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Virgilia divaricata is a tree legume that grows in the Cape Floristic Region (CFA) in
poor nutrient soils. A comparison between high and low phosphate growth conditions
between roots and nodules was conducted and evaluated for the plants ability to cope
under low phosphate stress conditions in V. divaricata. We proved that the plant copes
with low phosphate stress through an increased allocation of resources, reliance on
BNF and enhanced enzyme activity, especially PEPC. Nodules had a lower percentage
decline in P compared to roots to uphold its metabolic functions. These strategies
partly explain how V. divaricata can sustain growth despite LP conditions. Although
the number of nodules declined with LP, their biomass remained unchanged in spite
of a plant decline in dry weight. This is achieved via the high efficiency of BNF under
P stress. During LP, nodules had a lower % decline at 34% compared to the roots at
88%. We attribute this behavior to P conservation strategies in LP nodules that imply an
increase in a metabolic bypass that operates at the PEP branch point in glycolysis. The
enhanced activities of nodule PEPC, MDH, and ME, whilst PK declines, suggests that
under LP conditions an adenylate bypass was in operation either to synthesize more
organic acids or to mediate pyruvate via a non-adenylate requiring metabolic route.
Both possibilities represent a P-stress adaptation route and this is the first report of its
kind for legume trees that are indigenous to low P, acid soils. Although BNF declined by
a small percentage during LP, this P conservation was evident in the unchanged BNF
efficiency per weight, and the increase in BNF efficiency per mol of P. It appears that
legumes that are indigenous to acid soils, may be able to continue their reliance on BNF
via increased allocation to nodules and also due to increase their efficiency for BNF on
a P basis, owing to P-saving mechanisms such as the organic acid routes.

Keywords: legumes, nodules, low P, high P allocation of resources, biological nitrogen fixation, conservation
strategies, phosphoenolpyruvate carboxylase, phosphate stress

Abbreviations: BNF, biological nitrogen fixation; CFR, Cape Floristic Region; DW, dry weight; FW, fresh weight; HP, high
phosphate; LP, low phosphate; MDH, malate dehydrogenase; ME, malic enzyme; NDFA, nitrogen derived from atmosphere;
PEP, phosphoenol pyruvate; PEPC, phosphoenolpyruvate carboxylase; Pi, inorganic phosphate; PK, pyruvate kinase; PPi,
pyrophosphate; SNAR, specific nitrogen acquisition rate.
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INTRODUCTION

The Cape Floristic Region (CFR), found in the south western
area of South Africa can be regarded as one of the highest
P-impoverished regions of the world and simultaneously
a Global Biodiverse Hotspot (Lambers and Shane, 2007).
The CFR resembles a typical Mediterranean-type ecosystem
usually characterized by sandstone-derived soils (Goldblatt and
Manning, 2000), which are acidic, with insufficient nutrients
(especially N and P) to sustain normal plant growth (Bordeleau
and Prevost, 1994; Von Uexkull and Mutert, 1998; Grigg et al.,
2008). In particular, legume species reliant on Biological Nitrogen
Fixation (BNF) are highly dependant on P supply, more so than
legumes growing on mineral N (Drevon and Hartwig, 1997).
For legumes, P not only affects the formation of nodules (Israel,
1993), but limiting P also impacts negatively on the nitrogen
fixation process (Schultze et al., 2006; Tsvetkova and Georgiev,
2007). The tree species, V. divaricata (Adamson), is a native
legume to the CFR and it is distributed over a wide range of
P-poor soils from the relatively richer forest margins to poorer
Fynbos soils (Coetsee and Wigley, 2013). This implies that the
indigenous species may have a range of mechanisms to adapt to
variable soil P supply.

These mechanisms, therefore, have evolved adaptations to
function optimally under limiting P conditions (Vance et al.,
2003). Some strategies are aimed at conserving the use of
P, whereas others are directed toward enhanced acquisition
and uptake of P (Lajtha and Harrison, 1995; Horst et al.,
2001; Vance et al., 2003). Adaptations that conserve the use
of P involve a decrease in growth rate, increased growth per
unit of P uptake, remobilization of internal Pi, modification
in C-metabolism that bypass P-requiring steps and alternative
respiratory pathways (Schachtman et al., 1998; Plaxton and
Carswell, 1999; Raghothama, 1999; Uhde-Stone et al., 2003a,b).
In legumes, adaptations leading to enhanced P acquisition entail
the expression of genes that result in the production of cluster
roots. Cluster roots increase the root surface area. This enhances
nodule efficiency for P utilization (Le Roux et al., 2008), root
exudation of organic acids and acid phosphatase, as well as
the induction of numerous transporters (Gilbert et al., 2000;
Gilroy and Jones, 2000; Lynch and Brown, 2001; Neumann and
Martinoia, 2002; Lamont, 2003; Uhde-Stone et al., 2003a; Vance
et al., 2003).

The high sensitivity of legume plants, and indeed the N2-
fixation process to environmental conditions such as acidic
soils associated with P deficiency, may result in higher C costs
(Mengel, 1994). This concurs with Le Roux et al. (2008), who
showed that lupin nodules under P stress acted as stronger C
sinks. Nodules are known to have a strong sink capacity for
P assimilation during P starvation (Høgh-Jensen et al., 2002).
The enhanced nodule cost for P utilization is considered to be
an essential coping strategy during P stress (Le Roux et al.,
2008). The C sink was found to be more pronounced in plants
during symbiosis under low-P conditions (Mortimer et al., 2008).
This was shown by a greater growth respiration of low-P plants
than high-P plants (Mortimer et al., 2008). The sink effect
was also evidenced by the higher photosynthetic rates of host

plants (Mortimer et al., 2008). In the case of P stress, the most
direct currency is P itself and growth parameters related to P
accumulation (Koide and Kabir, 2000).

