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The ever-growing world population brings the challenge for food security in the
current world. The gene modification tools have opened a new era for fast-paced
research on new crop identification and development. However, the bottleneck in
the plant phenotyping technology restricts the alignment in geno–pheno development
as phenotyping is the key for the identification of potential crop for improved yield
and resistance to the changing environment. Various attempts to making the plant
phenotyping a “high-throughput” have been made while utilizing the existing sensors
and technology. However, the demand for ‘good’ phenotypic information for linkage to
the genome in understanding the gene-environment interactions is still a bottleneck
in the plant phenotyping technologies. Moreover, the available technologies and
instruments are inaccessible, expensive, and sometimes bulky. This work attempts
to address some of the critical problems, such as exploration and development of a
low-cost LiDAR-based platform for phenotyping the plants in-lab and in-field. A low-
cost LiDAR-based system design, LiDARPheno, is introduced in this work to assess
the feasibility of the inexpensive LiDAR sensor in the leaf trait (length, width, and area)
extraction. A detailed design of the LiDARPheno, based on low-cost and off-the-shelf
components and modules, is presented. Moreover, the design of the firmware to control
the hardware setup of the system and the user-level python-based script for data
acquisition is proposed. The software part of the system utilizes the publicly available
libraries and Application Programming Interfaces (APIs), making it easy to implement
the system by a non-technical user. The LiDAR data analysis methods are presented,
and algorithms for processing the data and extracting the leaf traits are developed.
The processing includes conversion, cleaning/filtering, segmentation and trait extraction
from the LiDAR data. Experiments on indoor plants and canola plants were performed
for the development and validation of the methods for estimation of the leaf traits. The
results of the LiDARPheno based trait extraction are compared with the SICK LMS400
(a commercial 2D LiDAR) to assess the performance of the developed system.
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INTRODUCTION

An estimated 30% rise in number of people on the planet by 2050
will bring new challenges, one of those challenges is the need of
enough food, which is estimated to increase about 1.5 times of
that of today (Yuan et al., 2004; Tilman et al., 2011). To meet
this goal, it is required to increase the yield of the crops that
are produced. There are several ways to improve the yield of
crops, specifically advances in gene modification and mutation
have provided huge opportunities for the improvements in
the quality and quantity of production capability of the crops
(Uzogara, 2000). Understanding the interaction of genotype with
environment is of prime importance, which can be achieved
by the measurement of phenotypic traits of the crop (Houle
et al., 2010; Großkinsky et al., 2015). The field of phenomics
is large-scale collection of phenotypes to study, analyze and
understand the interaction of genomic variations with varying
environment by revealing the relation between genotype and
phenotypes (Allen et al., 2010; Houle et al., 2010; Nsf-Usda,
2011). Traditionally, plant phenotyping has been achieved by
manually collecting the phenotypes from the plants to select
the best individual variety (Walter et al., 2015). Technological
advancement in the plant phenotyping has been a topic of
interest among interdisciplinary researchers in recent years. The
efforts have been put into using and optimizing the available
technologies to adapt to the need of plant phenotyping (Fiorani
and Schurr, 2013). Active sensors such as Greenseeker RT 100
(NTech Industries Inc., Ukiah, CA, United States) and the
Crop Circle ACS-470 R© (Holland Scientific, Inc., Lincoln, NE,
United States) have been used in studying the biochemical traits
(e.g., nitrogen uptake) of plants (Winterhalter et al., 2013).
Moreover, use of imaging sensors have been explored to find the
relation between the genome and the environment (Walter et al.,
2015). However, most of the developments have been focused
on lab experiments with some for in-field experiments, but are
unavailable commercially at large scale.

Plant imaging using a 2-dimensional (2D) color – visible light
spectrum (VIS) – cameras were used by numerous researcher to
develop a plant trait characterization algorithms (Furbank and
Tester, 2011; Fahlgren et al., 2015). However, the VIS cameras are
prone to the lighting conditions and might perform differently
under changing lighting conditions, leaf shadows, overlapping
leaves and differentiating leaves from the soil background (Li
et al., 2014). A 3-dimensional (3D) reconstruction of the canopy
root and shoot architecture can provide detailed view of the
plant structure and distribution of organs. Technologies such as
tomography and 3-D imaging can be utilized for generating a
3D models for analysis. Tomographic imaging such as Magnetic
Resonance Imaging (MRI) and X-ray Computed Tomography
(CT) can provide detailed information of the root and shoot
architecture and distribution (Stuppy et al., 2003; Van As and
van Duynhoven, 2013). However, the tomographic imaging is
bulky and is low-throughput (Li et al., 2014). 3D imaging can
provide the detailed view of the plant structure above-ground
by using technologies such as Time of Flight (ToF), Light
Detection and Ranging (LiDAR), and Stereo Vision cameras to
create a detailed map of the vegetation and canopy structures

