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Shoot branching is a key process for plant growth and fitness. Newly produced
axes result from axillary bud outgrowth, which is at least partly mediated through
the regulation of BRANCHED1 gene expression (BRC1/TB1/FC1). BRC1 encodes a
pivotal bud-outgrowth-inhibiting transcription factor belonging to the TCP family. As the
regulation of BRC1 expression is a hub for many shoot-branching-related mechanisms,
it is influenced by endogenous (phytohormones and nutrients) and exogenous (light)
inputs, which involve so-far only partly identified molecular networks. This review
highlights the central role of BRC1 in shoot branching and its responsiveness to different
stimuli, and emphasizes the different knowledge gaps that should be addressed in the
near future.
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INTRODUCTION

Plants are sessile organisms that need to adjust their shape to suit the diversity of the changing
environmental conditions in which they are growing. The regulation of shoot branching is a
relevant strategy for plant survival and space occupancy, and involves an intricate regulatory
network. Shoot branching depends on the status of bud dormancy, which is a temporary
and reversible state (Shimizu and Mori, 1998). Shoot branching patterns, considered here as
the distribution of branches along a parent stem, are generated during plant postembryonic
development (Domagalska and Leyser, 2011). They depend on the ability of axillary vegetative buds
located at the axil of each leaf to remain inactive or to produce a new branch in response to variable
stimuli (Shinohara et al., 2013; Rameau et al., 2015; Wang and Jiao, 2018).

Shoot branching is an important feature of plant architecture that determines the interface
between the plant and the surrounding environment. Shoot branching contributes to essential
processes such as the establishment of leaf area and distribution that determine light interception
and photosynthesis, which in turn influence the number of flowers and fruits, fruit filling and yield
(Jiang and Egli, 1993; Richards, 2000). Branching also influences the plant competitiveness against
weeds or the propagation of pests (Lemerle et al., 1996; Zhao et al., 2006; Simon et al., 2011).
In ornamental plants, branching also determines plant visual quality, which drives consumers’
preferences (Ta et al., 1987; Boumaza et al., 2009, 2010; Garbez et al., 2015).

Extensive studies have been undertaken for several decades to find out the mechanisms
involved in branching. The currently accepted idea supports that endogenous, developmental, and
environmental inputs converge into bud-located integrators, which are at the head of a network
of mechanisms governing the ability of buds to grow out. Among these inputs, hormones, sugar,

Frontiers in Plant Science | www.frontiersin.org 1 February 2019 | Volume 10 | Article 76

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.00076
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2019.00076
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.00076&domain=pdf&date_stamp=2019-02-12
https://www.frontiersin.org/articles/10.3389/fpls.2019.00076/full
http://loop.frontiersin.org/people/509785/overview
http://loop.frontiersin.org/people/666467/overview
http://loop.frontiersin.org/people/82386/overview
http://loop.frontiersin.org/people/194811/overview
http://loop.frontiersin.org/people/480611/overview
http://loop.frontiersin.org/people/669055/overview
http://loop.frontiersin.org/people/99727/overview
http://loop.frontiersin.org/people/678746/overview
http://loop.frontiersin.org/people/422286/overview
http://loop.frontiersin.org/people/164049/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00076 February 8, 2019 Time: 19:37 # 2

Wang et al. BRC1 and Shoot Branching

nitrogen, light, and water play a determining role in shoot
branching regulation (McSteen, 2009; González-Grandío et al.,
2013; Niwa et al., 2013; Li-Marchetti et al., 2015; Rameau
et al., 2015; Teichmann and Muhr, 2015; Corot et al., 2017; Le
Moigne et al., 2018). Those factors may influence shoot branching
via various physiological and molecular mechanisms, targeting
different branching-related genes and acting synergistically or
antagonistically. BRC1 (BRANCHED 1) is well known to act
locally in buds and is considered to be an important hub of
different signals controlling the ability of a bud to grow out in
many species (Aguilar-Martínez et al., 2007; Dun et al., 2009;
Leyser, 2009; Beveridge and Kyozuka, 2010; Rameau et al.,
2015). Arabidopsis thaliana harbors two BRANCHED genes,
namely BRANCHED 1 (BRC1) and BRANCHED 2 (BRC2); they
encode TCP transcription factors closely related to TEOSINTE
BRANCHED1 (TB1) in maize and FINE CULM 1 (FC1) in
rice. In addition, they are conserved in many species of the
plant kingdom (Table 1). The corresponding mutants show
an altered branching phenotype as compared to the wild type
(Aguilar-Martínez et al., 2007; González-Grandío et al., 2013).
This review addresses the molecular identity of BRC1, its
involvement in shoot branching, and its regulation in response
to endogenous inputs (hormones and nutrients) and exogenous
cues (light). We also discuss how BRC1 can mechanistically
govern bud outgrowth, and raise a few questions about
future investigations.

