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Somatic embryogenesis (SE) is a means by which plants can regenerate bipolar
structures from a somatic cell. During the process of cell differentiation, the explant
responds to endogenous stimuli, which trigger the induction of a signaling response
and, consequently, modify the gene program of the cell. SE is probably the most
studied plant regeneration model, but to date it is the least understood due to the
unclear mechanisms that occur at a cellular level. In this review, the authors seek to
emphasize the importance of signaling on plant SE, highlighting the interactions between
the different plant growth regulators (PGR), mainly auxins, cytokinins (CKs), ethylene and
abscisic acid (ABA), during the induction of SE. The role of signaling is examined from
the start of cell differentiation through the early steps on the embryogenic pathway, as
well as its relation to a plant’s tolerance of different types of stress. Furthermore, the role
of genes encoded to transcription factors (TFs) during the embryogenic process such as
the LEAFY COTYLEDON (LEC), WUSCHEL (WUS), BABY BOOM (BBM) and CLAVATA
(CLV ) genes, Arabinogalactan-proteins (AGPs), APETALA 2 (AP2) and epigenetic factors
is discussed.

Keywords: differentiation, growth regulators, signaling, somatic embryogenesis, totipotency, transcription
factors

INTRODUCTION

Higher plant embryogenesis is divided conceptually into two distinct phases: early morphogenetic
processes that give rise to embryonic cell types, tissues, and organ systems, and late maturation
events that allow the fully developed embryo to enter a desiccated and metabolically quiescent state
(West and Harada, 1993; Goldberg et al., 1994). Embryogenesis is the process by which embryo
formation is initiated, either from a zygote (zygotic embryogenesis, ZE) or from somatic cells
(somatic embryogenesis, SE). ZE is carried out after the fusion of gametes. However, the formation
of asexual embryos can be induced in vitro from cells that come from an explant of vegetal tissue
(Loyola-Vargas and Ochoa-Alejo, 2016). The SE process also occurs in nature. Under certain
environmental conditions such as heat and drought, the plant Kalanchoë produces, around their
leaves, small bipolar structures, which develop later in plantlets (Garcês and Sinha, 2009). There are
several other paths leading to the formation of an embryo. For instance, apomictic embryogenesis
takes place in the seed primordium (ovule) and the embryos produced are genetically identical to
the mother plant. Microspores can also produce embryos, and the cells of the suspensor can change
their identity to embryogenic cells when the original embryo loses its capacity to develop (Radoeva
and Weijers, 2014).
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Somatic embryogenesis represents a complete model of
totipotency and involves the action of a complex signaling
network, as well as the reprogramming of gene expression
patterns that are regulated in a specific way. This gene regulation
usually is in response to exogenous stimuli produced by
the use of plant growth regulators (PGR) or certain stress
conditions, mainly low or high temperature, heavy metals,
osmotic shock or drought (Nic-Can et al., 2016). The induction
of SE in vitro can be accomplished through two pathways.
When SE is direct, somatic embryos are formed at the edge
of an explant; when it is indirect, SE occurs through the
proliferation of a disorganized and dedifferentiated tissue called
callus (Quiroz-Figueroa et al., 2006).

Somatic embryogenesis has several biological and scientific
advantages. For instance, it has the potential for the improvement
of plants of commercial importance, as well as for the study
of the genetic and physiological changes that are related to the
fate of a plant cell. Until now, most studies have examined
the mechanisms involved in the induction of the SE process
using model plant species, such as carrot, alfalfa, corn, and
rice. However, other species, such as Arabidopsis thaliana and
Gossypium hirsutum, have been used to study the signaling
pathways of the PGR action leading to the development of plant
cells (Zhou et al., 2016).

EARLY SOMATIC EMBRYOGENESIS

Once the somatic cells are induced to generate cells with
embryogenic capacity, the new cells can form structures capable
of regenerating a complete plant. System suspensors are very
noticeable in gymnosperm somatic embryos. However, in many
angiosperms, suspensors are either absent or strongly reduced
due to the absence of the hypophyseal cell (Smertenko and
Bozhkov, 2014).

It is unclear how cells initiate embryo formation. Nonetheless,
it has been established that an irregular distribution of
auxins must be established to initiate embryo formation.
This asymmetrical auxin distribution results from differential
transport (Márquez-López et al., 2018; Figure 1). In the case
of ZE, an asymmetric cell division occurs, whereas in SE this
is often not observed (Toonen et al., 1994). An asymmetric
mitotic division of the zygote produces two different cells: one
cell gives rise to the suspensor and the other to the embryo
proper. At the octant and globular stage, protoderm formation
and primordial initiation takes place (Dodeman et al., 1997).
The differential transport and asymmetrical auxin distribution
continue during these stages, giving rise to the different tissues
that will form the embryo. The transportation and accumulation
of auxin produce the interaction with other factors, such as
cytokinins (CKs), which leads to the expression of specific genes
(Quiroz-Figueroa et al., 2002).

STAGES OF EMBRYO DEVELOPMENT

Although there is a morphological resemblance between somatic
and zygotic embryos, their development is distinctive based

on plant classification (angiosperms and gymnosperms). It is
considered that zygotic embryos are nourished via the phloem
tissue, whereas somatic embryos use an exogenous supply of
carbohydrates and their morphological stages occur without
vascular tissue connection (Pila Quinga et al., 2018).

