscillating strain (Findley
et al., l976/1989; Ferry, 1980; Hansen et al., 2011). Dynamic
measurements on wood (Dunlop, 1978; Ouis, 2002, and refs.
there cited) revealed damping elements with t1/2s extending
down into at least the millisecond range. And tweaking the tip
of a small branch segment clamped as in our measurements
starts an elastic oscillation that damps down to zero within
about 1–2 s (depending upon species), suggesting substantial
retardation in the sub-second t1/2 range. Retardations in this
time range should dissipate extra energy to the same degree as
slower, conventional retardations do, so they become significant
in interpreting retarded elasticity’s biological significance as
noted below.

Characteristics of Irreversible Bending of
Branches
Branch irreversible bending consisted of two components
somewhat analogous to instantaneous and retarded elasticity,
namely, “permanent set” that occurs immediately when a
load is imposed, and time-dependent irreversible bending,
which occurs subsequently. In the branches that we tested
for dependence of bending on load, permanent set became
substantial only when loads in the elastically non-Hookean
range were imposed. A substantial yield stress (Y) is thus
associated with it, so it is at least somewhat analogous to
a plastic deformation (in the sense of plasticity’s meaning
in the rheological literature: Findley et al., l976/1989; Jaeger,
2012). This type of bending may be analogous to irreversible
straining of wood above a Y as reported by Köhler and

Spatz (2002) and Keckés et al. (2003), in which (unlike in
classical plasticity) stress increased progressively with strain
above the yield point (“strain hardening”). This behavior was
apparently instantaneous (like our permanent set) or nearly so,
since it was detected by brief Instron stretching experiments,
which primarily measure instantaneous or very short-term
deformations. It may also be related to the “first plastic” phase
of wood cell wall yielding as molecularly modeled by Jin et al.
(2015), since this phase involved a yield stress and strain-
hardening.

Pao and Marin (1953) and Youngs (1957) (pp. 88–89 and his
Figure 42) clearly enunciated, and Engelund and Salmén (2012,
their Figure 3C) later used, the creep-minus-recovery time
course subtraction principle that we independently inferred, for
determining the course of time-dependent irreversible straining
during a creep experiment. Youngs’ (1957, Figure 43) data
on irreversible straining of red oak wood revealed a rate that
progressively declined with time, as in most of the branches
tested here (e.g., Figure 8), and involved a definite Y (at least
at 80◦F). Two of the branches we tested [Figures 10B,C (b)
panels] showed a narrow range of load, up to about 50 gm,
over which little or no time-dependent irreversible bending
occurred, and above which the strain rate increased in a
concave-up manner as would be expected (since cumulative
irreversible strain was plotted) if strain rate depends at least
approximately linearly on load [as did that of red oak wood,
Youngs (1957)]. Time-dependent irreversible branch bending
thus seems at least roughly analogous to a viscoplastic or
“Bingham” deformation, as with the irreversible extension
of primary walls during cell growth (the Lockhart equation:
Cosgrove, 2016, Figure 1), but with the viscosity (η) controlling
it usually increasing with time, and the yield stress apparently
small (or sometimes practically 0) compared to that for either
permanent set in branches, or for primary wall irreversible
extension.

Cosgrove and Jarvis (2012) give a broader review of secondary
wall biomechanics, beyond the points needed for interpreting the
results of our branch bending measurements.

For a rheological model that agrees with the behavior of
branches that exhibit irreversible bending we have to add, to
the generalized Kelvin model for retarded elasticity (Figure 1C),
two elements in series with it, one for permanent set and
the other for time-dependent irreversible bending (Figure 12).
Each of these involves a yield stress (Y) represented by a “St-
Venant” element (Jaeger, 2012, p. 100) which depicts Y as the
static and dynamic friction (assumed to be equal) between a
block and the surface upon which it is resting. The single,
small block in Figure 12 represents the relatively small Y that
may be involved in (at least some) time-dependent irreversible
bending, the dynamics of which involve mainly the dashpot’s
viscosity (η). The multiple blocks coupled loosely together
in the “permanent set” element [a “generalized St-Venant
element,” cf. Jaeger (2012), Figure 35(d)] provide that as strain
increases and the couplings progressively become stretched tight,
the total frictional resistance, and thus Y, increases (“strain-
hardening”), as seen in our Figure 11 “perm. set” plots. The
n value for Kelvin elements in Figure 12 has to be at least 6,
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FIGURE 12 | Rheological model representing the viscoelastic bending behavior of shrub and tree branches, according to present results. Thick horizontal lines (part
of each St-Venant element, named after the French physicist Adhémar de Saint-Venant who in 1870 published the first general equations for plasticity, cf. Chen and
Han, 2007) represent rough surfaces upon which blocks (black squares) rest, exerting static and dynamic friction (the yield stress, Y ). The multiple blocks in the
“permanent set” St-Venant element are coupled loosely together so that all but the first block come into action only after strain has straightened the coupling between
any one of them and those ahead of it, causing Y to increase progressively with strain. The n for retarded elasticity and permanent set elements implies a large
number, respectively, of Kelvin elements creating a continuous retardation spectrum, and of friction blocks creating an essentially continuous rise of Y with strain.