BRC1 BELONGS TO THE TCP
TRANSCRIPTION FACTOR FAMILY

AtBRC1 (also called AtTCP18) contains an open reading frame
(ORF) made of ca.1,290-bp that encodes a protein with a TCP
domain and an R domain. It belongs to the TCP gene family, an
evolutionarily conserved family that first appeared in freshwater
algae of the Charophyta family (Navaud et al., 2007). The
TCP gene family was first described by Cubas et al. (1999)
and is represented by four ‘founding members’: TEOSINTE
BRANCHED1 (TB1), CYCLOIDEA (CYC), PROLIFERATING
CELL NUCLEAR ANTIGEN FACTOR1 (PCF1), and PCF2, all
identified on the basis of their functions in plant development
or their DNA-binding capacities (for a review see Li, 2015;
Danisman, 2016). In Arabidopsis, the TCP family comprises 24
genes encoding predicted proteins with a TCP domain (Cubas
et al., 1999; Kosugi and Ohashi, 2002; Palatnik et al., 2003; Cubas,
2004) and categorized into two classes: class I (also known as PCF
or TCP-P) is made up of 13 predicted proteins related to the PCF
rice factors (Kosugi and Ohashi, 1997), and class II (also known
as TCP-C) is made up of 11 predicted proteins related to the
Antirrhinum CYC and CIN genes and to the Zea mays TB1 gene
(Luo et al., 1996; Doebley et al., 1997; Nath et al., 2003; Palatnik
et al., 2003). All these transcription factors have the so-called
TCP domain, a 59-amino-acid basic helix–loop–helix (bHLH),
in common (Martín-Trillo and Cubas, 2010). Such a motif allows
for DNA binding and protein–protein interactions in cells. The
TCP domain is also necessary for nuclear localization (Kosugi
and Ohashi, 1997; Cubas et al., 1999), and some TCP proteins

can be targeted to the nucleus in heterologous systems (Suzuki
et al., 2001; Qin et al., 2004).

Besides the TCP domain, a few class-II TCPs, including
BRC1, display a functionally unknown arginine-rich motif, the
R-domain, which is predicted to mediate protein interactions
(Lupas et al., 1991; Cubas et al., 1999). The R domain may
involve the phosphorylation process of BRC1 by a cAMP-
dependent protein kinase (Dulhanty and Riordan, 1994; Martín-
Trillo and Cubas, 2010). Additionally, most members of the
CYC/TB1 subclass, to which BRC1 belongs, contain a conserved
ECE (glutamic acid-cysteine-glutamic acid) motif that remains
functionally uncharacterized and is located between their TCP
and R domains (Howarth and Donoghue, 2006).

The TCP proteins of various species regulate many biological
processes, including seed germination, plant branching, lateral
organ development, floral asymmetry, gametophyte development,
leaf senescence, circadian rhythms, and defense responses (for
a review see Li, 2015; Danisman, 2016). These TCP-dependent
regulations could occur directly through their binding to the
promoter of target genes or indirectly via their interactions
with plant hormones (Schommer et al., 2008; Guo et al., 2010;
Danisman et al., 2012; Li and Zachgo, 2013; Nicolas and Cubas,
2016). In Arabidopsis, the CYC/TB1 clade consists of AtBRC1,
AtBRC2 (also called AtTCP12) and AtTCP1, and is mainly involved
in the development of axillary meristems, giving rise to either
flowers or lateral shoots (Martín-Trillo and Cubas, 2010).

BRC1 IS A CENTRAL ACTOR OF SHOOT
BRANCHING

The shoot axillary meristem produces a branch when the
appropriate endogenous and exogenous inputs occur, so as
to adapt plant architecture to environmental conditions. In
monocots, TB1 from Z. mays (Doebley et al., 1997) and homologs
of TB1 in Oryza sativa (OsTB1/FC1, Takeda et al., 2003) and

TABLE 1 | The publication of BRC1 homolog genes in different species.