Physical changes to roots (adjustment of root architecture,
root growth, root system composition and mycorrhizal infection)
that takes place as a result of P limitations, are complemented
by the exudation of a variety of organic compounds (carboxylate
anions phenolics, caboxylates, amino acids enzymes, and other
proteins), as well as inorganic compounds (protons, phosphate
and nutrients) that into the rhizosphere aid the plants in the
adaption for a particular nutrient stressed environment (Crowley
and Rengel, 1999). The Fabaceae family develops cluster roots
which are stimulated during phosphate stress. Not only do these
species develop cluster roots, but also exude carboxylates which
releases P from its bound form, making P more accessible
for root uptake (Lambers and Shane, 2007). It was found
that during P deficiency, plants exude carboxylates such as
citrate, malate, malonate, acetate, fumerate, succinate, lactate, and
oxalate in various concentrations (Rengel, 2002). White lupin
exudes large amounts of carboxylates in the form of malic-
and citric acid to the immediate soil surrounding to release P
from its bound form in the soil. These excreted organic acids
have the ability to chelate metal cations such as Al3++ and
Ca2+ and immobilize Pi in the soil, which results in higher Pi
concentrations in the soil up to 1000 fold (Gardner et al., 1983;
Dinkelaker et al., 1989; Neumann et al., 2000). The production
of these exudates are accomplished by the concerted action of a
variety of enzymes, such as the Pyrophosphate (PPi), dependent
phosphofructokinase (PPi-PFK), Phosphoenolpyruvate (PEP)
phosphatase and Phosphoenolpyruvate Carboxylase (PEPC).
Pyruvate, which is the precursor to many of these substances, can
be generated in the cytosol and in the mitochondria. Cytosolic
pyruvate is produced from PEP during the glycolytic conversion
of ADP to ATP which is catalyzed by pyruvate kinase (PK)
(Plaxton, 1996). It is suggested, that when plants experience P
stress, that pyruvate synthesis from PEP via PK is restricted
(Theodorou and Plaxton, 1993; Plaxton, 1996). However,
pyruvate can also be generated from malate when plants make
use of a “bypass” route especially during P-limitations. In this
“bypass” route, PEP is hydrolyzed to Oxalacetic Acid (OAA)
by PEPC and OAA is subsequently converted to malate by
Malate Dehidrogenase (MDH). Mitochondrial Malic Enzyme
(ME) converts malate into PEP (Plaxton, 1996).

In addition PEPC catalyzes the conversion of
phosphoenolpyruvate and bicarbonate to oxaloacetate (OAA)
and inorganic phosphate (Chollet et al., 1996). It is believed to
play a pivotal role in carbon metabolism in symbiotic nodules
of legume roots (Day and Copeland, 1991; Rawsthorne, 2002).
The PEPC derived OAA can be converted to malate, via
malate dehydrogenase. The generated malate can be fed into
the mitochondrial tri-carboxylic acid cycle (TCA) for further
metabolism, or metabolized to pyruvate via ME. PEPC plays
a crucial role in the assimilation of atmospheric CO2 during
C4 and CAM photosynthesis. PEPC has also been implicated
to replenish the citric acid cycle intermediates when carbon
skeletons are removed for other metabolic functions like
nitrogen assimilation and amino acid biosynthesis when plants
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undergo P-stress The induction of PEPC during P-stress also
results in elevated levels of organic acids such as malate and
citrate in the rhizosphere (O’Leary et al., 2011) and dicarboxylic
acids (Streeter, 1991; Tajima et al., 2015). Furthermore, N2
fixation comes with a high CO2 loss (Pate et al., 1993), which
could account for more than 60% of the carbon allocated to the
nodules (Voisin et al., 2007). Plants manage to reincorporate
this CO2 as intermediates to the TCA cycle, and to fuel nodule
metabolism, by the combined actions of carbonic anhydrase and
PEPC (Vuorinen and Kaiser, 1997; Flemetakis et al., 2003).

Nuclear Magnetic Resonance (NMR) spectroscopy allows for
the characterization of the metabolites in plant cells by coupling
NMR with 13C stable isotope enrichment, as the 12C isotope
is not NMR active. It can be used to determine the metabolite
flux in plant cells making it suitable to establish the conditions
and compartmentation of these metabolites in plant cells (Chang
and Roberts, 1989; Gilbert et al., 2011). Photosynthetic CO2
fixation discriminates against 13C, therefore mainly the sodium
bicarbonate-13C enriched solution supplied as feedstock will be
metabolized by the plant. This 13C enrichment allows for the
characterization of the resulting metabolic activities in plant
cells by NMR. It was shown that this technique could be
exploited to determine the metabolite flux in plant cells making
it suitable to establish the conditions and compartmentation of
these metabolites in plant cells (Chang and Roberts, 1989).