Theoretically, plant development can be divided into two
different phases: (1) embryogenesis sensu stricto, which begins
with the formation of the zygote and concludes at the
cotyledonary stage, and (2) the maturation of the seed
(Dodeman et al., 1997). The somatic and zygotic embryo
developmental stages are divided into two main metabolic
phases. The first is at a morphogenetic level, where the
meristem activity is triggered at a physiological level and
the process of growth, storage and maturation is initiated.
The second is a metabolic stage that is characterized by
biochemical activities and the preparation for desiccation to
complete the seed formation process (Harada and Kwong, 2002;
Pila Quinga et al., 2018). In this last phase, somatic embryos
achieve both morphological and physiological maturity, which
guarantees satisfactory post-embryonic performance. Therefore,
the conversion potential is considered to be programmed during
embryo maturation. However, somatic embryos do not require
desiccation (Smertenko and Bozhkov, 2014).

Somatic embryo development involves similar stages to
ZE, such as the globular-shaped, heart-shaped, torpedo-shaped,
and cotyledonal stages in the case of dicotyledonous species
(Winkelmann, 2016), and globular, scutellar, and coleoptile
stages in the case of monocotyledonous species (Zhao et al.,
2017). Once the somatic embryos reach the cotyledonary stage,
they initiate a shoot meristem, and seedling growth begins
(Yang and Zhang, 2010).

FACTORS THAT INDUCE SOMATIC
EMBRYOGENESIS

Understanding the physiological and molecular mechanisms
by which the induction (direct or indirect) of SE occurs is a
crucial step for its manipulation (Grzyb et al., 2018). Several
factors can induce SE. The conditions of the culture medium,
the high concentrations of PGRs, and the wounding of explant
are other types of stress that can cause plant cells to change
their cellular and molecular programs. The type of explant, the
age and the genotype of the mother plant, the physiological
conditions of the incubation, and the cellular density in the case
of suspension cultures, as well as the generation of homogeneous
cell aggregates, are factors that must be considered in order to
produce the acquisition of embryogenic potential (Pencik et al.,
2015; Loyola-Vargas and Ochoa-Alejo, 2016).

The source of nitrogen, as well as its concentration in the
culture medium, has been shown to be an essential element
for the induction of SE (Reinert et al., 1967). In different plant
species, such as Cucurbita pepo (Pencik et al., 2015), Medicago
sativa (Walker and Sato, 1981), Coffea arabica (Fuentes-Cerda
et al., 2001), and Daucus carota (Kamada and Harada, 1979), it
has been determined that both nitrate and ammonium content
in the culture medium have a significant effect on the response
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FIGURE 1 | Auxin biosynthesis during the induction of somatic embryogenesis. (A) Auxin transport during the development of somatic embryos, globular stage (B)
and heart stage (C). Colors indicate the localization of the expression of the genes. IAA, indole-3-acetic acid; 2, 4-D, 2, 4-Dichloroacetic acid; TAA1, TRYPTOPHAN
AMINOTRANSFERASE OF ARABIDOPSIS 1; YUC, YUCCA; PIN, PIN-FORMED; MP, monopteros.

of the explants to the induction of SE. It has been proposed
that stress is the switch that stimulates cellular reprogramming
toward an embryogenic path (Nic-Can et al., 2016). However,
the mechanism by which the nitrogen sources participate in the
induction of embryogenic potential remains unknown.

THE ROLE OF PLANT GROWTH
REGULATORS DURING THE INDUCTION
OF SOMATIC EMBRYOGENESIS

In plant culture systems, the addition of PGR to the culture
medium plays an important role in inducing cell differentiation,
in particular during the induction of SE. Most of the SE process
depends on the concentration and kind of PGR used for each
culture. Different plant species, such as C. canephora (Márquez-
López et al., 2018), A. thaliana (Grzybkowska et al., 2018),
and Musa spp. (Awasthi et al., 2017) responded successfully
to the SE induction using different explants, conditions, and
concentrations of PGR.

Many species that are able to produce somatic embryos from
cell suspension cultures require the addition of auxins in the
culture medium. The use of 2, 4-dichloroacetic acid (2, 4-D) has
an essential role in the induction of SE and the initial stages
of development of the somatic embryos (Nic-Can and Loyola-
Vargas, 2016). For example, the productivity for embryogenic
date palm crops increased 20 times by adding a low concentration
of 2, 4-D (Abohatem et al., 2017). The use of auxins modified
their endogenous metabolism in a significant way; for example,
in carrots, the use of 2, 4-D in the culture medium induces
an embryogenic response that is associated with the increase of
the endogenous levels of indole-3-acetic acid (IAA) (Michalczuk
et al., 1992). The pre-treatment of plants before the induction of
SE in C. canephora also modified the endogenous metabolism of
IAA (Ayil-Gutiérrez et al., 2013).

Other PGRs, such as CKs, also participate in the development
of the plants, promoting the formation of buds, delaying the
aging of the leaves and, together with the auxins, stimulating

cell division; both regulators are known to act synergistically
(Novák and Ljung, 2017; Singh and Sinha, 2017). A high ratio
between CKs and auxins stimulates the formation of shoots
while that a low ratio induces the regeneration of roots and
the proper establishment of meristems in Pisum sativum (Kotov
and Kotova, 2018). These two PGR can act either synergistically
or antagonistically during the induction of SE. Recent studies
using synthetic reporter genes such as DR5 for auxins and a
two component system (TCSv2) for CKs have opened a window
into the molecular mechanisms by which such interaction occurs
during biosynthesis, transport and signaling (Liao et al., 2015).