Species Name of the gene Reference

Monocots Zea mays TB1 Doebley et al., 1997

Oryza sativa Ostb1/FC1 Takeda et al., 2003

Sorghum bicolor SbTB1 Kebrom et al., 2006

Hordeum vulgare INTERMEDIUM-C Ramsay et al., 2011

Triticum aestivum TB-D1 Dixon et al., 2018

Eudicots Solanum tuberosum StBRC1 Nicolas et al., 2015

Pisum sativum PsBRC1 Braun et al., 2012

Dendranthema
grandiflora

DgBRC1 Chen et al., 2013

Arabidopsis thaliana AtBRC1 Aguilar-Martínez
et al., 2007

Solanum
lycopersicum

SlBRC1 Martín-Trillo et al.,
2011

Rosa hybrida RhBRC1 Barbier et al., 2015

Nicotiana tabacum NtBRC1a; NtBRC1b;
NtBRC1c; NtBRC1d

Chen et al., 2016

Populus canescens PcBRC1 Muhr et al., 2018
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Sorghum bicolor (SbTB1, Kebrom et al., 2006) promote bud arrest
locally, without affecting the number of buds, and thus lead
to reduced tillering. Consistently, TB1 and OsTB1 are mainly
expressed in axillary bud meristems (Hubbard et al., 2002; Takeda
et al., 2003), and their mutants tb1 and fc1 exhibit over-tillering
phenotypes (Doebley et al., 1997; Wang et al., 1999; Takeda et al.,
2003). The barley TB1 ortholog, INT-C, has been shown to act
mainly in the control of spike architecture, with a minor role in
tillering (Ramsay et al., 2011). Moreover, modern maize displays
less branching than the wild teosinte ancestor due to increased
TB1 expression (Studer et al., 2011; Zhou et al., 2011). However,
the int-c loss-of-function mutant showed less tillers in barley,
whose phenotype is opposite to the recessive tb1 mutant in maize
(Liller et al., 2015; Dong et al., 2019).

In dicots, genes closely related to TB1 have been studied
in a variety of species. In Arabidopsis, AtBRC1 and AtBRC2
both negatively regulate the branching process (Aguilar-Martínez
et al., 2007; Poza-Carrión et al., 2007). However, AtBRC1
seems to play a more pivotal role in axillary bud development
than AtBRC2. The AtBRC1 gene is predominantly expressed
during the development of axillary buds (axillary meristems,
bud leaf primordia and subtending vascular tissue). AtBRC1
expression is inversely correlated with bud outgrowth and
brc1 mutant phenotypes are non-pleiotropic, while constitutive
overexpression of AtBRC1 reduces the growth of the whole
plant (Aguilar-Martínez et al., 2007). Moreover, many AtBRC1-
homologous genes have also been found to be involved in shoot
branching suppression (Table 1). In addition, repressed buds in
pea have been found to be as metabolically active as growing
buds, so BRC1 growth repression may not involve metabolism
(Stafstrom and Sussex, 1988). Recent data demonstrate that
AtBRC1 is not always necessary for the complete inhibition of all
buds in Arabidopsis (Seale et al., 2017).

Genomic sequences of Solanum species, including potato
and tomato, also contain the BRC1-like gene, where it occurs
under two forms (Brewer, 2015). More interestingly, in Solanum
tuberosum, the BRANCHED1a (StBRC1a) gene encompasses an
alternative splice site leading to the generation of two BRC1a
protein isoforms, BRC1aLong and BRC1aShort, with distinct
C-terminal regions (Martín-Trillo et al., 2011; Nicolas et al.,
2015). The BRC1aLong C-terminal region has a strong activation
domain and moves to the nucleus, whereas the BRC1aShort

C-terminal region lacks an activation domain, which prevents
the nuclear targeting of the protein (Nicolas et al., 2015).
These different splice variants of AtBRC1 have also been found
in Arabidopsis (data not shown), but whether the mechanism
mentioned above exists in Arabidopsis is still unknown. A central
role of BRC1 in shoot branching has also been revealed in
pea (PsBRC1, Braun et al., 2012), Chrysanthemum (DgBRC1,
Chen et al., 2013), and poplar (PcBRC1, Muhr et al., 2016
and 2018). In Rosa sp., Li-Marchetti et al. (2017) carried out a
Quantitative Trait Loci (QTL) analysis of the plant architecture,
using a segregating, recurrent blooming population called ‘The
Fairy’ × ‘Old Blush’. They showed that the branching angle of
order 2 long axes, the number of short axes (the type of axis
that comprises one to four internodes), and stem elongation were
correlated, with QTL located in the genomic region of RhBRC1,

and assumed a pleiotropic role of RhBRC1 in the establishment
of the bushy shape of Rosa sp. Further work will be required to
more accurately define the role of BRC1 in the establishment of
the plant complex architecture.

BRC1 IS AN INTEGRATOR OF DIVERSE
HORMONAL SIGNALING NETWORKS

Auxin, cytokinins (CK), and strigolactones (SL) are implicated in
the hormonal regulation of BRC1 expression. In this regulation
network, auxin and SL act as inducers while CK act as repressors
(Rameau et al., 2015; Teichmann and Muhr, 2015). According
to Ferguson and Beveridge (2009), this kind of regulation could
be involved in various metabolism pathways such as feedback
regulation, long-distance hormone transport, and the interplay
of plant hormone metabolism and signaling.