Virgilia is a small tree genus that includes two species
V. divaricata (Adamson) and V. oroboides (P. J. Bergius, T.
M. Salter). It is confined to the south-western and southern
coastal regions of the CFR (Greinwald et al., 1989). Studies have
been conducted on growth and adaptations of legume species
native to Mediterranean-type fynbos ecosystems that occur on
naturally acidic soils (Muofhe and Dakora, 1999; Spriggs and
Dakora, 2008; Power et al., 2010; Kanu and Dakora, 2012).
However, information on the physiology of N and P uptake,
efficiency and utilization in legume trees in fynbos soils is largely
unknown. Although the CFR has a high legume diversity found
on the P-poor soils (Goldblatt and Manning, 2000), not much
is known about the functional mechanisms which underpin N
nutrition within the nodules of these indigenous legumes. The
adaptation to P stress may involve a variety of morphological
and biochemical mechanisms that are related to enhancing
acquisition of soil P, recycling of internal Pi and conserving
available internal P. Recent work from our group has shown that
Virgilia uses a variety of strategies to adapt to low P conditions.
Magadlela et al. (2014) compared two species within the genus
Virgilia, and demonstrated that V. divaricata maintained a high
efficiency of BNF, owing to a greater allocation of biomass
toward nodules during P deficiency. Vardien et al. (2014) showed
that nodules have a high functional plasticity during variable
P supply, by recycling organic P via acid phosphatase enzymes
and redistributing Fe within the nodule. In the present study we
investigated the root system engagement of a non-P requiring
metabolic bypass and its implications to nodule efficiency of
the indigenous legume V. divaricata during variable P supply.
We aimed at gathering a better understanding of how nodules
manage to sustain their functioning during P-stress. To that end
we investigated how PEPC-derived C is metabolized into amino

acids and downstream organic acids of P-deficient nodules,
using 13C NMR spectroscopy. We hypothesized that plants
of V. divaricata grown in P-poor soils, have evolved adaptive
mechanism which conserve internal P and are designed for
maintaining nodule function during P deficiency.

MATERIALS AND METHODS

Plant Growth
Sterile seeds of V. divaricata (Silverhill Seeds, Kenilworth, Cape
Town, South Africa) were pre-treated with smoke water and
water at 50◦C for 5 h, to enhance their germination (Soos et al.,
2009). Seeds were then allowed to germinate in sterile filter sand
in seed-trays placed in a north facing glass house under natural
light conditions. Plants were exposed to a photo and thermo
period of 10 h sunlight at 25◦C and 14 h in darkness at 15◦C.
Seedlings were transferred to pots with sterile filtered sand after
2 weeks of growth, when the first true leaves had emerged. At
this stage, seedlings were harvested and dried and used as the
first harvest, from which to calculate growth rates. All plants were
inoculated with the nodule forming Burkholderia phytofirmans.
Inoculation treatments consisted of 500 µl of growth phase broth
cultured inoculant at about 1.106 cells ml−1. Plants were divided
into two groups, i.e., low (5 µM) –and high (500 µM) phosphate
according to the Long Ashton nutrient treatment. Plants received
the respective treatments twice per week and were allowed to
grow for 8 weeks before harvest. Seedlings were divided into
leaves, stems roots and nodules which were, respectively, weighed
for their fresh weights. Nodules were kept in Eppendorfs at
−80◦C until analyzed. The leaves stems and roots were dried in a
50◦C until constant weight prior to analysis.

Protein Extraction
Plant material, either roots or nodules, were ground to a fine
powder in liquid nitrogen. Proteins from roots and nodules were
extracted according to the methods used by Ocaña et al. (1996)
and was modified to an extent that 0.5 g of tissue was extracted
in 2 ml of extraction buffer consisting of 100 mM Tris–HCl
(pH 7.8), 1 mM Ethylenediaminetetraacetic acid (EDTA), 5 mM
dithiothreitol (DTT), 20%(v/v)ethylene glycol, plus 2%(m/v)
insoluble polyvinylpolypyrrolidone (PVPP) and one Complete
Protease Inhibitor Cocktail tablet (Roche Diagnostics, Randburg,
South Africa) per 50 ml of buffer. The protein concentration was
determined by the NanoDrop Lite Spectrophotometer (Thermo
Scientific) where the extraction buffer was used as standard.

Enzyme Assays
All enzyme assays were carried out at 25◦C in a multi-well plate
reader at a wavelength of 340 nm. All reactions contained 30 µl
of the crude extraction mixture in a final volume of 250 µl.

Phosphoenolpyruvate Carboxylase
Phosphoenolpyruvate carboxylase activity was coupled with the
NADH-malate dehydrogenase and measuring NADH oxidation
at 25◦C by monitoring NADH oxidation at 340 nm. The standard
assay mixture (pH 8.5) contained 100 mM Tris (pH 8.5), 5 mM
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MgCl2, 5 mM NaHCO3, 4 mM PEP, 0.20 mM NADH, and 5
units of MDH (Ocaña et al., 1996). Measurement was carried out
against 9 blanks without PEP. Two measurements were taken for
each treatment. All reactions were performed in triplicate.

Pyruvate Kinase
Pyruvate kinase was assayed at room temperature (22–24◦) by
recording at 340 nm the oxidation of NADH. The incubation
mixture contained 75 mM Tris–HCl (pH 7.0), 5 mM MgCl2,
20 mM KCl, 1 mM ADP, 3 mM PEP, 0.18 mM NADH and 3
units of lactate dehydrogenase (McCloud et al., 2001), and 2 units
of lactate dehydrogenase in a total volume of 1 ml. The blanks
consisted of the buffer without ADP.

Malic Enzyme
Malic enzyme activity was assayed by measuring the increase in
340 nm due to the formation of NADH or NADPH. Standard
reaction mixture contained 80 mm Tris–HCl (pH 7.5), 2 mm
MnCl2, 1 mm malate and 0.4 mm NADP or NAD+ (Appels and
Haaker, 1988).