In recent years there has been a significant increase in the
knowledge of the signal(s) that gives rise to the SE process,
but it is still unknown if auxins are the primary signal that
initiates the changes in the genetic program that leads to the
production of somatic embryos. In C. canephora, it has been
shown that polar transport of the IAA is needed for the formation
of the apical-basal axis (Márquez-López et al., 2018). It has
also been reported that CKs are essential to maintaining basal
levels of auxin biosynthesis during root and shoot development,
suggesting that there is a homeostatic regulatory network to
support adequate concentrations between auxins and CKs in the
development of the plant (Jones et al., 2010). It is possible that a
similar system is operating during the induction of SE. However,
this must be tested.

PLANT GROWTH REGULATOR
RESPONSE GENES DURING THE
INDUCTION OF SOMATIC
EMBRYOGENESIS

The SE process implies the integration of endogenous signals
and gene reprogramming, which unchains the signal that
initiates the embryogenic process. The use of exogenous
auxins, either alone or in combination with other PGRs or
stress, induces the expression of different genes, which modify
the genetic program of the somatic cells and regulate the
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transition to each of the stages during the development of
SE (Loyola-Vargas and Ochoa-Alejo, 2016). Most of these genes
belong to one of these four categories: transcription factors (TFs),
proteins that act in the cell cycle, biosynthesis of PGR, mainly
auxins, as well as proteins involved in the signaling pathway
(Leljak-Levanic et al., 2015).

It is generally accepted that the SE process involves three
phases: the induction of SE, the formation of the meristematic
centers, and the development of the somatic embryo (Elhiti et al.,
2013). Each stage comprises the interaction of multiple factors,
e.g., external signals, changes in the endogenous concentrations
of different PGRs, and the expression of numerous genes.
Molecular studies of the induction of SE are challenging since
it is difficult to identify the cells that will become new somatic
embryos. However, it is possible to carry out bioinformatics
analysis from transcriptomic studies gain a better picture of
the candidate genes involved in the initiation of the process
(Elhiti et al., 2013).

Production of the signal that leads to the changes in the genetic
program requires the participation of several metabolic pathways.
However, there is a consensus that auxins play a critical role in the
SE process (Nic-Can and Loyola-Vargas, 2016). It is known that
auxin plays a crucial role in the formation of embryo patterns in
angiosperms and in gymnosperms (Larsson et al., 2008). During
the induction of SE in C. canephora, there is an increase in
the content of endogenous IAA and in the expression of the
genes that code for the enzyme tryptophan aminotransferase
(TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1;
CcTAA1), and for the enzyme flavin mono-oxygenase (YUCCA;
CcYUC1 and CcYUC3). Both are involved in the biosynthesis of
IAA (Ayil-Gutiérrez et al., 2013).

The response of the explant is not confined to the increase in
the IAA levels (Nic-Can and Loyola-Vargas, 2016). Differential
gene expression can modulate the embryogenic capacity of cells,
and the number of genes turned off in somatic cells to allow for
the change from a somatic to an embryogenic state is higher than
the number of genes that are turned on (Quiroz-Figueroa et al.,
2002). In the SE of Arabidopsis, the modulation of several AUXIN
RESPONSE FACTORS (ARF) transcripts suggests the extensive
participation of auxin signaling during the process (Wójcikowska
and Gaj, 2017). Almost half of the 23 ARF genes are transcribed
during SE in Arabidopsis; six of them are upregulated and five are
down-regulated. Other members of the auxin signal transduction
pathway, like the putative Aux/IAA gene from Elaeis guineensis,
EgIAA9 (Ooi et al., 2012), or cotton (Yang et al., 2012), are
also involved in the induction of SE. An extensive analysis of
gene expression during the induction of SE in cotton shows that
more than 80 genes related to the metabolism of auxins are
differentially expressed (Yang et al., 2012).

STRESS AND SOMATIC
EMBRYOGENESIS

Somatic embryogenesis is a multifactorial event, which is
the result of a series of physiological, biochemical and
molecular changes taking place in plant cells. SE requires

embryogenic competence through dedifferentiation, chromatin
remodeling, programming of gene expression, and stress events
mentioned above (Krishnan and Siril, 2017). In general, the SE
induction includes a multitude of parallel signals that involve
alterations in the levels of endogenous PGR and stress factors
(Mozgová et al., 2017).

Different studies support the theory that the first stages of SE
are characterized by the induction of numerous genes related to
stress such as those discussed later on this review (Nic-Can et al.,
2016; Nowak and Gaj, 2016). Recent evidence in potato (Kaur
et al., 2018), Pinus sylvestris (Salo et al., 2016), Picea asperata (Jing
et al., 2017), Oldenlandia umbellata (Krishnan and Siril, 2017),
and Cyathea delgadii (Grzyb and Mikula, 2019) has revealed
that the presence of different types of stress plays an essential
role in the induction of SE. The main stress for cells during the
induction of SE is the presence of high auxin concentration in
the culture medium. Other stresses used for the induction of SE
are extreme pH, heat-shock exposure or treatment with various
chemical substances.