In apical dominance, the polar auxin transport (PAT) stream
in the main stem, which is mediated by the PIN (PIN-
FORMED) auxin-efflux facilitators located in xylem-associated
cells (Petrášek and Friml, 2009), inhibits axillary bud outgrowth
(Morris, 1977; Li and Bangerth, 1999; Zhang et al., 2007; Balla
et al., 2011). Auxin cannot directly regulate BRC1 expression
because it is not transported from the stem to the buds in great
enough amounts (Hall and Hillman, 1975). It is hypothesized
that PAT prevents the establishment of auxin canalization from
axillary buds to the stem, and that this might be necessary for
the buds to grow out (Li and Bangerth, 1999; Domagalska and
Leyser, 2011; Chabikwa et al., 2019). The characterization of the
auxin-resistant Arabidopsis mutant axr1 indicated that such an
auxin effect occurred after axillary meristem initiation through
the inhibition of bud outgrowth (Stirnberg et al., 1999).

Auxin can indirectly promote BRC1 expression in the bud
(Aguilar-Martínez et al., 2007). Furthermore, auxin-mediated
BRC1 regulation through the control of two antagonistic factors,
CK and SL, fine-tunes BRC1 expression inside buds (Rameau
et al., 2015). The role of CK, a collection of adenine-related
compounds, in bud outgrowth was evidenced decades ago, when
CK application to dormant buds was shown to promote bud
outgrowth (Wickson and Thimann, 1958; Sachs and Thimann,
1967; Bangerth, 1994; Tanaka et al., 2006). In parallel, auxin
indirectly inhibits bud outgrowth by decreasing systemic and
local CK levels, which determines the CK supply to the buds
(Miyawaki et al., 2004; Nordström et al., 2004; Tanaka et al., 2006;
Müller and Leyser, 2011). CK can act to promote branching partly
by promoting PIN3,4,7 cross-stem auxin transport between the
bud and the adjoining stem, thereby potentially acting partly
independently of AtBRC1 repression directly in the bud (Waldie
and Leyser, 2018). High CK levels in axillary buds lead to the
activation of axillary buds through downregulation of BRC1
expression (Braun et al., 2012), although Psbrc1 (a pea BRC1
mutant) remained sensitive to CK application. These findings
might indicate that the branch-promoting hormone CK partly
controls shoot branching by negatively regulating BRC1 at the
transcriptional level. In rice, transcript levels of OsTB1/FC1 also
decreased in a CK-dose-dependent manner (Minakuchi et al.,
2010), and similar down-regulation of DgBRC1 was reported
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FIGURE 1 | Many factors influence the expression of BRC1, including developmental, positional, genetic, hormonal, sugar signal and environmental factors. Auxin,
cytokinin (CK), and strigolactone (SL) are implicated in the hormonal regulation of BRC1 expression; auxin and SLs as promoters of BRC1 and CKs as an inhibitor of
BRC1. The red line, inhibition effect; the green arrow, stimulation effect; the yellow bullet-end lines, protein interaction; the violet element, plant hormones; the green
element, plant nutrition; the green element, the yellow element, exogenous influence factor; the gray triangle, the proteins that interact with BRC1/TB1; D53, DWARF
53; HB21, HOMEOBOX PROTEIN 21; HB40, HOMEOBOX PROTEIN 40; HB53, HOMEOBOX PROTEIN 53; IPA1, IDEAL PLANT ARCHITECTURE1; NCED3,
NINE-CIS-EPOXICAROTENOID DIOXIGENASE 3; PHYB, PHYTOCHROME B; T6P, trehalose-6 phosphate.

in Chrysanthemum (Dierck et al., 2016). This CK-dependent
BRC1 regulation can be part of the light intensity-dependent
bud outgrowth regulation in Rosa sp. (Roman et al., 2016;
Corot et al., 2017). The Arabidopsis altered meristem program1
(amp1) mutants are characterized by higher levels of CK,
more bud outgrowth, more axillary meristems, and reduced
BRC1 expression (Helliwell et al., 2001). Although CK are a
powerful repressor of BRC1/TB1/FC1 expression, the molecular
mechanisms driven by this CK-dependent regulation still remain
an open question (Figure 1).