NADH-Malate Dehydrogenase
The MDH activity was measured in 25 mM KH2PO4, 0.2 mM
NADH, 0.4 mM oxaloacetate (OAA), pH 7.5 (Appels and Haaker,
1988). 25 mM KH2PO4, 0.2 mM NADH, 0.4 mM OAA the rate
of disappearance of NADH was monitored at 340 nm before
and after addition of oxaloacetate. The former rate served as
a measurement of background NADH oxidation which was
subtracted from the rate of oxaloacetate-dependent activity.
Initial reaction rates have been shown to be proportional to the
concentration of enzyme under the conditions used in these
experiments. The assay system for measuring the oxidation of
malate by NAD+, catalyzed by malate dehydrogenase, involves
the reaction of oxaloacetate with L-glutamate in a subsequent
reaction catalyzed by glutamate-oxaloacetate transaminase. The
assay system contained 50 mM Tris/HCl, 40 mM L-glutamate,
0.8 mM NAD+, 4.0 U/ml glutamate oxaloacetate transaminase
and 100 mM L-malate, pH 8.0. The reaction rates were measured
from the appearance of NADH absorbance at 340 nm. The
amount of NADH and oxalacetate formed in the oxidation of
malate was stoichiometric 11 with the amount of malate and
NAD+. Initial reaction rates have been shown to be proportional
to the concentration of enzyme under the conditions used
(Appels and Haaker, 1988).

Citric- and Malic Acid Determination
Citric- and malic acid content for HP and LP nodules and roots
were determined using a photometric analyzer (Arena 20XT,
Thermo Electron Oy, Finland), which measures the amount of
product formed after an enzymatic reaction. The reactions were
performed in triplicate. The pH of the samples was adjusted
to between 8 and 10 at room temperature. Reactions inside
the instrument were performed at 37◦C. Citrate and malic acid
concentrations were determined by the enzymatic conversion of
citrate and malate. In the process, NADH is oxidized which is
stoichiometric to the amount of citrate and malate, respectively.
NADH is then photometrically determined at 340 nm.

Phosphate Determination
Phosphate analysis was performed on HP and LP samples of
roots and nodules For the determination of total P, approximately
0.25 g of the sample material was digested in 7 ml HNO3 in a
Mars CEM microwave digester, then diluted into 50 ml deionized
water. P was measured on a Thermo ICAP 6300 ICP-AES after
calibration of the instrument with NIST-traceable standards.

Isotope Analysis
Analyses of δ15N were done at the Archeometry Department
at the University of Cape Town, where the isotopic ratio of
δ15N was calculated as δ = 1000h (Rsample/Rstandard). R
refers to the molar ratio of the heavier to the lighter isotope
of the samples. Standards were similar to those as described
by Farquhar et al. (1989). Combustion of the samples were
performed in a CHN analyzer (Fisons NA 1500, Series 2, Fisons
instruments SpA, Milan, Italy) and the δ15N values for the
nitrogen gas released were determined on a Finnigan Matt 252
mass spectrometer (Finnigan MAT GmbH, Bremen, Germany),
which was connected to a CHN analyzer by a Finnigan MAT
Conflo control unit. The sample values were corrected by the
use of three standards. Two in-house standards (Merck Gel and
Nasturtium) were used and the third was the IAEA (International
Atomic Energy Agency) standard (NH4)2SO4. The percentage
of nitrogen derive from atmospheric fixation (%NDFA) was
calculated according to Shearer and Kohl (1986), where:

%NDFA = 100((δ15Nreference plant − δ15Nlegume)/

(δ15N reference plant− B).

Wheat (Triticum aestivum) was used as reference plant which was
grown under the same glasshouse conditions as the legume. The
B-value (which was determined as −0.71h.) refers to the δ15N
natural abundance of the N derived from biological N-fixation
of the above-ground tissue of V. divaricata, grown in an N-free
solution.

13C Enrichment
In order to investigate the metabolism of belowground
incorporation and metabolism of 13C labeled bicarbonate in roots
and nodules, NMR spectroscopy was used by coupling NMR with
13C stable isotope enrichment at the root-zone level. Plants of
V. divaricata, were grown in sterile sand culture under two levels
of P supply, low (5 µM) P and high (500 µM) P nutrition. At
2 months of age, both the low P and high P plants were supplied
with a sodium bicarbonate-13C labeled solution in the pots. The
pots were sealed and contained a CO2 trap, to prevent 13C leakage
to the atmosphere. The experimental procedure was as follows.
Plants of both treatments were enriched with 13C at the root-
zone level, by watering them with a 300 ml solution of sodium
bicarbonate-13C labeled (pH 6.8) (Sigma Aldrich Cat # 372382-
1G, 99 atom % 13C) (0.215 g/L). A solution of KOH (250 mM)
was placed in trays at the bottom of the pots to absorb CO2
which could escape through soil. Lids, designed with a special
opening to cover the sand and below-ground organs, but allow
the shoots to be exposed to the atmosphere, were placed on pots
immediately after 300 ml of NaH13CO3 solution was fed. These
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lids were made completely airtight around the pots. In addition,
CO2 traps were inserted into the lids, to prevent any NaH13CO3
from escaping to the atmosphere. These traps consisted of Soda
Lime in 5 ml pipette tips and were inserted in the head space
between the lid and soil in pot. The insertion points of traps
into the lids were sealed off and made air tight. The run-off
volumes of the NaH13CO3 were collected and measured. Pots
were then placed on clean trays with fresh KOH. Plants were
harvested at 1 h and 2 h intervals after feeding of NaH13CO3. All
metabolic processes were stopped by quenching nodulated roots
in liquid N2.

