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There is a very large diversity in plant architecture in nature. Over the past few years, novel 
theoretical concepts and analytical methods have emerged as powerful tools to understand 
important aspects of plant architecture. Plant architecture depends on the relative 
arrangement of three types of organs: leaves, shoots, and flowers. During plant 
development, the architecture is modulated by the balance of two homologous proteins: 
FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The FT/TFL1 balance 
defines the plant growth habit as indeterminate or determinate by modulating the pattern 
of formation of vegetative and reproductive structures in the apical and axillary meristems. 
Here, we present a summarized review of plant architecture and primarily focus on the 
FT/TFL1 balance and its effect on plant form and development. We also propose passion 
fruit as a suitable model plant to study the effect of FT/TFL1 genes on plant architecture.
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INTRODUCTION

Our understanding of plant architecture has advanced in the last few decades, and research 
in this field has given rise to innovations in various aspects of plant science. The use of 
high-performance computers for plant growth data analysis and simulation has contributed to 
the development of various interpretations of plant architecture (Kuchen et  al., 2012; Coen 
et  al., 2017; Whitewoods and Coen, 2017).

Plant architecture is determined by the number and arrangement of organs that are formed 
from the shoot apical meristem (SAM) (Benlloch et  al., 2007). During the vegetative stage, 
the SAM gives rise to shoots and leaves, and after transition to the reproductive stage it 
produces flowers (Benlloch et  al., 2007).

In the annual model plant Arabidopsis thaliana, the growth habit is monopodial and the 
apical meristem remains indeterminate and active throughout the entire plant life cycle (Bowman, 
1994). The resulting stem bears lateral branches, leaves, and flowers, and there is a clear 
distinction between the vegetative and reproductive stages (Bradley et  al., 1997).

Perennial plants differ from annual herbaceous plants, such as Arabidopsis, in a range of 
characteristics that influence their growth pattern and consequently the plant architecture. The 
branching habit of a perennial plant is more complex because an axillary meristem can have 
multiple fates—it either directly forms a shoot, or differentiates into a floral bud that opens 
the following spring after a dormant period, or remains dormant indefinitely. In addition, in 
perennial plants, the SAM preserves a high level of vegetative identity or “vegetativeness” 
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(Prusinkiewicz et  al., 2007). According to these authors, the 
meristem will form either a flower or a branch depending on 
its “vegetativeness”; high “vegetativeness” corresponds to an 
indeterminate shoot growth, and low levels of “vegetativeness” 
lead to determinate growth and development of floral meristem 
(Prusinkiewicz et  al., 2007).

Plant architecture is controlled by genetic mechanisms 
associated with environmental factors and largely dependent 
on meristem identity, which establishes the development of 
shoots or flowers. Extensive studies on genetic mechanisms 
controlling meristem identity in Arabidopsis have revealed that 
plant architecture is regulated by a few groups of genes (Bradley 
et  al., 1997; Conti and Bradley, 2007; Ho and Weigel, 2014). 
Among those, we  can highlight FLOWERING LOCUS T (FT) 
and TERMINAL FLOWER 1 (TFL1), both belonging to the 
FT/TFL1 gene family and encoding proteins similar to 
phosphatidylethanolamine binding proteins (PEBP) (Wickland 
and Hanzawa, 2015). The balance between these two homologous 
proteins, FT and TFL1, controls the indeterminate and determinate 
growth in plants and modulates plant architecture, regulating 
the formation pattern of vegetative and reproductive organs 
from the apical meristem (Park et  al., 2014).

In the present paper, we  report an updated view on the 
modulation of axillary meristems and plant architecture, with 
a primary focus on the role of FT/TFL1 genes. We  introduce 
new discussions about the current knowledge in this field and 
the possible implications and perspectives concerning plant 
architecture in plant developmental studies.

EFFECTS OF FT/TFL1 BALANCE IN 
ANNUAL PLANTS: ARABIDOPSIS

In Arabidopsis, six genes have been identified in the FT/TFL1 
family: FLOWERING LOCUS T (FT) and TWIN SISTER OF 
FT (TSF), involved in flowering promotion and belonging  
to the FT-like subfamily; TERMINAL FLOWER 1 (TFL1), 
BROTHER OF FT AND TFL1 (BFT) and Arabidopsis thaliana 
CENTRORADIALIS HOMOLOG (ATC), involved in flowering 
repression and belonging to the subfamily TFL1-like; and MOTHER 
OF FT AND TFL1 (MFT), belonging to the MFT-like subfamily 
and involved in the regulation of seed germination (Kobayashi 
et  al., 1999; Xi et  al., 2010; Wickland and Hanzawa, 2015).