(Li et al., 2014). While ToF cameras can be considered ideal for
high-throughput 3D data acquisition due to their high frame
rate, they are influenced by the sunlight as well as their low
resolution limits the adaptation in phenotyping applications.
On the other hand, 3D model reconstruction from the multi-
perspective 2D images (stereo vision) is possible, but the process
of generating 3D model is highly dependent on the quality of
the 2D images, which suffers from the illumination conditions.
In addition, extensive calibration for the 2D cameras is required
to estimate the 3D models. For instance, 3D photogrammetry
using 2D images requires many high-resolution images taken
from different angles and high level of calibration. Furthermore,
the algorithms for processing the images to generate a 3D
model are computationally expensive, requiring the use of high-
end processors and huge amount of available memory due to
sophisticated algorithms for phenotype extraction. On the other
hand, LiDAR can provide the phenotypic information accurately
with reasonably easy processing steps. However, LiDAR sensors
are expensive and bulky. The fact that available technologies
are expensive, monetarily and/or computationally, limits the
exploration by the research community at large. Moreover,
the LiDAR is best known for the 3D model reconstruction
of the canopy due to its accuracy, robustness, and resolution.
LiDAR uses a its own laser light source to estimate distance to
reflecting object. In plant phenotyping, several attempts toward
the reconstruction of the canopy have been made. Reconstruction
of the 3D model allows for the analysis of the complex traits, such
as shape, area, and alignment of the leaves.

LiDAR became known to general public in the early 1970s
when the astronauts used it to map the surface on the moon. Since
then, LiDAR has been used in remote sensing applications and
generally involves data acquisition with an airplane or helicopter
while combining the range data with GPS to map the them to
geolocation (National Oceanic and Atmospheric Administration,
2014). The LiDAR’s accurate distance estimation and ability to
map the structure makes plant phenotyping community believe
that LiDAR can provide an opportunity to look at the plant
with more accurate 3D modeling, revealing the critical geometric
parameters of the plants. The most frequently used 2D LiDAR
collects two-dimensional information, generally using a rotating
mirror, at a very high speed. The two notable developments
in LiDAR-based hardware systems are the PlantScan plant
phenotyping systems developed by Australian Plant Phenotyping
Facility and PlantEye (costs about Canadian $50,000 for scanner)
phenotyping system by PhenoSpex. Other developments on
LiDAR-based technology are mostly utilization of LiDAR data for
developing methods to extract plant traits (Lin, 2015). Various
attempts to utilizing the commercial LiDAR sensors such as
LM400 (Sick Inc.) have been made in study of developing new
techniques for 3D reconstruction of the canopy. Moreover, 3D
data analysis algorithms are generally modified to meet the
requirement of the trait extraction. The 3D model of the canopy
can be constructed while moving the 2D LiDAR along the
direction of the scanning plane. While 3D model constructed
using LiDAR scans is not as dense as those constructed
using 2D images, the scans can provide useful information for
extracting the plant morphological traits (Rosell et al., 2009;
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Bietresato et al., 2016; Sun et al., 2017). Deery et al.
(2014) have included the 2D LiDAR (LMS400, Sick AG,
Waldkirch, Germany) in their field-based phenotyping platform,
Phenomobile, for estimating the canopy height in the different
height genotypes of the wheat with high correlation with
manually measured height concluding that may be LiDAR is
potential best alternative to VIS imaging. In a similar study, Tilly
et al. (2012), used the terrestrial laser scanner to measure the
height of the rice crop with highly accurate estimates. Rosell
et al. (2009) have validated the feasibility of 2D terrestrial LiDAR
to reconstruct the 3D model of the canopy, concluding that
it can reveal essential structural and geometric traits of the
plants. In (Sun et al., 2017), the authors use the 2D LiDAR
to construct the 3D point cloud and achieving more than 90%
accurate height estimates. Omasa et al. (2006), in their study of
3D LiDAR imaging for understanding plant responses, concludes
the potential application of LiDAR in understanding of plant’s
response to stress. In (Hosoi and Omasa, 2009), authors have
obtained the high correlation between LiDAR estimated leaf area
and dry weight of the leaf in the wheat. Recently, in the past
couple of years, the feasibility of LiDAR to construct the 3D
model and analyze the 3D to understand structural variety in
the plants has drawn attention from many researchers dealing
in the plant phenotyping field. In one of the recent studies,
(Jimenez-Berni et al., 2018), authors integrated the LiDAR on
the high-throughput phenotyping platform, Phenomobile, to
non-destructively estimate the wheat characteristics such as
height, ground cover, and above-ground biomass by comparing
it with RGB and NDVI data. Herrero-Huerta et al. (2018)
have monitored the leaf movement activity in the indoor plant
using terrestrial LiDAR, revealing the angles of leaf movement
under various lightning conditions. Following the established
methods in Sun et al. (2017), the authors performed the in-field
experiments for growth analysis for cotton plants in Sun et al.
(2018). The analysis of the plant morphological traits such as
height, projected canopy area, and plant volume were extracted
from the LiDAR data. The above ground structure of a plant