from our analysis of retarded-elastic recovery, and is probably
much larger (for a continuous retardation spectrum). The
same probably holds for the multiple St-Venant friction-block
elements representing permanent set, since its strain-hardening
appears to be a continuous increase in Y with increase in
load (Figure 11).

The generally encountered decline in branch irreversible
bending rate over time implies a time-dependent decrease in its
steady-state η or increase in its Y, or both of these. One possible
way this could occur would be by an onset of reaction wood
formation by the cambium (cf. review by Felten and Sundberg
(2013)), since reaction wood acts to oppose stem bending.

Long-Continued and Delayed-Onset
Irreversible Bending
We encountered a few species whose branches underwent
substantial irreversible bending for much longer than 24 h after
being loaded. These species included three whose irreversible
bending began only belatedly subsequent to loading (Figure 10).
Either the η governing its rate, or an unusually high Y preventing
its initial occurrence, evidently decreased markedly at a time
when the post-loading, retarded-elastic bending was nearly
complete. This is not normal for viscoelastic material, but might
be at least remotely related to the “thixotropy” of certain gels
such as yogurt, which become less viscous above a certain level
of stress (Barnes, 1997). Or the decrease in η or Y might
instead be caused biologically, since these were living specimens.
It is especially curious that in at least 2 of these species,
retarded-elastic compliance clearly increased remarkably along
with the time-dependent decrease in resistance to irreversible
bending (Figures 10B,C).

Biological Roles of Retarded Elasticity
The retarded elasticity of tundra shrub branches largely explains
why their springtime recovery of elevation after becoming
unloaded of snow (Sturm et al., 2005) is gradual, rather than
entirely immediate. Retarded elasticity also, by increasing the
downward inclination of snow-loaded branches beyond that

obtainable instantaneously, should increase the ability of trees
and shrubs to shed snow, as well as decrease their interception of
snow (Pomeroy and Goodison, 1997), above what can be inferred
from instantaneous or short-term bending moduli (Schmidt and
Pomeroy, 1990, and refs. there cited).

More generally, retarded elasticity of shrub and tree branches
might reduce the hazard of wind gusts that tend to break
them. This might be analogous to the function of vehicle shock
absorbers2, which utilize retardation to slow the displacement of
the vehicle’s suspension elements during and after it encounters
a bump, reducing their maximum displacement and reducing or
eliminating the vehicle’s subsequent, bothersome elastic rebound.

By being in series with an unretarded (“instantaneous”)
elasticity, the principal retardation that our branch
measurements reveal cannot dampen much of branches’
elastic bending the way an automobile shock absorber works,
where spring elasticity is entirely in parallel with retardation
(as in a single Kelvin element). However, two ways can be
identified by which retarded elasticity may protect branches from
wind-gust breakage.

During a windstorm, gusts typically last about 5 s (Sellier
and Fourcaud, 2009). Since most of branches’ retarded elastic
compliance seen in our measurements involves t1/2 values
much longer than 5 s (Table 1), that fraction of their retarded
compliance undergoes little strain over periods of up to 5 s.
Retardation thus limits elastic bending during gusts to less than
about two-thirds of what the branch’s total compliance would
allow if none of it were retarded. It thus reduces, perhaps
importantly, the chances that the branch gets bent beyond its
breaking strain during a gust.

A second way in which retardation probably helps protect
branches from wind-gust breakage depends upon our conclusion
(reached above) that branches’ retardation spectra likely extend
down significantly to short-t1/2 elements within what our static
method of measurement treats as “instantaneous” elasticity.
Since such elements will get flexed to, or nearly to, their
elastic equilibrium point during a bending of as brief as 5 s,

2Wikipedia (2017) Shock absorbers. https://en.wikipedia.org/wiki/Shock_absorber
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the energy that their viscous action dissipates (which can
exceed the energy that they absorb elastically, cf. Findley et al.,
l976/1989, pp. 95–96) should reduce, in a shock-absorber-
like action, the kinetic energy that a branch acquires from a
wind gust and thus how fast and how far it bends during
and after the gust, thereby helping to reduce the chances
of breakage.