13C NMR
Sample preparation was done as described in Gout et al. (1993).
Briefly, 4.5 g of roots and nodules were frozen in liquid N2
and ground to a powder in 1 ml of 70% (v/v) perchloric acid.
The frozen powder was allowed to thaw at −10◦C. The thick
slurry was the centrifuged at 15000 rpm for 10 min and the
supernatant was then neutralized with 2M KHCO3 to pH 5. The
supernatant was then centrifuged at 10000 rpm for 10 min to
remove KClO4 and then lyophylised and stored in liquid N2.
The lyophilized sample was re-dissolved in 2.5 ml water which
contained 10% (v/v) 2H2O. The solution was neutralized to pH

7.5, buffered with HEPES and CDTA (50–100 µM) was added to
chelate divalent cations. Their respective 13C NMR spectra was
recorded at 25◦C dissolved in D2O on a Agilent Inova 600MHz
spectrometer utilizing the default pulse sequence parameters in
the VnmrJ 4.2 instrument software package.

Calculations
Specific N Absorption Rate
Specific N absorption rate (SNAR) (mg N g−1 root DW d−1) is
the net N absorption rate per unit root DW as outline in Nielson
et al. (2001), and it was calculated as:

SNAR = [(M2−M1/t2− t1)] × [(loge R2− loge R1)/

(R2− R1)]

Where M is the N content per plant, t is the time elapsed between
two harvests and R is the root DW.

Belowground Allocation
Belowground allocation refers to the fraction of new biomass
partitioned into new roots and nodules over the given
growth period. The calculations were done according to

FIGURE 1 | (A) Amount of nodules on roots, (B) dry weight of nodules, (C) nodule % of plant dry weight, (D) nodule allocation rate, (E) root allocation rate, (F) root
dry weight of Virgilia divaricata grown under high phosphate (500 µM P) and low phosphate (5 µM P) conditions. Values of four replicates are presented as
means ± SE. Different letters indicate significant differences between treatments (P ≤ 0.05).
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Bazzaz and Grace (1997) as follows:

df/dt = RGR (∂ − Br/Bt)

Where RGR is the relative growth rate (mg.g−1.day−1) and ∂ is
the fraction of new biomass gained during the growth period.
Br/Bt is the root weight ratio, based on total plant biomass (Bt)
and root biomass (Br).

Statistical Analysis
The effects of the factors and their interactions were tested
with an analysis of variance (ANOVA) (KaleidaGraph, Synergy
Software, PA, United States). Where the ANOVA revealed
significant differences between treatments, the means (6–8)
were separated using post hoc Tukey’s LSD (SuperANOVA for
Macintosh, Abacus Concepts, United States) (P ≤ 0.05).

RESULTS

Biomass
The dry weight (DW) of the roots and nodules was significantly
much lower in the LP treatment compared to the HP treatment
(Figures 1A,B,F). The relative growth rate for roots was much

higher for the LP treatment and slightly higher in nodules of
the LP treatment compared to the HP treatment (Figures 1D,E).
However, nodulation in the LP treatment was much lower and
more than twice the amount of nodules were formed in the
HP treatment (Figures 1A,B). The plants allocated more of
their resources to nodules and to roots in LP than in HP
(Figures 1C,E). The allocation of resources for both treatments
remained almost similar in the nodules (Figure 2C). Internal Pi
of roots and nodules was significantly lower in the LP treatments
(Figure 2D). However, the nodules were more efficient in BNF
per dry weight in the LP nodules and there was a decline in
%NDFA in the same nodules (Figures 2A,B).

Biological Nitrogen Fixation
During low P supply, there was a decline in BNF (%NDFA)
compared to the HP supply (Figure 2A). However, in spite of the
decline in BNF, the efficiency of BNF per unit P was higher in the
LP treatment compared to the HP (Figure 2B).

Protein and Enzyme Assays
Measurements of PEPC, MDH, and ME in plants grown in LP
rended higher values than those obtained in plants grown in HP
(Figures 3A,C,D). The highest PEPC (Figure 3A) activity was

FIGURE 2 | (A) Biological nitrogen fixation (BNF), (B) efficiency of biological nitrogen fixation (BNF) per unit of metabolic P in nodules, (C) root and nodule allocation,
(D) internal Pi of roots and nodules of V. divaricata, grown under high phosphate (500 µM P) and low phosphate (5 µM P) conditions. HN (high P nodules), LN (low P
nodules, HR (high P roots), and LR (low P roots are compared). Values of four replicates are presented as means ± SE. Different letters indicate significant
differences between treatments (P ≤ 0.05).
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in LP roots which was more than four times higher compared
to HR roots. PEPC activity in nodules was double compared to
HP nodules (Figure 3A). PK activity (Figure 3B) was higher
in the HP conditions compared to the LP conditions. Almost
similar PK activity was found for HP in roots and HP in nodules.
The PK activity in LP nodules was slightly less than that in HP
nodules. PK activity was five times higher in HP roots compared
to LP roots (Figure 3B). The highest ME activity (Figure 3C)
was obtained in LP nodules which was double of that in HP
nodules. The greatest activity was also found in LP nodules
compared to HP nodules (Figure 3C). MDH activity per fresh
weight was five times higher in LP nodules compared to HP
nodules and was more than double in LP roots compared to HP
roots (Figure 3D).