Strigolactones (SL), a group of carotenoids derived from
terpenoid lactones (Lin et al., 2009; Alder et al., 2012), act as
endogenous shoot branching inhibitors (Gomez-Roldan et al.,
2008; Leyser, 2008; Wang et al., 2013). Direct application of
GR24 – an SL analog – on buds inhibited outgrowth on intact and
decapitated plants (Brewer et al., 2009), and auxin application
elevated the transcription levels of SL biosynthesis genes (Sorefan
et al., 2003; Foo et al., 2005; Johnson et al., 2006; Zou et al.,
2006; Arite et al., 2007, 2009; Hayward et al., 2009). These
findings support that auxin-mediated bud outgrowth inhibition
involves the promotion of systemic and local SL synthesis in
the stem and thereby of SL levels inside buds. Consistently,
different SL mutants exhibited a highly branched phenotype in
pea [ramosus (rms)], petunia [decreased apical dominance (dad)],
and Arabidopsis [more axillary growth (max)] (Crawford et al.,
2010). A role for BRC1 downstream of SL was first reported in
Arabidopsis and pea, where BRC1 expression was upregulated by

SL, and shoot branching in the brc1 mutant was insensitive to SL
(Aguilar-Martínez et al., 2007; Dun et al., 2012; Revel et al., 2015).
However, SL application did not change the transcriptional
activation of OsTB1/FC1 expression in rice (Minakuchi
et al., 2010). Recent investigations showed that DWARF 53
(D53)/SUPPRESSOR OF MAX2 1-LIKE genes (SMXL6, 7, 8)
acted downstream of SL as repressors of SL-dependent BRC1
upregulation and thereby promoted shoot branching (Jiang
et al., 2013; Zhou et al., 2013; Kong et al., 2014; Wang et al.,
2015). Mutants deficient in D53-like genes indeed displayed
constitutive BRC1 upregulation (Soundappan et al., 2015; Wang
et al., 2015; Seale et al., 2017). Moreover, SL perception by D14
(α/β hydrolase) and the recruitment of the SCF complex resulted
in the polyubiquitination and 26S-proteasome–mediated
degradation of D53 (Kerr and Beveridge, 2017; Waters et al.,
2017). D53 physically interacts with IPA1 (IDEAL PLANT
ARCHITECTURE1), a repressor of shoot branching, and
prevents it from upregulating TB1 expression (Figure 1) (Song
et al., 2017). IPA1, also named OsSPL14, is a member of the
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)
family of plant-specific transcription factors (Miura et al., 2010)
that directly binds to the TB1 promoter in rice and activates
TB1transcriptional activity (Figure 1; Jiao et al., 2010; Lu et al.,
2013). Further support for the relevance of the “IPA-1-related
genes and TB1” module in shoot branching comes from a
study in wheat, where TaD53 physically interacted with TaSPL3
and prevented TaSPL3 upregulation of TaTB1 gene expression
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(Liu et al., 2017). Although the Arabidopsis homologs of IPA1
have been identified as being SPL9/15, further work will be
required to confirm whether this mechanism is involved in the
SL-dependent regulation of AtBRC1.

Besides auxin, CK, and SL, gibberellin (GA) might also
be involved in the regulation of BRC1 expression, even if
the mechanism is still unknown (Lantzouni et al., 2017).
GAs (diterpenoid tetracyclin molecules) are plant hormones
that regulate various developmental processes, including
stem elongation, germination, dormancy, flowering, flower
development, and leaf and fruit senescence (Hedden and
Sponsel, 2015). In Rosa sp., GA biosynthesis strongly
increases during bud outgrowth (Choubane et al., 2012).
In the perennial woody plant Jatropha curcas, GA and CK
synergistically promote lateral bud outgrowth, and both
hormones negatively influence BRC1 and BRC2 expression
(Ni et al., 2015). Simultaneously altered GA and SL levels
positively influenced the expression of the GA2 OXIDASE2 gene
which encodes a GA-catabolic enzyme, and the expression of
BRC1 (Figure 1) (Lantzouni et al., 2017). Furthermore, GA is
required for CK-mediated axillary bud outgrowth in A. thaliana
(Jasinski et al., 2005; Lo et al., 2008).

BRC1 EXPRESSION IS REGULATED BY
LIGHT

Shoot branching is negatively affected by low light intensity
and low ratios of red/far red (R:FR) light in many species
(Kebrom et al., 2006; Finlayson et al., 2010; Su et al., 2011;
Revel et al., 2015). In this process, light acts both as a driver of
photosynthesis for the supply of sugars to axillary buds and as
a photomorphogenic signal (Su et al., 2011). The signaling role
of light in plant branching was first unraveled by Kebrom et al.
(2006). In 2006 and 2010, these authors showed that active PHYB
suppressed the expression of the SbTB1 gene in sorghum, leading
to high plant branching, whereas environmental conditions that
inactivate phyB (low R/FR ratio) increased SbTB1 expression and
in turn repressed bud outgrowth. Additional experiments carried
out in Arabidopsis confirmed these findings: a low R/FR ratio
favored AtBRC1 upregulation through the PHYB pathway, which
is required for shoot branching reduction (Figure 1; González-
Grandío et al., 2013). This effect seems to be reversible, as
evidenced by the rapid and local downregulation of AtBRC1 after
increasing the R/FR ratio (Holalu and Finlayson, 2017). Such
a response may contribute to the rapid adaptation of plants to
fluctuations in the R/FR light ratio.