FIGURE 1 | Digital images of the indoor plants used for the experiment in the
laboratory: (A) an arbitrary wild plant, (B) orchid, (C–E) Aglaonema plants,
and (F) Canola grown in laboratory.

is an essential characteristic to evaluate the plant’s ability to
resist environmental changes and diseases. Moreover, the above
ground organism of the plant is responsible for the process of
the photosynthesis – apparently, one of the most critical traits to
estimate the yield – and growing the fruit or seeds. Leaf area, leaf
expansion, and the ground cover are some of the traits that can
be used to estimate the photosynthetic rate (Reich et al., 1998).

Most of the available technologies and platforms are still in
the research phase and are not ready for commercial use, and
those available commercially (such as PlantEye by PhenoSpex
B.V., Netherlands) are highly expensive, inaccessible and bulky.
Hence, there is a need to develop the cost-effective solutions
for the phenotyping. This work addresses the main challenge of
developing a cost-effective LiDAR-based 3D scanning system for
the estimation of the key leaf traits (length, width, and area).

MATERIALS AND METHODS

Plant Material
The laboratory experiments were performed on different plants.
In the first experiment, five different indoor plants from three
different families were used. In the second experiment, three
plants of canola were used as scan subjects.

In the first experiment, plant varieties include Orchid,
Aglaonema and an arbitrary wild plant, which are readily
available from gardening stores. Total of five plants have been
brought to a laboratory and was given adequate water every
2 days. There were three different plants of Aglaonema with
varying sizes and leaf numbers. Figures 1A–E shows a digital
image of all five of them. All three different species of plants
have varying leaf shape and sizes. The images shown in the
figure are taken from the top of the plants using the raspberry
pi camera module.

For the second experiments, canola plants were used. The
canola seeds were soaked in regular drinking water for 2 days and
the seed were transferred to a pot. Approximately a week after
transferring to the pot, canola started emerging. Pictures of the
canola on April 30th, 2018 is shown in Figure 1F. The experiment
was performed on the canola plants for 3 weeks. Canola has
more compound leaves and is hard to phenotype due to surface
curvature and non-uniform structure of leaves. The indoor plants
are used for the development and canola plants for validation of
the post-processing algorithms and software.

Low-Cost LiDAR Based Scanning
System
A low-cost Light Detection and Ranging (LiDAR) sensor LiDAR-
Lite v3 (Garmin Ltd., United States) has been utilized to build
a system. Moreover, this low-cost distance measurement sensor
has been interfaced with Arduino Uno and Raspberry Pi (model
3B) to utilize already developed programming libraries, which
ensures fewest coding and easy operation. The low-cost LiDAR
based scanning system (LiDARPheno) is shown in the Figure 2A.
The system works as a scanner setup with control over horizontal
and vertical field-of-view (FoV) and stepping angle between two
point acquisitions.
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FIGURE 2 | (A) a low-cost LiDAR based design that includes Arduino Uno, Raspberry Pi, servo motor-based mechanism and a low-cost LiDAR sensor.
(B) A commercial 2D LiDAR scanning system LMS400-2000 (Sick Inc., United States).

LiDAR works on the principle of Time of Flight (ToF) and uses
time of transmission and reception of a laser light to calculate
distance from device to reflecting object. Distance is measured by
multiplying speed of light with half of time-of-flight. LiDAR-Lite
v3 has a detection range up to 40 m and can measure distances
with accuracy of ±2.5 cm. This low-cost LiDAR sensor is a low
power device with current consumption of up to 130 mA and
operates with laser light wavelength of 905 nm.