Organic Acids
Organic acids were higher in roots and nodules receiving the
HP treatment (Figure 4). The citric acid concentration in HP
roots was almost fivefold the amount compared to LP roots
(Figure 4A). The amount of citric acid found in nodules at
HP was double of that in LP (Figure 4B). The malic acid
concentration in HP roots was one order of magnitude greater
than the amount found in LP roots (Figure 4C). The amount of
malic acid found in nodules at HP was sixfold greater of that in
LP (Figure 4C).

Inorganic P Data
Higher internal Pi values were obtained in the HP treatment
for both roots and nodules, although we only found significant
differences between HP and LP in the concentrations of nodules
(Figures 5A,B). Phosphate concentration was significantly
greater in HP treatments than in LP for both roots and nodules
(Figures 5C,D).

NMR
An array of 13C NMR spectra was recorded for each individual
plant extract. The carbonyl carbon of the different organic
acids each appear at a unique chemical shift area, between
175 and 181 ppm, in the respective spectra (Supplementary
Figures S1−S4 for partial spectra and Supplementary Figures
S5, S6 for full spectra). The unique carbonyl chemical shift
of each organic acid were established by running commercial
reference solutions of these organic acids (solubilized in D2O
at pH 7.5), under the same conditions as the extract samples.
These two signals were consequently assigned to the organic
acids malate and citrate, respectively. Much higher (one order of
magnitude) relative malate concentrations were found compared
to citrate (Figure 7). Incorporation of 13C was very noticeable
during the first hour with higher relative concentrations
and a sharp decline in relative concentration after 2 h of

FIGURE 3 | Enzyme activities (µmol.min−1.g−1FW) in roots and nodules of V. divaricata grown under high phosphate (500 µM) and low phosphate (5 µM)
conditions (A) PEPC, (B) PK, (C) ME, (D) MDH. HN (high P nodules), LN (low P nodules, HR (high P roots), and LR (low P roots are compared). Values of four
replicates are presented as means ± SE. Different letters indicate significant differences between treatments (P ≤ 0.05).
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FIGURE 4 | Organic acids concentrations (mg.mol.g−1 FW) by GCMS analysis in roots and nodules of V. divaricata, grown under high phosphate (500 µM P) and
low phosphate (5 µM P) conditions. Citric acid concentration in (A) roots, (B) nodules. Malic acid concentration in (C) roots (D), nodules. Values of four replicates are
presented as means ± SE. Different letters indicate significant differences between treatments (P ≤ 0.05).

FIGURE 5 | Internal Pi (µmol Pi.g−1) of (A) roots, (B) nodules. Phosphate concentration (mg.kg−1) in (C) roots, (D) nodules of V. divaricata grown under high
phosphate (500 µM P) and low phosphate (5 µM P) conditions. Values of four replicates are presented as means ± SE. Different letters indicate significant
differences between treatments (P ≤ 0.05).
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FIGURE 6 | Relative organic acid concentrations (mg.ml−1) found by 13C NMR analysis in roots and nodules of V. divaricata, grown under high phosphate (500 µM
P) and low phosphate (5 µM P) conditions (A) root malate, (B) nodule malate, (C) root citrate, (D) nodules citrate.

FIGURE 7 | (A) Relative 13C α-ketoglutarate concentration after 1 h, (B) relative 13C asparagine concentration after 1 h, (C) relative 13C malate converted to
asparagine concentration, (D) relative 13C malate converted to α-ketoglutarate concentration (mg.ml−1)found by 13C NMR analysis in roots and nodules of
V. divaricata, grown under low phosphate (LP) (5 µM P) conditions.
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exposure to 13C, especially citrate (Supplementary Figures S1,
S2).

Citrate levels were significantly higher in HP and LP roots
and nodules after 1 h exposure (Figures 6A,B). Malate levels
remained almost unchanged in HP conditions, however, a
significant decline was observed in LP conditions in roots after
2 h of exposure (Figure 6C). Malate in nodules remained constant
in all treatments without a strong increase after 1 h in LP
(Figure 6D and Supplementary Figure S3). The presence of a
keto-group (at 200–220 ppm) could also be observed in a few
of the LP root and nodule spectra, which can be assigned to
that of 2-ketoglutarate (Supplementary Figure S4). The peak at
161 ppm, which was present in all the samples (except in the
control sample) can be assigned to 13C bicarbonate which was
present in the perfusion medium (Gout et al., 1993). Samples
concentrations were corrected by dividing peak areas into the
13C bicarbonate peak area at 161 ppm. Significantly greater
concentration of 2-ketoglutarate was recorded in LP nodules after
2 H (Figure 7A). Levels of asparagine were very low both in
roots and shoots except for the significantly greater concentration
measured in LP nodules after 1 h (Figure 7B). The relative malate
converted to asparagine was significantly greater in the nodules at
LP (Figure 7C) and the same can be said about the relative malate
converted to α-ketoglutarate (Figure 7D).

DISCUSSION

During P deficiency, V. divaricata nodules experienced less Pi
stress than roots, due to increased metabolic P conservation
reactions during organic acid synthesis. Although the BNF
declined, the high efficiency of BNF may be underpinned by
these altered P conservation pathways and enhanced resource
allocation during growth.