Besides light quality, a slight decrease of the photosynthetic
leaf area is associated with a stimulation of TB1 expression
in sorghum seedlings and consequently a lower propensity
of tiller buds to grow out (Kebrom and Mullet, 2015). In
addition, darkness-exposed Rosa sp. exhibited no bud outgrowth
and higher levels of RhBRC1 transcripts than plants placed
under light (Roman et al., 2016). All these findings indicate
that BRC1 expression is very sensitive to both light intensity
and quality. However, this regulation may involve distinct
mechanisms (Kebrom et al., 2010).

BRC1 IS REGULATED BY NUTRIENTS

Sugars are well known to promote bud outgrowth in many
species (Leduc et al., 2014; Rameau et al., 2015; Kebrom, 2017;
Tarancón et al., 2017; Ferreira et al., 2018), and the relationship
between sugars and bud outgrowth has been investigated for
years (Maurel et al., 2004; Chao et al., 2007; Girault et al., 2010;
Kebrom et al., 2010, 2012; Henry et al., 2011; Rabot et al.,
2012; Mason et al., 2014; Barbier et al., 2015; Fichtner et al.,
2017). Sugar effects are seemingly dependent on environmental
conditions (Corot et al., 2017). Sugars not only serve as a carbon
source for plant metabolism, but also as an important signaling
entity that affects many developmental processes including BRC1
gene expression (Price et al., 2004; Hellmann and Smeekens,
2014; Barbier et al., 2015; Sakr et al., 2018). In an interesting
study, Mason et al. (2014) demonstrated that the initial signal
responsible for the release of bud outgrowth after decapitation in
pea was an increase in sugar availability rather than a decrease in
apically supplied auxin, as traditionally thought. This is in line
with the earlier proposal by Morris and collaborators (Morris
et al., 2005), who assumed the existence of an auxin-independent
“fast-decapitation signal” leading to bud outgrowth initiation
after decapitation. Furthermore, Mason et al. (2014) also reported
that the timing of the increase of the sugar flux inside buds
and bud outgrowth tightly coincided with the downregulation
of BRC1 expression. In this process, sugar acts more likely
as a signaling entity, because many non-metabolizable sugar
analogs can trigger bud outgrowth (Rabot et al., 2012) and
repress BRC1 expression (Barbier et al., 2015). In addition,
this effect of sugar on BRC1 transcription could be mediated
indirectly via sugar regulation of CK biosynthesis and SL
signaling (Barbier et al., 2015) and/or directly (irrespective of
hormonal action). Decapitation led to a rapid and sustained
rise in trehalose-6 phosphate (T6P) levels in axillary buds and
a decreased expression level of BRC1, which supports that T6P
could partly mediate the sugar-dependent down-regulation of
BRC1 (Figure 1) (Fichtner et al., 2017). Further works are
required to further unravel this molecular regulatory network.
In the present state of knowledge, we cannot rule out that
the transcriptional regulation of BRC1 in response to sugars
could involve many sugar-signaling pathways and also that BRC1
expression is sensitive to the plant carbon status and/or energy
levels (Martín-Fontecha et al., 2018).

Mineral nutrition influences tiller bud outgrowth in barley
(Fletcher and Dale, 1974). In wheat, phosphorus deficiency
directly altered the normal pattern of tiller emergence by
reducing the rate of tiller emergence for each tiller (Rodríguez
et al., 1999). Although several links exist between phosphate
and the branching-related hormones (auxin, SL and CK),
no direct effect of the phosphate status on BRC1/TB1/FC1
gene expression is documented. Low-phosphate growth
conditions enhance SL production in many species (Yoneyama
et al., 2007; López-Ráez et al., 2008; Umehara et al., 2008;
Domagalska and Leyser, 2011; Kohlen et al., 2011; Yamada
et al., 2014). This situation leads to the repression of shoot
branching (Umehara et al., 2008; Kohlen et al., 2011), but
also to the stimulation of lateral root formation for soil
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foraging (Yoneyama et al., 2007; Ruyter-Spira et al., 2011).
In contrast to SL, low levels of inorganic phosphate reduce
CK production, which correlates with a reduced number of
branches (Horgan and Wareing, 1980).