Arduino Uno is an open hardware platform which is popular
for prototyping of small systems. The Arduino controller is
used to control the scanning operation. Moreover, manufacturer
of LiDAR-Lite v3 provides Arduino library for single distance
measurement. Due to low power requirement and ease of use, it
is ideal for development of the low-cost 3D plant phenotyping
system. Raspberry Pi is a mini-computer operating on Linux
distribution (Raspbian OS). In this system, the minicomputer
(Raspberry Pi 3 Model B) works as main control element of all
the operations. For the system to be more flexible and eliminate,
a desktop system is used as a main controlling device. It has
capability to connect to the internet which makes this low-cost
system wireless. The hardware of the system is designed in such a

way that it can provide control over the field-of-view of the scan.
This means, user has full control over how much of the scanning
is required for a particular scene to capture. User can configure
the horizontal and vertical FoV for the scan (up to 180 degree).

Two micro servo motors (HiTec HS85BB) provides control
over horizontal and vertical scanning patterns. Micro servo
brackets are used to hold the servo motors and the LiDAR
sensor on top of that. All of the system components are
housed in one box, making it a wireless and ready-to-use
instrument for scanning.

A Raspberry Pi camera module is used to take a reference RGB
image of the scene before the scan is initiated. Reference image
provides the detail about the scene, which in turn can be used
to verify that the scan was successful. A power module is used to
convert any Direct Current (DC) input voltage from 5 to 12 V DC
to 5V DC, making it usable with any power adaptor or battery.
In this system, a 7.4 V, 2000 mAh, 5C Lithium Polymer battery
is used to power the system. Experiment results show that the
battery lasts up to 2 h with continuous operations.

The primary reason behind using the raspberry pi and
Arduino together, even though raspberry pi is capable of doing
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the job, is to utilize the already developed and publicly available
libraries. For instance, manufacturers of the LiDAR device
provides the library to interface it with Arduino and APIs can
be easily installed on the raspberry pi to get the functionality
of uploading data. Moreover, as part of the future development
plans, authors would like to utilize raspberry pi as the single
point processing unit, which can process data as it is acquired and
finally upload the results to the desired server. On top of that, if
necessary, an independent scanning system with Arduino alone
could be attached to central raspberry pi to make a network of
the systems. This arrangement provides low code development
time, plug-and-play operation, simple processing algorithms and
cost-effective arrangement.

Commercial LMS400-2000 LiDAR
Commercial LiDAR, LMS400-2000 (Sick Inc., United States),
has been used to assess the performance of the low-cost design.
LMS400-2000 operates on 650–670 nanometer (nm) visible laser
light to estimate distance to reflecting object using the principle of
ToF. This LiDAR has been used to track and assess quality of the
product in production lines. Moreover, authors in (Jimenez-Berni
et al., 2018) have used this LiDAR for estimating plant height,
ground cover and similar plot level traits from the field. A photo
of this commercial LiDAR system is shown in Figure 2B.

Data Acquisition
Acquisition Setup for Experiments
The acquisition setup in the laboratory environment is shown in
Figure 3. The conveyer belt based mechanical setup for LMS400-
2000 consists of:

(1) An aluminum railing which can support weight of LiDAR
system combined with conveyer belt and an alternate
current (AC) motor with forward and reverse switched
control has been built by our collaborator from mechanical
engineering. It provides control over forward and reverse
motion of the attached device for scanning and data
acquisition purpose. The setup moves at constant speed of
18.0724 cm s−1.

(2) The mount for LiDAR is made from aluminum sheet
capable of holding LMS400-2000 and providing access
to power and Ethernet cable. This makes LiDAR data
accessible from a computer that can be placed far away.

(3) Commercial LiDAR has been attached to this setup when
data acquisition was performed. At a scanning frequency
of 360 Hz (scans per second), each scan is 0.5 mm apart.

For data acquisition with LiDARPheno, system itself has
horizontal and vertical movement control, which eliminates need
for the moving setup. For a simplicity, our device is attached to
the aluminum railing with Velcro (hook and loop fastener).

Data Capture With LMS400-2000
A library containing functions for data acquisition from LMS400-
2000 has been developed by our collaborators based on
the publically available library from Robot Operating System

(ROS1). The programming language Python 2.7 (Python Software
Foundation2), an easy to use and learn scripting language, has
been used to develop this library. This library is used to write
a data acquisition script using python. The data containing
reflectance and distance information is stored in a two different
Comma Separated Values (CSV) file concurrently. LMS400-2000
provides access to distance information as well as reflectance
information (i.e., reflectivity of a reflecting target surface).
Reflectance information along with distance values are largely
useful in separation of plant material from other objects. Jimenez-
Berni et al. (2018) have shown that reflectance values higher than
5 are generally non-plant objects and can be used to separate plant
points from non-plant points.