FT and TFL1 have antagonistic functions in plant development. 
Considered as the florigen agent, FT activates the flowering 
pathway, whereas TFL1 represses flowering and is responsible 
for the maintenance of the inflorescence meristem. The FT/
TFL1 balance modulates the plant architecture because both 
proteins are involved in the control of the indeterminate versus 
determinate plant growth habit, which is essentially based on 
the production pattern of vegetative versus reproductive organs 
by the apical meristem (Matsoukas et al., 2012; Xu et al., 2012; 
Jaeger et  al., 2013; Nakano et  al., 2015; Patil et  al., 2017).

In Arabidopsis, the transcription factor CONSTANS (CO) 
activates FT in the leaves, where the gene is transcribed and 
translated, and its protein is then transported via phloem into 
the vegetative apex. In the apex, the FT protein forms a complex 

with a bZIP protein, FLOWERING LOCUS D (FD). This complex 
activates genes involved in floral meristem identity, such as LFY 
and APETALA1, thereby inducing flowering (Abe et  al., 2005). 
The ft mutants flower late and present indeterminate growth, 
whereas the overexpression of FT causes early flowering and 
conversion of the SAM into a terminal flower (Corbesier et  al., 
2007). In contrast, the expression of TFL1 in the SAM maintains 
the indeterminate growth and represses the floral meristem 
identity genes. The TFL1 protein is also capable of interacting 
with the FD transcription factor. Thus, tfl1 mutants flower early 
and their SAM is converted into a terminal flower. In contrast, 
overexpression of TFL1 causes late flowering and prevents the 
formation of a terminal flower (Bradley et  al., 1997).

EFFECTS OF FT/TFL1 BALANCE IN 
PERENNIALS: TOMATO

In tomato (Solanum lycopersicum) the balance between FT 
and TFL1 orthologs SINGLE FLOWER TRUSS (SFT) and SELF-
PRUNING (SP), respectively, coordinate the primary growth 
with regular sympodial cycles. A high SFT/SP ratio in the 
meristem promotes determinate growth, eventually converting 
the SAM into a flower, while a low SFT/SP balance promotes 
indeterminate plant growth (Pnueli et  al., 1998, 2001; 
Lifschitz  et  al., 2014).

Studies have shown that sft mutations may increase the 
productivity of tomato plants through a determinate growth 
habit (Park et  al., 2014). In sft, the loss of florigen activity 
results in a highly vegetative plant with fewer flowers and 
fruits. When plants with a determinate growth are heterozygous 
for SFT, there is a partial reduction of florigen activity and 
a slight suppression of SP, resulting in more sympodial branches 
and inflorescences. In contrast, when SP is present as a dominant 
allele, plants show indeterminate growth and continuous 
formation of inflorescences and fruits. Nonetheless, when the 
tomato plant has a recessive allele for this gene, it exhibits a 
specific architecture characterized by an early interruption of 
inflorescence production and shorter plant stature (Pnueli et al., 
1998, 2001; Jiang et  al., 2013). These results suggest that sft 
and sp mutations combined with heterozygous dosage effects 
should be  further explored to modulate flowering and plant 
architecture and optimize tomato yields.

HOW FT/TFL1 GENE DUPLICATION 
CONTRIBUTES TO THE EVOLUTION OF 
PLANT ARCHITECTURE

Gene duplication, a process that gives rise to paralogs, is a 
very common phenomenon in plants and an important source 
of new adaptive functions prone to selection during evolution 
(Kondrashov et al., 2002). Some gene pairs formed by duplication 
might have a short lifetime—only one copy might be  kept 
functional, while the other copy is pseudogenized—but other 
gene pairs might persist after duplication. Paralog proteins may 
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give rise to new functions through mutations that affect, for 
example, gene expression or amino acid sequences, resulting 
in different phenotypes that arise through adaptive evolution 
of new protein functions (Lynch and Conery, 2000).

Apparently, during evolution, some FT homologous genes 
acquired the function of flowering suppression. In some species, 
there is an FT with a repression function that antagonizes the 
flowering induction function of its paralog (Kotoda et al., 2010; 
Pin et  al., 2010; Hsu et  al., 2011; Harig et  al., 2012). It is of 
great significance that the evolution of FT paralogs might 
represent a common strategy in plants to refine floral initiation 
according to multiple environmental and endogenous pathways 
intrinsic to each individual.