In herbaceous and woody plants, high levels of nitrogen
fertilization (nitrate and/or ammonium) result in (i) a large
number of outgrowing buds (Lortie and Aarssen, 1997; Médiène
et al., 2002; Cline et al., 2006; Emarat-Pardaz et al., 2013; Pal
et al., 2013; Furet et al., 2014), and (ii) improved secondary
axis elongation (Thitithanakul, 2012; Thitithanakul et al., 2012).
Luo et al. (2017) confirmed that nitrogen deficiency did not
affect the initiation of tiller buds, but suppressed tiller bud
outgrowth in O. sativa. In Arabidopsis, low nitrate delayed
axillary bud activation, and this process involved an effect of
the plant nitrogen status rather than a direct nitrate-signaling
pathway (De Jong et al., 2014). Recent results demonstrated a
relationship between nitrogen fertilization and BRC1 expression
in rice (Li et al., 2016). They showed that high ammonium
nitrate intake in the root environment induced a reduction of
apical dominance through overexpression of miRNA393 in the
buds; miRNA393 inhibits the expression of the genes involved
in auxin synthesis and signaling (OsTIR1, OsAFB2, and OsIAA6)
as well as OsTB1. In Arabidopsis, the brc1-2/brc2-1 double
mutant exhibited a higher number of branches than the wild
type, but low availability of nitrate reduced this effect (Seale
et al., 2017). As root nitrate is widely known to induce CK
biosynthesis and signaling events in the whole plant (Crawford,
1995; Sakakibara et al., 1998; Takei et al., 2001, 2002; Forde,
2002a,b), and CK repress BRC1 expression, we cannot exclude
that nitrate may affect BRC1 expression through CK modulation.
In rice, the supply of a CK analog (BAP) or ammonium nitrate
regulated SL amounts in the stem and the bud within 3 h
after treatment, but nothing has been reported regarding BRC1
expression (Xu et al., 2015).

In Rosaceae as in many woody plants, nitrate is reduced and
assimilated into amino acids directly in the roots; consequently,
asparagine, arginine, aspartate, and glutamine are the main forms
of nitrogen translocated to the buds via the xylem sap (Millard
et al., 1998; Malaguti et al., 2001; Grassi et al., 2002; Guak
et al., 2003; Le Moigne et al., 2018). In rose, asparagine is a
major nitrogen form involved in bud outgrowth (Le Moigne
et al., 2018); this is in accordance with previous data showing
that application of asparagine on the soil of olive trees or
on the leaves of poplar trees contributed to enhance bud
outgrowth and secondary axis elongation (Proietti and Tombesi,
1996; Cline et al., 2006). In rice, a lack of cytosolic glutamine
synthetase1;2 in the vascular tissues of axillary buds severely
reduced their outgrowth (Funayama et al., 2013; Ohashi et al.,
2015) independently of the SL level (Ohashi et al., 2015). In
rose bush, sucrose, glucose, and fructose had to be associated to
asparagine to allow for the buds to grow out in vitro (Le Moigne
et al., 2018). This effect involved the upregulation of IPT3 gene
expression in the stem and in the vicinity of the bud (Le Moigne
et al., 2018) and the downregulation of BRC1 (Barbier et al.,
2015). In addition to a nutritional role, asparagine might also
be a signal representing the nitrogen status of the plant, so as to
counteract BRC1 expression through CK stimulation.

A BRC1-RELATED REGULATORY
MECHANISM

Many studies ascribe an inhibitory function of mitotic cell
activity to BRC1 (Poza-Carrión et al., 2007; Kieffer et al.,
2011). This is because early results of EMSA (Electrophoresis
Mobility Shift Assay) revealed the capacity of the TCP domain
to associate specifically with the promoter element of the
rice proliferating cell nuclear antigen (PCNA) gene (Kosugi
and Ohashi, 1997, 2002). These cis-regulatory modules are
indispensable for the transcriptional activation of the PCNA
gene in rice meristem tissues (Kosugi and Ohashi, 1997), which
seems to be an ancient and prevalent role of TCP transcription
factors (Ortiz-Ramírez et al., 2016).