Usually, the combination of physical stress with high auxin
concentration in the culture medium improves the embryogenic
response. This effect was observed in Cattleya maxim where the
effect in the SE induction was evaluated using a combination
of salt (0.3 M NaCl) or osmotic stress (sorbitol 0.4 M),
and the culture in a medium supplemented with 2,4-D
(0.45 µM) significantly increases the percentage of protocorms
with embryogenic calli (Cueva Agila et al., 2015). In some
angiosperms such as Panax ginseng, the treatment of somatic
embryos with abscisic acid (ABA) and polyethylene glycol (PEG)
at a concentration of 20 µM and 3.75%, respectively, improve
both the maturation and regeneration of somatic embryos
compared to the untreated (Langhansová et al., 2004). However,
in gymnosperms, the combined application of ABA and PEG
has been shown to be necessary to stimulate the maturation and
functional development of somatic embryos (Stasolla et al., 2002).
For example, in Pinus sylvestris, embryo production is commonly
induced by eliminating auxin from the culture medium, ABA
addition and subsequently a PEG drying step (Salo et al., 2016).
In P. strobus, variable amounts of water at the beginning and
during the cultivation phase influences the maturation response
of the embryos (Klimaszewska et al., 2000). Meanwhile, changes
in water availability either by solutes or physical restriction can
affect the maturation response in some conifers (Montalbán and
Moncaleán, 2018). Other types of stress like heat-shock induce
the SE in Gladiolus hybridus (Kumar et al., 2002). In cotton,
several of the genes expressed during the induction of SE are
related to the homeostasis of auxins and ethylene, as well as
several related-stress TFs (Jin et al., 2014; Cao et al., 2017).

TRANSCRIPTION FACTORS AND
SIGNAL TRANSDUCTION INVOLVED IN
SOMATIC EMBRYOGENESIS

There is very little current information on whether the genes
involved in the induction of SE work independently or in a
network-like structure. However, the analysis of the interaction
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among different clusters of genes shows that they can act
in parallel or in sequence (Ikeuchi et al., 2018). The use of
transcriptomics has provided valuable. Indicates that the genes
expressed during the induction of SE are divided into the
categories of stress-related genes, PGR-related genes, and TFs
(Cetz-Chel and Loyola-Vargas, 2016; Chu et al., 2017).

The changes in the genetic program of the cells that
lead to the induction of SE require the regulation of several
genes (Riechmann et al., 2000). In both angiosperms and
gymnosperms, little is known about gene expression, the
early stages of embryogenesis, which is crucial for the later
development of the embryo (Trontin et al., 2016). For example, it
has been reported that in conifers such as Araucaria angustifolia
that the expression patterns of AaSERK1 during SE are very
similar to SERK1 homologs of angiosperms (Steiner et al.,
2012). These changes require the substantial participation of TFs.
Plant genomes contain a large number (6–10%) of TFs-coding
genes (Riechmann et al., 2000). Some of these TFs are shared
among a variety of plant species (Supplementary Table S1).
Among the TFs that have been found during the induction of
SE in different species are ABAINSENSITIVE 3 (ABI3) (Shiota
et al., 1998), AGAMOUS LIKE (AGL) (Harding et al., 2003;
Thakare et al., 2008; Zhai et al., 2016), BABY BOOM (BBM)
(Florez et al., 2015), CUP SHAPED COTYLEDONS (CUC),
FUSCA3 (FUS3) (Luerûen et al., 1998), LEAFY COTYLEDON
(LEC) (Iwase et al., 2015), LEAFY COTYLEDON LIKE (LIL)
(Kwong et al., 2003), SOMATIC EMBRYOGENESIS RECEPTOR-
LIKE KINASE1 (SERK1) (Pérez-Pascual et al., 2018), RWP-RK
DOMAIN-CONTAINING 4 (RKD4)/GROUNDED (GRD) (Waki
et al., 2011). VIVIPAROUS1 (VP1) (Footitt et al., 2003), and
WUSCHEL (WUS) (Arroyo-Herrera et al., 2008; Xiao et al.,
2018). In conifers, several homologs of important genes that
participate during ES have been found, such as SERK1, LEC1,
and WOX2, but it is still unknown whether they present patterns
and expression functions similar to angiosperms (Trontin et al.,
2016). Several of these genes are also expressed during the
formation of zygotic embryos. The application of auxins or their
analogs, like 2, 4-D, enhances the expression of several TFs, such
as BBM, WUS, and VP1 during the induction of SE (Awasthi
et al., 2017).

In some cases, like the SE induced in wounded tissues,
there is a signal that occurs before to the expression of the
TFs listed in the last paragraph. The expression of WOUND
INDUCED DEDIFFERENTIATION1 (WIND1) TF, from the
AP2/ERF family, is required before the expression of LEAFY
COTYLEDON2 (LEC2) takes place (Iwase et al., 2015). The
expression of some TFs is specific to particular species; however,
several others are expressed in all the systems of induction of
SE studied. The roles of these TFs in the signaling process are
discussed below.

Somatic Embryogenesis Receptor
Kinases (SERK)
Among the different genes that increase their expression
during the induction of SE, SERK is the most relevant.
This family of TFs is involved in a range of developmental

processes that include differentiation/transdifferentiation and
cellular totipotency (Pilarska et al., 2016).

The first SERK gene was identified in D. carota. It was
detected in embryogenic cultures in the early days of culture
in the presence of 2, 4-D. This gene is expressed in cells that
develop in somatic embryos until the globular stage (Schmidt
et al., 1997), just before the transition from the differentiation
state to the development state. The expression of SERK increases
several times in the embryogenic cells of A. thaliana (Hecht
et al., 2001), Citrus unshiu (Shimada et al., 2005), Dactylis
glomerata (Somleva et al., 2000), G. hirsutum (Pandey and
Chaudhary, 2014), Helianthus annuus (Thomas et al., 2004),
Medicago truncatula (Nolan et al., 2003), Solanum tuberosum
(Sharma et al., 2008), Vitis vinifera (Maillot et al., 2009), Cocos
nucifera (Pérez-Núñez et al., 2009), Oryza sativa (Hu et al., 2005;
Ito et al., 2005), Theobroma cacao (de Oliveira Santos et al.,
2005), Triticum aestivum (Singh and Khurana, 2017), Zea mays
(Baudino et al., 2001), Cyrtochilum loxense (Cueva et al., 2012),
and A. angustifolia (Steiner et al., 2012).