In legumes, Biological Nitrogen Fixation (BNF) is highly
dependent on phosphate supply, which affects nodule formation
(Valentine et al., 2017) as well as the nitrogen fixation process
(Schultze et al., 2006; Tsvetkova and Georgiev, 2007). However,
certain types of legumes are adapted to fix N2 efficiently in
P-impoverished environment. Particularly, Virgilia divaricata, a
native legume tree to the Cape Floristic Region of South Africa,
with high potential as precursor of Fynbos forests, has evolved to
grow under low phosphate stress conditions, through previously
unknown mechanisms. Our results indicate that belowground
organs, roots and nodules, had a higher resource allocation
under LP conditions as a consequence of their potential for
greater contribution to mineral nutrition. This concurs with
other species during P stress (Almeida et al., 2000) and also with
legumes from nutrient poor ecosystems (Magadlela et al., 2014;
Vardien et al., 2014), which can be interpreted as a strategy of
legumes to adapt to scarce nutrient supply (Araújo et al., 2015).

Although there was a decline in the number of nodules in
the LP treatment, the unchanged total nodule mass indicates that
plants allocate more resources to existing nodules, thus increasing
and maintain their efficiencies during LP conditions. This is
supported by the efficiency of nodule functioning (compared
to roots), under LP conditions, as reflected in the maintenance

or proportionally lower decline of P levels during P stress.
This lower decline in P concentration in nodules may also be
attributed to the fact that nodules are P scavengers acquiring this
nutrient mostly from roots, as reflected in the higher amounts
of P and Pi in nodules compares to roots in the LP-treatment,
oriented to maintain their functioning (Jakobsen, 1985; Israel,
1993; Le Roux et al., 2006). Similar findings also indicated that
nodule growth and functioning of this species is not limited
by P-deficiency in white clover (Almeida et al., 2000) and also
concurs with findings for Medicago truncatula where the P
concentration in nodules seems to be unaffected as most of the
P was allocated to the nodules (Sulieman et al., 2010). All these
findings support the idea that V. divaricata is able to store P in
the underground organs as an adaptation to the naturally low P
environment where it naturally occurs.

In spite of the decline in BNF, there was an increase in
BNF efficiency per mole P. This increase in BNF efficiency
during low P supply, suggests that nodules attenuate their BNF
capacity, despite low P conditions. It has been suggested that
the decrease in nitrogen fixation in P stressed plants, should be
viewed in correlation with whole plant growth, while specific
nitrogenase activity is still maintained (Schultze, 2003). This idea
is supported by various experimental evidences that it is the plant
N status which regulates nitrogen fixation rates (Schultze, 2003).
In addition, it appears that V. divaricata might also be able to
shift its acquisition of N from BNF to soil N acquisition. This
is reflected in higher mineral N uptake of nodulated roots as
evidenced by the increase in specific root system N acquisition
rate during P deficiency when BNF declines. This is in contrast
to findings by Vardien et al. (2014), where roots showed a
decline in mineral N uptake during P deficiency, compared to the
current increase of mineral N in the nodulated root system. These
differences may reside in the fact that in the current system, both
roots and nodules may have contributed to mineral N uptake
from soil. It is known that in a nodulated root system, both
roots (Magadlela et al., 2014) and nodules can seperately acquire
and assimilate mineral/soil N (Becana and Sprent, 1987) within
a nodulated root system, which confers additional advantages to
the plant growing in extremely poor soils.

Soil derived N is usually taken up in the form of NO3
−

(Lambers and Shane, 2007) and it might be that the roots
increase their contribution to acquire N under P limitation.
Although root nitrate uptake by roots could be beneficial to
plant metabolism, it could also impact negatively on BNF as it
might inhibit nitrogenase activity in legume plant nodules. It was
shown that nitrate impacts negatively on Rhizobium-infection as
well as on the ratio of the nodule dry mass to the whole plant
mass (Luciñski et al., 2002). As BNF is a costly process, it may
be more beneficial for legumes from low nutrient ecosystems
to take up N via its roots and to reduce energetically costly
BNF (Magadlela et al., 2015). Similar trends were also observed
in white clover where N concentration was unaffected by P
deficiency. It was found in white clover that N2 fixation increased
strongly under P deficiency and that approximately 30% of N was
assimilated due to N2 fixation (Almeida et al., 2000). Similar to
the BNF in white clover, we calculated that the nodules in our LP
treatment experiment derived approximately 32% of the N from
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the atmosphere. The approximate 68% of N might be from soil
uptake (whether directly by the nodules or via roots), as the plants
were fed with nutrient solution containing NH4NO3. In support
of the above, we obtained higher specific nitrogen acquisition rate
values for naked roots compared to nodulated roots, irrespective
the treatment). This could be an indication that the plant would
rather utilize soil N instead of utilizing the costly BNF route,
which could justify abovementioned findings.

In spite of variable P supply, the unchanged N levels are also
reflected in the elevated levels of all major amino acids found in
the nodules of the LP treatment compared to the nodules of the
HP treatment, and both the treatments for roots. A similar trend
was seen in P deficient white clover (Almeida et al., 2000) and
Medicago truncatula (Sulieman et al., 2010), where elevated levels
of all major amino acids were founds, especially asparagine. It
appears that aspartate, which serves as a precursor to asparagine,
also plays a key role in the maintenance of these processes, as it
was the predominant amino acid found in this study (Maxwell
et al., 1984; King et al., 1986; Rosendahl et al., 1990). Asparagine,
which is usually found in elevated levels during low P conditions,
can act as a possible N-feedback regulator to the nodules during
P-stress, as it flows from the shoots to the nodules and conveys
the message of the shoot nitrogen status to the nodules and
modulates their activity according to nutrient status of the plant
(Sulieman et al., 2010). In this way the nitrogenase activity can
be regulated by asparagine and this trend is also similar in
other legumes and non-legumes plants under stress (Steward and
Larher, 1980; Lea et al., 2007).