BRC1-mediated branching is repressed by the regulation of
abscisic acid (ABA) metabolism (Figure 1). ABA is a plant
hormone that plays important roles in many phases of the plant
life cycle (Seo and Koshiba, 2002; Hayes, 2018; Wang et al.,
2018). Evidence for a role of ABA in regulating bud growth
comes from the positive correlation between a reduction of ABA
levels in buds and their release from dormancy (Cline, 1991).
Moreover, the Arabidopsis era1 (ENHANCED RESPONSE TO
ABA 1) mutant exhibited high sensitivity to ABA and reduced
branching (Pei et al., 1998). In brc1 Arabidopsis mutants, the
ABA-signaling pathway showed a significantly reduced response
as compared to the wild type. Additional data revealed that
the expression levels of two ABA markers, ABA-RESPONSE
PROTEIN (ABR) and UDP-GLUCOSYL TRANSFERASE 74D1
(UGT74D1), were significantly upregulated in the wild type but
not in brc1 mutants treated with low R:FR light (González-
Grandío et al., 2013). González-Grandío and Cubas (2014)
support a model in which ABA acts rather downstream of
BRC1, because ABRE-BINDING FACTOR 3 (ABF3) and ABA
INSENSITIVE 5 (ABI5), two key regulators of the ABA response
that contain TCP-binding sites in their promoters (Finkelstein
and Lynch, 2000; Yoshida et al., 2010; González-Grandío et al.,
2013; Nicolas and Cubas, 2016), are upregulated in axillary buds
upon BRC1 induction (González-Grandío and Cubas, 2014).
They also indicated that BRC1 bound to and positively regulated
three transcription factors: HOMEOBOX PROTEIN 21 (HB21),
HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN
53(HB53). These three proteins, together with BRC1, enhanced
NINE-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3)
expression, the main ABA-biosynthesis enzyme, leading in turn
to ABA accumulation in buds (González-Grandío et al., 2017).
This finding demonstrates a direct relationship between BRC1
and ABA signaling, and places ABA downstream of BRC1.
Consistently, BRC1 expression was found to be insensitive to
exogenous ABA application (Yao and Scott, 2015).

The TCP genes generally act by positively or negatively
regulating the cell cycle (Sarvepalli and Nath, 2018). As
a transcription factor, BRC1 could bind to the promoter
region of various genes to regulate the branching process
and participate to many regulatory mechanisms (González-
Grandío et al., 2013). In maize, TB1 can directly activate
the tassels replace upper ears1 (tru1) gene that encodes an
ankyrin-repeat-domain protein by binding to the promoter
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region of tru1 (Dong et al., 2017). In Arabidopsis, bioinformatic
analysis indicates that the promoter sequences of 1,950 genes
expressed in the shoot bear the TCP-cis regulatory motif (5′-
RRVMMMV-3′) and could be putatively regulated by AtBRC1.
Based on Gene Ontology (GO) enrichment analysis, these
putative target genes are thought to be mainly involved
in metabolic processes, including amino acid metabolism
[e.g., ALANINE-2-OXOGLUTARATE AMINOTRANSFERASE 1
(AOAT1); HYDROXYPYRUVATE REDUCTASE (ATHPR1)] and
sulfur (e.g., sulfate transmembrane transporter (MOT2), sulfate
transporter 1;2 (SULTR1;2)] (data not shown). We can therefore
speculate that BRC1/TB1 might control bud outgrowth via
various pathways, such as stimulating the ABA-signaling pathway
and inhibiting cell division and cell metabolism.

CONCLUSION AND PERSPECTIVES

BRC1/TB1/FC1 is an integrator gene involved in shoot branching,
which fits well with the ability of BRC1/TB1/FC1 expression to
integrate many endogenous and exogenous inputs (Figure 1).
However, the detailed mechanism whereby these stimuli regulate
BRC1 expression is still puzzling, and many mechanistic
scenarios are plausible. Many questions are thus still open
and include how CK and SL, the main two branching-
related hormones, antagonistically regulate BRC1 expression, and
which molecular actors could be involved. Similar questions
concern the sugar-mediated downregulation of BRC1, and
the molecular mechanism behind the combined effect of
nutrients and hormones on BRC1 expression (Sakr et al.,
2018). In addition, the regulation of gene expression includes
many aspects, such as epigenetic regulation, transcriptional
regulation, post-transcriptional regulation, translational and
post-translational regulation. The relevance of these mechanisms
in the regulation of BRC1 expression deserves to be investigated
in different biological contexts. Recent data showed that the
protein interaction process also influences BRC1 expression. For
example, the florigen proteins FLOWERING LOCUS T (FT)
and TWIN SISTER OF FT (TSF) influence axillary meristem
development via their interaction with AtBRC1 (Niwa et al.,

2013); TIE1 (TCP interactor containing EAR motif protein 1),
a transcriptional repressor identified as involved in the control
of leaf development, controls shoot branching by interacting
with BRC1 (Yang et al., 2018). Additional protein partners
may also interact with BRC1, including those related to the
energy and nutrient statuses [Sucrose non-fermenting-related
kinase (SnRK1)/Target of rapamycin (TOR kinase)] (Martín-
Fontecha et al., 2018). Meanwhile, our knowledge about the
molecular network governing the BRC1-dependent reduction
of plant branching is still limited, and the only available data
report that BRC1 action could be related to different biological
functions such as cell proliferation, cell metabolism, hormone
biosynthesis, ribosome biosynthesis, etc. All these findings
indicate that further work is required to fully investigate the
regulatory network behind the regulation and function of BRC1
in shoot branching.
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