Biological Roles of Irreversible Bending
The irreversible bending that we observed (Figure 8) was
generally much too slow to appreciably influence the effect
on stems of pulsatile forces such as wind gusts. However, this
slow, irreversible bending probably allows the time-dependent
decline in attitude of lateral branches, and increase in their
downward curvature, that one can observe in the crowns of
many trees that have an excurrent (“Christmas tree”) over-all
crown form, and in some deliquescent (elm-like) crowns with
“weeping” branches (e.g., weeping willow). These changes are a
significant part of the development of tree crown morphology,
which is important to aspects of forest canopy behavior such
as interception of sunlight and of precipitation (especially
snow). The repeated occurrence, noted in Results, of time-
dependent irreversible bending (and perhaps also of permanent
set) upon later re-loadings of a branch are probably important
in allowing these gradual changes in the form of tree crowns
to occur.

Irreversible bending is likely to be the basis for the
gradual decline, toward ground level, of the older portions
of tundra shrub branches, and possibly of some other
shrubs, e.g., raspberries (Rubus spp.). In tundra, this
decline hastens these portions’ engulfment by upgrowth
of the tundra’s ground-surface moss layer, after which
the engulfed portion of the stem adventitiously roots and
becomes part of the shrub’s below-ground absorption
and mechanical support system. This process keeps these
shrubs’ elevation above the landscape surface more or less
constant over time despite the yearly upward elongation
of their branch tips, improving the shrubs’ chances for
protection, by snow covering, against winter hazards such
as low-temperature extremes.

CONCLUSION

Retarded elasticity, occurring over a time scale extending
usually out to about 24 h beyond the time of loading or
unloading, is an important component of woody stem bending
elasticity, commonly involving a compliance of as much as
30–50% of the instantaneous bending compliance, especially in
hardwoods, and apparently less important (but still present) in
softwoods. It involves a wide quantitative range of retarded-
elastic (“Kelvin”) elements, with retardation times ranging at
least from seconds up to as long as 19 h (depending on the
specimen), the form of which distribution (the retardation
spectrum) we calculate and display (Figure 8). It probably
extends downward into the subsecond or even millisecond
range which, by the static measuring method used here, falls

within what we record as “instantaneous” elastic strain. Because
of their Kelvin elements, branches undergo stress relaxation
when bent to a certain angle and held thereafter at that
angle.

We distinguish two kinds of irreversible bending of branches
under cantilever loads: (a) “permanent set” which occurs
immediately when an applied load exceeds a yield threshold,
and increases with load above that point, and (b) slow,
time-dependent irreversible bending, which occurs significantly
in many but not all branch specimens, and more rapidly
and extensively in a few. Permanent set, which is effectively
instantaneous and involves a substantial yield stress that
increases with strain, is apparently comparable to a plastic
deformation previously reported from Instron extension tests
on wood. Time-dependent irreversible bending on the other
hand is nominally viscous in nature, its rate increasing with
load above an at most small yield stress, but its viscosity
usually increasing (in stiffness) with time. However, in a few
species, resistance to irreversible bending decreases, some hours
after loading, to much below its initial value, causing such
bending to begin belatedly. This departs remarkably from
typical viscoelastic behavior and theory, and deserves further
investigation.

Several features of both elastic and irreversible bending of
branches (which are features of their xylem secondary cell
walls) contrast with corresponding features of the extension
behavior of the primary walls of growing cells. The elasticity
differences (secondary walls: Hookean, but convex to the load
axis at high loads; primary walls: non-Hookean throughout,
strongly concave to the load axis at all loads up to full turgor)
are probably due, at least partly, to primary wall deposition
occurring over the course of growth in cell size so its layers
tend to differ from one another in unstretched dimensions,
whilst a secondary wall is deposited at an unchanging cell
size so all its layers have the same unstretched dimensions.
Differences between primary and secondary walls in the
straightness of their cellulose microfibrils (when unstrained)
also probably contribute to their different elastic behavior.
The differences in time-dependent irreversible straining (e.g.,
secondary walls not exhibiting the high yield stress found with
growing primary walls) may be due to this being essentially
physical in secondary walls but involving a biochemical
component [e.g., expansions (Cosgrove, 1997, 2016), or hydroxyl
radicals (Schopfer and Liszkay, 2006; Heyno et al., 2011)] in
primary walls.

Retarded elasticity has a probable benefit of damping the
flailing motions of small branches caused by gusts in windstorms,
that tend to break them, causing loss of photosynthetic leaf
area and reproductive potential. Irreversible bending probably
contributes importantly to the development of the form of tree
and shrub crowns, which affects their ability both to absorb solar
radiation, and to shed snow without breaking. It is doubtless also
involved in the typical growth form of many arctic tundra shrubs,
and certain others, that maintain, by downward bending of the
older parts of their stems, a more or less constant height above
the landscape surface, despite upward annual stem elongation at
their branch tips.
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