The evidence of the participation of SERK in the induction
of SE has emerged from the analysis of gene expression. For
example, SERK1 is highly expressed during the formation of
embryogenic cells in in vitro culture of A. thaliana and in all
of the cells of the developing embryo during early SE, up until
the heart stage of the somatic embryo. After this stage, the
expression of SERK1 is no longer detectable in the embryo.
However, in seedlings that over-expressed SERK1, the mRNA
exhibited a 300–400% increase in the efficiency of the initiation of
SE. These results suggest that an increase in the expression levels
of SERK1 confers embryogenic competence to cells in culture
(Hecht et al., 2001). In O. sativa, SERK2 is expressed almost three
times more in the embryogenic callus and maturation stage than
in the non-embryogenic callus (Singla et al., 2009). These results
suggest that different members of the SERK family have unique
functions. Similar results have been found in T. aestivum. In this
plant, members of the SERK family are expressed differentially
in response to different PGR sensitivities; i.e., SERK2 and SERK3
elicit auxin-specific responses while SERK1 and SERK5 may be
mediated by the signaling pathway of brassinosteroids (Singh and
Khurana, 2017).

In addition to auxins, other factors modified the expression of
SERK. In M. truncatula, the expression of SERK1 is stimulated by
the presence of auxin, but not by CKs. However, when the CKs
are co-administered with auxin, the level of expression of SERK1
increases synergistically compared to the up-regulation of auxin
alone. In response to a higher level of expression of SERK, the
number of embryogenic calluses increase as well as the formation
of somatic embryos (Nolan et al., 2003).

Leafy Cotyledon (LEC)
Another important participant in the regulation of SE and
plant embryo development is the LEC family of TFs (Guo
et al., 2013). LEC1 has an essential role in ZE and has been
suggested to control diverse processes in seed development
(Pelletier et al., 2017; Tvorogova and Lutova, 2018), including
embryo morphogenesis, maturation phases (Guo et al., 2013),
germination (Tvorogova and Lutova, 2018), and early and late
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embryogenesis; it also appears to allow the formation of the
embryo by establishing an embryonic environment (Harada,
1999). LEC1 is also involved in photosynthesis and chloroplast
biogenesis early in seed development, and seed maturation late
in the development of zygotic embryos (Pelletier et al., 2017).
This gene network regulated by LEC1 has been conserved in
dicotyledonous plants that diverged tens of millions of years ago
(Pelletier et al., 2017).

LEC1 and LEC2 were the first TFs shown to induce SE
when ectopically expressed in seedlings (Stone et al., 2001). The
auxin-dependent upregulation of LEC2 has been associated with
the induction of SE, whereas LEC2 expression was markedly
lower in non-embryogenic callus of A. thaliana (Ledwon and
Gaj, 2009), suggesting that LEC2 mediates the increase in the
endogenous auxins observed during the induction of SE (Ayil-
Gutiérrez et al., 2013). Similar results were found in T. cacao,
where LEC2 is highly expressed in the embryogenic callus and its
overexpression in cotyledon explants increased the embryogenic
response (Zhang et al., 2014). The ectopic overexpression of LEC2
from Ricinus communis in A. thaliana induces the expression
of TFs such as LEC1, L1L, FUS3, ABI3, and WRINKELED1
(WRI1) (Kim et al., 2014). Also, the expression of the fatty
acid elongase 1 (FAE1) and, in consequence, an accumulation
of triacylglycerols, especially those containing the seed-specific
fatty acid, eicosenoic acid (20:1 111), in vegetative tissues was
observed (Kim et al., 2014).

WUSCHEL (WUS)
The establishment of the shoot apical meristem (SAM) is essential
for SE and for shoot regeneration. These processes require the
expression of WUS, which encodes a bifunctional homeodomain
TF. WUS contains a highly conserved homeobox domain, and at
the conserved C terminal region it has three functional domains:
an acidic domain, a WUS-box (TLPLFPMH), and an EAR-like
motif (Ikeda et al., 2009). A very important characteristic of WUS
is its ability to move from one tissue to another. It can move
from its biosynthesis site, the central zone (CZ), into the daughter
cells in the peripheral zone, where it activates the transcription
of CLAVATA3 (CVL3), a negative regulator (Yadav et al., 2011).
CLV3 moves into the extracellular space and binds to CLV1,
which in turn inhibits the transcription of WUS. This WUS-CLV
feedback system establishment maintains the stem cell pool and
the development of SAM (Somssich et al., 2016; Negin et al., 2017;
Zhang et al., 2017). Therefore, WUS has been proposed to be
essential for SE (Xiao et al., 2018) and in vitro shoot regeneration
(Zhang et al., 2017).

WUSCHEL, like LEC2, responds to the presence of auxins.
Auxins trigger a signaling cascade that initiates the vegetative-to-
embryogenic transition, and this transition is mediated by WUS
(Zuo et al., 2002). The gradient of auxins that is detected during
the pre-treatment of C. canephora plantlets and later during the
initial phases of SE (Márquez-López et al., 2018) correlates with
the induced WUS expression during SE in A. thaliana (Su et al.,
2009).