In Beta vulgaris, the regulation of flowering time is controlled 
by BvFT1 and BvFT2, which show high sequence similarity 
to the Arabidopsis FT protein (AtFT). These genes regulate 
flowering time in response to low temperatures during winter 
associated with the phenomenon of vernalization. However, 
these two paralog genes in beet have antagonistic functions. 
While BvFT2, which is functionally conserved, is essential for 
flowering (it is expressed late in the afternoon, in long days), 
BvFT1 represses the flowering (it is preferentially expressed 
early in the morning, in short days) (Pin et  al., 2010). Pin 
et  al. (2010) observed that both proteins, BvFT1 and BvFT2, 
contain amino acids that determine the FT function (Tyr85 
and Gln140). However, the binding of specific residues at the 
external loop of their tertiary structures differed between the 
two proteins. Thus, these authors suggest that BvFT1 was 
initially a promoter of flowering, but that mutations within 
the outer loop of the protein resulted in a change in function 
toward flowering repression.

Similarly, two FT homolog proteins in Populus trichocarpa 
are required to coordinate the recurrent seasonal flowering cycle 
in response to temperature (Hsu et al., 2011). PtFT2 is involved 
in the vegetative growth, and it is activated by high temperatures 
and long photoperiods during spring and summer. In contrast, 
PtFT1, which activates reproductive growth, is repressed by 
high temperatures and induced by winter low temperatures.

Similarly, three out of the four FT homologs identified in 
Nicotiana tabacum repress flowering. Harig et al. (2012) found 
that all four genes were expressed in leaves under short-day 
conditions, and at least NtFT3 expression was restricted to 
the phloem companion cells. NtFT1, NtFT2, and NtFT3 
proteins are floral inhibitors, whereas only NtFT4 is a floral 
inducer (Harig et  al., 2012).

Although TFL1 gene duplications have also been described 
in the literature (Carmona et  al., 2007; Li et  al., 2015), the 
specific function of each paralog remains unclear, with no reports 
on TFL1 paralogs possessing an antagonistic function such as 
the activation of flowering (Carmona et al., 2007; Li et al., 2015).

MODULATION AND COMPLEXITY OF 
AXILLARY MERISTEMS

The axillary meristems (AMs) are important elements in establishing 
plant architecture and their reproductive success (Wang and Jiao, 

2018). The flexibility of the AM  activity is directly related to 
the FT/TFL1 balance (McGarry and Ayre, 2012).

In summary, a plant with a high FT/TFL1 ratio flowers 
early and presents a short stature as its apical meristem is 
converted into a terminal flower. As this ratio decreases, the 
level of vegetative identity, or “vegetativeness,” increases and 
the plants produce fewer flowers. Consequently, the repression 
of FT considerably increases vegetative growth (Figure 1).

In most annual plants, the SAM remains indeterminate, 
while the axillary meristems are determinate. Thus, the SAM 
gives rise to a vegetative meristem, when FT/TFL1 ratio is 
low. As the plant ages, FT transport increases because there 
are more leaves contributing to the FT pool and, in the apex, 
the effects of accumulated FT exceed the TFL1 function. As 
a result, a transition from a vegetative to a reproductive meristem 
is observed and, subsequently, the plant life cycle is completed. 
In contrast, perennial plants present high levels of TFL1  in 
the SAM, which remains vegetative, while in the axillary 
meristems, the FT level prevails, activating genes involved in 
floral meristem identity (McGarry and Ayre, 2012).

In Arabidopsis, the protein encoded by the gene BRANCHED1 
(BRC1) interacts with FT, modulating its activity in the axillary 
buds to repress the premature floral transition of axillary 
meristems (Hiraoka et  al., 2013; Niwa et  al., 2013). BRC1, 
also known as TCP18, is a member of the TCP family, a 
plant-specific family of transcription factors involved in a 
large variety of developmental processes, such as cell 
proliferation and growth, mainly in meristems and lateral 
organs. Through these processes, it is involved in the 
establishment of plant form and architecture (Aggarwal et al., 
2010; Manassero et  al., 2013).