The key to these generated amino acids and other metabolic
products during P stress might lie in the operation of the non-
adenylated PEPC bypass route. Various studies have implicated
this non-adenylated PEPC-bypass route to increase the PEP
metabolism during P deficiency (Duff et al., 1989; Theodorou
and Plaxton, 1993). Those studies have also found that the
PEPC-activity may lead to an increase malate production. Malate
could serve as C fuel in bacteroides, which is generated by the
combined action of CA, PEPC and MDH (Vance and Heichel,
1991). In addition, malate can be transformed into OAA through
MDH and serves as C skeleton to generate Asparagine, which
serves as the principle N export compound in temperate legumes
(Schultze et al., 2006). The higher accumulation of malate in the
nodules compared to the roots (irrespective the treatment), might
implicate its role as C fuel for nodules to sustain nodule activity.
Similar findings were also observed in white lupin, where higher
malate concentrations were also found in nodules compared to
roots (Schuller and Werner, 1993). In addition to its role as fuel
for nodules, malate as well as citrate can be excreted by roots to
chelate metal cations such as Fe3+, Fe2+, Al3+, and Ca2+ and in
the process it release P from these cations, especially during low
P conditions (Neumann and Römheld, 1999). The larger amount
of citrate accumulation in roots compared to nodules may be an
indication that V. divaricata also follows this trend to acquire P.

Although a combined action of all three enzymes (CA, PEPC,
and MDH) is needed to generate organic acids for bacterial fuel
and for exudation, literature highlights Class1 PEPC as playing a
crucial role in the anaplerotic replenishment of tricarboxylic acid
cycle intermediates where carbon skeletons are removed for other

metabolic functions like nitrogen assimilation and amino acid
biosynthesis especially during P-deficiency (Uhde-Stone et al.,
2003b; Vance et al., 2003; Shane et al., 2004; O’Leary et al.,
2011). When an extremely low level of P in the plant is reached,
PEPC (in conjunction with MDH and ME) can theoretically
function as a glycolytic enzyme by indirectly bypassing the
conventional ADP dependent PK reaction to facilitate continued
pyruvate supply to the TCA cycle. In the process, Pi is also
generated and recycled in the P-starved cells (Nagano et al.,
1994; Plaxton and Carswell, 1999). In vitro root-MDH activity
(LP treatment) appears to be the only enzyme to show higher
activity over that of nodule-MDH activity. A direct result of
this elevated LP root MDH activity might have been the export
of malate to nodules which gave rise to the higher malate
concentration in nodules, compared to roots). These findings
give an indication that P deficiency may impact negatively on
the root’s metabolic processes resulting in the lower biomass
obtained for roots compared to the apparent unaffected nodule
metabolism, resulting in an increase in biomass for nodules under
P-stress.

CONCLUSION

For legumes such as V. divaricata growing in P-poor soils, the
continued reliance on BNF is underpinned by several key nodule
adaptations. During P deficiency the nodules of V. divaricata
have an increased allocation of resources and P-conservation
mechanisms, which improve the efficiency of nodule BNF. These
adaptations form the key to the plant’s ability to adapt to poor P
environments and thus sustaining its reliance on BNF.

AUTHOR CONTRIBUTIONS

All authors have equally contributed to the manuscript, from its
design to finalized the manuscript.

ACKNOWLEDGMENTS

This work is based on the Ph.D. thesis (University of
Stellenbosch) of one of the authors, Gary Grant Stevens (GGS).
The work first appeared in GGS’s thesis and this represents the
only medium it has appeared in. This is in line with the university
policy (University of Stellenbosch), and the Ph.D. thesis can be
accessed online. The authors would like to thank the University
of Stellenbosch for the provision of research infrastructure and
the DST-NRF Centre of Excellence in Tree Health Biotechnology
(CTHB) for funding of this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2019.00073/
full#supplementary-material

Frontiers in Plant Science | www.frontiersin.org 11 February 2019 | Volume 10 | Article 73

https://www.frontiersin.org/articles/10.3389/fpls.2019.00073/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2019.00073/full#supplementary-material
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00073 February 2, 2019 Time: 18:16 # 12

Stevens et al. Fynbos Legume Facing Low P

FIGURE S1 | A section of the 13C spectra for (a) roots after 1 h, (b) roots after 2 h
grown under high phosphate (500 µM P) conditions of V. divaricata.

FIGURE S2 | A section of the 13C spectra of (a) roots after 1 h, (b) roots after 2 h
grown under low phosphate (5 µM P) conditions of V. divaricata.

FIGURE S3 | A section of the 13C spectra of (a) nodules after 1 h, (b) nodules
after 2 h grown under high phosphate (500 µM P) conditions of V. divaricata.

FIGURE S4 | A section of the 13C spectra of (a) nodules after 1 h, (b) nodules
after 2 h grown under low phosphate (5 µM P) conditions of V. divaricata.

FIGURE S5 | A sample of the full 13C spectra of roots after 1 h, from plants grown
under high phosphate (500 µM P) conditions of V. divaricata.

FIGURE S6 | A sample of the full 13C spectra of nodules after 1 h, from plants
grown under high phosphate (500 µM P) conditions of V. divaricata.
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