It has been observed that WUS-related genes are up-regulated
during SE in different species, such as Ocotea catharinensis
Santa-Catarina et al. (2012), M. truncatula (Chen et al., 2009),

G. hirsutum (Zheng et al., 2014), and C. canephora (Arroyo-
Herrera et al., 2008). In C. canephora, overexpression of WUS
enhances SE in heterologous systems (Arroyo-Herrera et al.,
2008), increasing the somatic embryo production by 400%.
In G. hirsutum, the ectopic expression of AtWUS promotes
the proliferation and differentiation of transgenic callus and
positively regulates LEC1, LEC2, and FUS3 (Zheng et al.,
2014). WUS overexpression enhances the induction of SE and
can improve regeneration in cotton (Bouchabke-Coussa et al.,
2013), and its overexpression in A. thaliana roots, leaf petioles,
stems, or leaves induces the formation of somatic embryos
(Zuo et al., 2002).

Baby Boom (BBM)
Another key regulator of plant cell totipotency is BBM. BBM can
induce embryogenesis in differentiated cells and could be a vital
factor in plant embryogenesis development (Irikova et al., 2012).
BBM triggers a set of genes like LEC1 and LEC2, as well as ABI3
and the FUS3 network, which together activate SE (Horstman
et al., 2017). The induction of SE by BBM is a dose-dependent
mechanism and regulates the transcription of significant embryo
identity genes (Horstman et al., 2017).

The BBM family encodes APETALA 2/ETHYLENE
RESPONSE FACTOR (AP2/ERF) DNA-binding type TFs
identified in the gymnosperms, angiosperms, algae, and mosses,
these TFs act as a network regulation in response to biotic
and abiotic stress (Kim et al., 2005). The AP2/ERF domain
can bind to a GCC box, a DNA sequence involved in the
ethylene response (Ohme-Takagi and Shinshi, 1995). AP2/ERF
are divided according to the number of AP2 domains that
they contain, which are classified into subfamilies as the
Dehydration-responsive 427 element-binding (DREB), ERF,
AP2, and RELATED TO ABI3/VP1 (RAV) genes (Gutterson
and Reuber, 2004). Because RAV genes include another DNA-
binding domain, B3, RAV genes are sometimes treated as a
third group in the AP2/ERF family (Kim et al., 2005). The
distinct feature of the BBM and BBM-like proteins is the
presence of a conserved bbm-1 motif (GLSMIKTW) that is
absent in other proteins of the euANT lineage (Bilichak et al.,
2018). BBM activated the expression of a broad set of genes
encoding proteins with potential roles in transcription, cellular
signaling, cell wall biosynthesis and targeted protein turnover,
such as the ACTIN DEPOLYMERIZING FACTOR9 (ADF9)
(Passarinho et al., 2008).

In A. thaliana and B. napus, BBM changes its spatial-
temporal expression in the early stages of embryogenesis
(Kulinska-Lukaszek et al., 2012). Some reports show that BBM is
expressed in the heart state of an embryo and root development
(Galinha et al., 2007) and enhances the proliferation of somatic
embryos (Florez et al., 2015). This response is also produced
by ectopic expression of BBM, which changes from vegetative
to embryonic growth and induces spontaneous SE in these
two species (Kulinska-Lukaszek et al., 2012). The heterologous
expression of BBM from A. thaliana and B. napus in Nicotiana
tabacum produced an increase in the regeneration capability
(Srinivasan et al., 2007). In Capsicum annum, both LEC1 and
BBM are expressed and show high levels of expression in
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FIGURE 2 | Phylogenetic tree for 14-3-3 genes family in several species. The sequences of Coffea canephora GF14 were obtained from http://coffee-genome.org.
Rice sequences were obtained in http://rice.plantbiology.msu.edu. Tomato sequences were obtained in https://solgenomics.net/. Arabidopsis sequences were
obtained in https://www.arabidopsis.org/. The sequences were aligned in the software MEGA 7 (http://www.megasoftware.net/). The percentage of replicate trees in
which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The analysis was conducted in MEGA7 using the
Neighbor-Joining method. Abbreviations: Os, Oryza sativa; Sl, Solanum lycopersicum; Cc, Coffea canephora; At, Arabidopsis thaliana.

the different phases of development of the somatic embryo
(Irikova et al., 2012).

On the other hand, it is worth highlighting that BBM can
show differential expression depending on the species and the
embryogenic protocol. In a study using two species of the genus
Coffea, it was found that while in C. arabica a BBM-like gene
showed a twofold change in expression in embryogenic cell
suspension in comparison to embryogenic calli (Silva et al.,
2015), in C. canephora BBM1 expression was only observed

after SE induction (Nic-Can et al., 2013). It has been found
that the BBM gene is expressed at higher levels during SE
in comparison to ZE in T. cacao, and its overexpression in
A. thaliana and T. cacao led to phenotypes associated with
SE that did not require exogenous hormones. However, BBM
overexpression can inhibit the subsequent development of
the somatic embryos in T. cacao (Florez et al., 2015), while
the BBM overexpression in Populus tomentosa induced SE
(Deng et al., 2009).
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OTHER FACTORS INVOLVED IN SIGNAL
TRANSDUCTION DURING THE
INDUCTION OF SOMATIC
EMBRYOGENESIS

Somatic embryogenesis signaling is a very complex process where
several molecular players are involved; it would be tedious to list
them all. However, there are two other major factors that need to
be mentioned. One is the intervention of 14-3-3 proteins, which
participate in several processes such as the development of the
seeds (Zhao et al., 2015) and during the induction of SE in Carica
papaya (Vale Ede et al., 2014). The other factor actively involved
during the SE induction, process, and development is epigenetic
(Us-Camas et al., 2014; De-la-Peña et al., 2015; Duarte-Aké and
De-la-Peña, 2016).