In perennial plants such as lianas, woody climbing vines 
that are abundant in tropical forests, the growth habit differs. 
The acquisition of the climbing habit constitutes an innovation, 
and its success in climbers is related to the development of 
specialized structures such as tendrils. Lianas begin their life 
on the floor, but their survival depends on trees for support 
as they climb upward and compete for sunlight. Thus, their 
SAM is characterized by indeterminate vegetative growth and 
repressed development of the AMs, facilitating the lianas to 
reach the forest canopy (Rodriguez-Ronderos et  al., 2016; 
Sousa-Baena et  al., 2018).

The Arabidopsis AMs are simple in comparison to  
AMs in other families such as Vitaceae and Passifloraceae. 
Additional accessory meristems, which give rise to tendrils 
or inflorescences, are a special feature of Vitaceae. In grapevine 
(Vitis spp.), a genus of woody perennial vines, adult plants 
have specific AMs called uncommitted lateral meristems. 
These meristems are located opposite to the leaves in the 
expanded shoot and give rise to tendrils for an extended 
period before the plant initiates flowering. However, upon 
flowering induction, the inflorescences are formed in place 
of tendrils from the same uncommitted lateral meristems 
(May, 2004; Carmona et  al., 2008).

In Passiflora species, AMs acquire different features during 
life stages. Taking passion fruit (P. edulis) as an example, the 
AMs of juvenile plants give rise to a vegetative meristem, 
those in adult vegetative plants produce a tendril next to a 
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vegetative meristem, and finally, adult reproductive plants form, 
in addition to the vegetative meristem, an AM  that divides 
into two primordia to form tendrils and flowers simultaneously 
(Ulmer and Macdougal, 2004; Dornelas et al., 2006; Cutri et al., 
2013). Passion fruit species evolved in ecosystems in which 
competition for light is the norm, due to dense vegetation 
(Ulmer and Macdougal, 2004). Therefore it can be  considered 
an adaptive advantage the ability to climb on other plants in 
order to reach the top of the canopy. Passiflora species endure 
a very short juvenile stage (about eight plastochrons) under 
the canopy shadows and after transitioning to the adult stage, 
tendrils are produced by lateral axillary meristems (Cutri et al., 
2013). The production of flowers is repressed in P. edulis plants 
under shaded conditions, and thus tendrils allow the plant to 
climb to the top of the canopy where flowers can develop. 
According to these observations, flowers are formed only after 
tendrils are formed and they share a common ontogenetic 
origin (Cutri et al., 2013; Sousa-Baena et al., 2018). The number 

and position of flowers formed from the axillary meristems 
diverge among Passiflora species. Cutri et  al. (2013) showed 
by comparing different Passiflora species under distinct 
environmental conditions that a great ontogenetic plasticity 
exists that is normally restrained by genetic, hormonal and 
environmental constraints. Therefore we  postulate that what 
appears to be  a species-specific program regulating the fate 
of the Passiflora lateral axillary meristems, is in great part due 
to a balance of the expression patterns of FT/TFL1 orthologs 
in passion fruits.

CONCLUSION

The balance between FT/TFL1 ortholog genes is important for 
adaptation of plants to diverse environmental conditions. It is 
notable that domestication of several wild and exotic species 
into agronomic cultures with specific growth habits results from 

A B C

FIGURE 1 | Representation of the changes in plant architecture attributable to the balance between FLOWERING LOCUS T (FT) and TERMINAL FLOWER (TFL1). 
FT and TFL1 compete for FLOWERING LOCUS D (FD) binding. (A) A high FT/TFL1 ratio causes early flowering in plants with short stature, since its apical and 
axillary meristems are converted into flowers. (B) A moderate ratio of FT/TFL1 allows for a balanced development between the shoots and flowers along the plant 
axes. (C) A low FT/TFL1 ratio increases the plant vegetative growth and the apical and axillary meristems give rise to shoots. A red region represents the shoot 
apical meristem, an orange region represents the axillary meristem, arrows represent indeterminate meristems, and black circles represent flowers.
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a selection of the differential balance between FT/TFL1. Thus, 
studies characterizing the interaction between these genes become 
an important tool for breeding programs of plants of commercial 
interest, since the ability to modulate plant size might allow 
increasing planting density, facilitate fruit harvest, and increase 
crop productivity, among other agronomic benefits. Considering 
that passion fruit AMs are predicted to be  more complex in 
comparison with AMs in other species, we  propose passion 
fruit as an appropriate model to study the FT/TFL1 balance 
in order to understand how AM  modulation gives rise to 
different structures.
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