14-3-3 Adaptor Proteins
14-3-3 adaptor proteins are a group of proteins involved in
the signal transduction pathway that is shared by several PGRs
involved in SE induction. These proteins are highly conserved
phosphoserine-/phosphothreonine-binding proteins, discovered
in the brain of mammals in 1967, with a subunit mass of 30 kDa
(Carlson and Perez, 1967).

In plants the number of members of these proteins is variable
(Figure 2). There are 13 14-3-3 adaptor proteins in Arabidopsis
(Rosenquist et al., 2000; DeLille et al., 2001), six in cotton (Zhang
et al., 2010), 17 in tobacco (Konagaya et al., 2004), ten in tomato
(Camoni et al., 2018), five in barley (Schoonheim et al., 2007), and
eight in rice (Yao et al., 2007).

The use of proteomics techniques has illuminated the changes
in hundreds of proteins, including the family 14-3-3, during the
induction of SE (Zhao et al., 2015; Tchorbadjieva, 2016). Some 14-
3-3 proteins are abundant in the embryogenic tissues of Cyclamen
persicum (Lyngved et al., 2008), and Larix principis (Zhao et al.,
2015). In oak, these proteins are more abundant in proliferating
embryos than in mature embryos (Gomez-Garay et al., 2013).

An excellent example that shows the role of 14-3-3 proteins in
the induction of SE is protein phosphatase 2A (PP2A) (Marsoni
et al., 2008). This enzyme consists of a catalytic subunit and a
regulatory A subunit together with a third variable B subunit
(Janssens and Goris, 2001). The B subunit is the component that
determines the substrate specificity and subcellular localization
of PP2As. PP2A is a complex enzyme. In A. thaliana, there are
25 genes involved in the transcription of PP2A three subunits.
The catalytic subunit (PP2Ac) is coded by five genes, three
other genes encoding A subunits and seventeen different genes
encoding B subunits (Farkas et al., 2007). The subunit A is
essential for auxin transport (Michniewicz et al., 2007), while
the 65 kDa regulatory subunit of PP2A has regulatory functions.
The subunit A has been associated with the SE process (Marsoni
et al., 2008). There is a noticeable increase in phosphorylation of
specific proteins in embryogenic cultures compared to the non-
embryogenic cells of C. persicum, which has been correlated with
higher levels of PP2A and a 14-3-3-like protein (Lyngved et al.,
2008). Other components of the signal transduction cascade, such
as G proteins and calreticulin, increased during cyclamen SE

(Rensing et al., 2005). It has been suggested that the increase in
the regulatory subunit of PP2A and 14-3-3 proteins during the
induction of SE is related to the stress conditions produced by
the in vitro culturing of C. persicum (Lyngved et al., 2008) and
L. principis embryogenic cultures (Zhao et al., 2015).

EPIGENETICS

In recent years, epigenetic mechanisms during chromatin
remodeling have emerged as critical factors in SE. Epigenetic
modifications are an essential part of the signaling pathway that
leads to changes in the genetic program of the cells and the
development of somatic embryos. There is evidence that shows
that changes in the chromatin are able to control totipotency in
plant cells (Duarte-Aké and De-la-Peña, 2016; Kumar and van
Staden, 2017). The level to which chromatin reprogramming is
required before SE induction depends on several factors, such as
origin of the explant, the culture medium, the genetic background
of the mother plant, and especially the amount of PGR used
(De-la-Peña et al., 2015).

DNA methylation is important for somatic embryo
development (Nic-Can et al., 2013; Yakovlev et al., 2016).
In general, higher global DNA methylation has been found in
non-embryogenic cultures of Pinus radiata (Bravo et al., 2017),
P. nigra (Noceda et al., 2009), Rosa x hybrid (Xu et al., 2004), and
Eleutherococcus senticosus (Chakrabarty et al., 2003), while low
global DNA methylation has been found in embryogenic cultures
of several plants. In Quercus alba DNA is demethylation during
the induction of SE (Corredoira et al., 2017), as well as during the
generation of pro-embryogenic mass, but it gradually increases
as the embryo is developing (LoSchiavo et al., 1989). Similar
results were observed during the SE of C. canephora (Nic-Can
et al., 2013), where the proembryogenic mass had lower DNA
methylation, while the maturation of the embryos was marked
by a gradual increase in the global levels of methylation.

In A. thaliana it was found that both de novo DNA methylation
and maintenance of it are required for the regulation of SE
(Grzybkowska et al., 2018), and similar results were found in
Picea abies (Yakovlev et al., 2016). Changes in the global DNA
methylation pattern during long-term subcultures could lead to
the loss of the embryonic potential of proembryogenic masses
(Fraga et al., 2016).

In order to prove that in fact DNA methylation is strongly
related to SE, pharmacological experiments have been conducted
in several plant species. The application of 5-azacitidine (5-
AzaC; a demethylating agent) decreased the levels of global
DNA methylation in A. thaliana and inhibited the induction
of SE (Grzybkowska et al., 2018). Similar results have been
found in M. truncatula (Santos and Fevereiro, 2002), D. carota
(Yamamoto et al., 2005), and C. canephora (Nic-Can et al., 2013).
Furthermore, LEC1, LEC2, and BBM genes were up-regulated in
the drm1drm2 and drm1drm2cmt3 mutants, an upregulation that
was related to an improvement in the SE response (Grzybkowska
et al., 2018). In T. cacao, DNA methylation increased during the
induction of SE, and treatment with 5-AzaC led to the recovery
of SE potential in aged cultures (Pila Quinga et al., 2017). 5-AzaC
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FIGURE 3 | Interactome of Coffea canephora proteins related to somatic embryogenesis. C. canephora proteins were compared with Arabidopsis thaliana proteins
using STRING software (https://string-db.org/); max score and sequence coverage were the principal parameters in the identification and selection. Colored lines
mean the following: Gene neighborhood (dark green), co-expression (black), experimentally determined (pink), Text-mining (light green), from a curated database
(light blue), protein homology (gray), and gene co-occurrence (dark blue). The description of the roles of every gene in the interactome is listed in Supplementary
Table S2.

is not the only drug used to disrupt epigenetic modifications;
trichostatin A (TSA), the function of which is inhibiting histone
deacetylases (HDACs), has a positive effect on gene expression.
The inhibition of HDACs has also led to an increase in the
number of haploid embryos produced by heat stress in B. napus
(Li et al., 2014). In fact, the treatment with TSA of germinating

spruce somatic embryos preserves their embryogenic nature
(Uddenberg et al., 2011). In the double mutant hda6/hda19,
the upregulation of LEC1, FUS3, and ABI3 genes was evident
in germinating Arabidopsis seeds (Tanaka et al., 2008). These
double mutants also led to the production of somatic embryos
in the leaves of Arabidopsis (Tanaka et al., 2008).
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Histones’ posttranslational modifications have been
implicated in the formation of somatic embryos. Histone
deacetylation may also play a role in the reprogramming of cells
in the early stages of SE (De-la-Peña et al., 2015; Lee et al., 2016),
since the levels of histone acetylation and the activity of HDACs
change in response to the presence of exogenous PGR during the
induction of SE.

There are several tissue-specific events involving H3K27me3.
The loss of this mark upregulates the auxin pathway and its
increase leads to the repression of leaf identity (He et al.,
2012). Polycomb repressive complex 2 (PRC2) is involved in
the methylation of lysine 27 in histone H3 (Molitor et al.,
2014). Double mutants of the PRC2 gene, which functions as a
histone methyltransferase, CLF and SWN or VERNALIZATION
2 (VRN2) and EMBRYONIC FLOWER2 (EMF2) form callus
on the shoot apex, lead to indirect somatic embryo formation
and ectopic roots (Chanvivattana et al., 2004). A PRC2 mutant
root hairs fail to maintain their differentiated state and form
unorganized cell masses and eventually somatic embryos from
callus (Ikeuchi et al., 2015). The effect of silencing genes of
the PCR2 family in inducing SE depends on the explant. In
tissues where PCR2 is scarcely active, the production of somatic
embryos is efficient; however, in the tissues where it is highly
expressed somatic embryos do not form (Liu et al., 2016;
Mozgová et al., 2017).

CONCLUDING REMARKS

Since the 1950s, the research on the SE process has gone from
empirical approaches to a more methodical investigation leading
to the production of somatic embryos (Loyola-Vargas, 2016). We
are well on the way to understanding the role of auxins and other
PGRs, as well as stress, on the induction of SE (Nic-Can et al.,
2016; Nic-Can and Loyola-Vargas, 2016). We now have a set of
genes that, in some cases, can be used as markers of the initiation
of SE. However, the signal pathway from the initial signal to the
first steps of the development of the somatic embryo remains
practically unknown.

Scientists have just begun to understand the complex
network of interactions among a set of TFs, the endogenous
concentrations of auxins, CKs, ABA, ethylene and salicylic acid,
their transport and receptors, and the origin of the explant that
lead to the establishment of a somatic embryo (Figure 3 and
Supplementary Table S2).

Current scientific knowledge lets us hypothesize that the initial
signal, stress or the signals produced by the PGRs induce a change

in the endogenous concentration of several PGRs, especially
auxins and CKs. The differences in the relationship between
the auxins and CKs lead to the expression of TFs and ARF,
which in turn modify the cell wall, a vital component in the
cell differentiation process. Once the cell(s) are settled into the
SE pathway, the expression of TFs, such as BBM, SERC, and
LEC, leads to downstream changes in the endogenous content of
different compounds and produces a cascade of events, such as
chromatin remolding, that drives the induction of SE. However,
there are still many questions to answer to understand how the
life of a somatic embryo begins. The roles of ethylene, salicylic
acid, the organization of the cytoskeleton, brassinosteroids, and
other compounds remain to be elucidated.

The overexpression of genes such as WUS, BBM, and LEC has
been used to induce SE in different plant species. This approach
has been instrumental in understanding the role of different genes
during the induction of SE; however, under certain conditions,
the overexpression also inhibits the induction of SE. This means
that under the present state of the art, every gene and every
plant species must be tested, before all of the pieces of the puzzle
are in place.

Increasing knowledge of the induction of SE and of the
development of somatic embryos will lead to the development
of multiple biotechnological applications and new opportunities
for the understanding of the fundamental aspects of SE. In
particular, the alteration in the methylation or acetylation profile
of DNA and/or histones by genome-editing techniques holds
great promise to increase the production and to improve the
quality of crops of agronomical importance (Karim et al., 2016).
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