Data Capture With LiDARPheno Scanning System
This low-cost LiDAR based design is truly wireless and can
be remotely operated by taking advantage of the wireless
connectivity already integrated in the Raspberry Pi mini-
computer. The system connects to available Wi-Fi and user
can control it via remotely located computer system. Once the
user command is received, the system starts scanning the scene.
The data being captured are LiDAR distance data, reflectance
information and digital image of the scene. Once acquired,
it automatically sends all the data to predefined Dropbox3

(Dropbox, Inc.) folder. Distance and reflectance information is
stored in CSV file whose name is according to the time and date
of the scan. The acquired digital image is also uploaded along
with CSV files so that data from distance can be compared to
the digital image. Figure 4 shows the flow diagram of the data
acquisition using low-cost design.

A user initiates a command via remote terminal (PC or
smartphone) to scan the scene, raspberry pi creates files
for storing data and forward the command to Arduino via
Universal Serial Bus (USB) communication and then Arduino
communicates to LiDAR scanning using Inter-Integrated Circuit
(I2C) communication protocol and controls the servo motors
using Pulse Width Modulated (PWM) signals. Once the data are
ready, Raspberry Pi uploads all the data to a remote file storage
server in DropBox.

Ground Truth Data Acquisition
For this study, the length, width and area of an individual leafs
of the plant are estimated. Hence, the ground truth is also
acquired at the time of scan so that it can be compared with
the estimated values in the later stage. Leaf length and width
are manually acquired with measure tape, while leaf area is
calculated by scanning each leaf with Canon LiDE 220 (Canon4)
document scanner. A document scanner flattens the leaf while
scanning it, which ensures the whole leaf area has been exposed
to the scanner. Leaves of each plant are scanned at resolution
of 300 dots per inch (dpi), which if calculated accounts to
∼7168.44 µm2/pixel. All the pixels belonging to leaf (i.e., leaf
color pixels) are added and multiplied with the area of each pixel.

1http://wiki.ros.org/sick_lms400
2https://www.python.org/
3https://www.dropbox.com/
4https://www.usa.canon.com

Frontiers in Plant Science | www.frontiersin.org 5 February 2019 | Volume 10 | Article 147

http://wiki.ros.org/sick_lms400
https://www.python.org/
https://www.dropbox.com/
https://www.usa.canon.com
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00147 February 13, 2019 Time: 20:26 # 6

Panjvani et al. Low-Cost LiDAR for Leaf Phenotyping

FI
G

U
R

E
3

|L
iD

A
R

D
at

a
A

cq
ui

si
tio

n
se

tu
p

in
la

bo
ra

to
ry

.(
Le

ft
)S

et
up

w
ith

co
m

m
er

ci
al

LM
S

40
0-

20
00

Li
D

A
R

.(
R

ig
ht

)S
et

up
w

ith
lo

w
-c

os
tL

iD
A

R
sy

st
em

(L
iD

A
R

P
he

no
).

Frontiers in Plant Science | www.frontiersin.org 6 February 2019 | Volume 10 | Article 147

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00147 February 13, 2019 Time: 20:26 # 7

Panjvani et al. Low-Cost LiDAR for Leaf Phenotyping

FIGURE 4 | A data flow diagram of data collection using low-cost LiDAR design.

FIGURE 5 | Ground truth leaf area acquisition procedure. From (left) to (right): Leaf is scanned using a document scanner Canon LiDE 220, leaf is then separated
from background in scanned image using color threshold, number of pixels belonging to leaf are counted and then multiplied with area of each pixel to obtain the leaf
area.

This method is also confirmed using a centimeter graph paper to
estimate the area of a square, which gives about 99.98% accurate
area calculation. A sample of one of the leaf scans and procedure
is shown in Figure 5.

Data Analysis/Processing
A CSV file is imported into MATLAB R2017a R© environment
(MathWorks, United States5). CSV file contains polar distance
from the sensor to the reflecting surface and hence needs
conversion to Cartesian coordinate system.

Conversion to Cartesian Coordinate System
As the low-cost LiDAR system is steady system and horizontal
and vertical angles are known from the user specified FoV, range
data acquired with low-cost LiDAR based system are converted
using following Equations 1, 2, and 3.

X = rho∗ cos (φ) (1)

Y = rho∗ sin (φ)∗ cos (θ) (2)

Z = rho∗ sin (φ)∗ sin (θ) (3)

where:

• “rho” is polar distance between reflecting surface and a
sensor.
• φ is Azimuth (vertical) angle of scan for particular point.
• θ is Elevation (horizontal) angle of scan for particular point.

On the other hand, LMS400-2000 has only one rotating
mechanism that is horizontal movement angles and hence does

5https://www.mathworks.com

not require the full conversion. In the experiments, X is assumed
to be the values of the moving part, i.e., start of scan is 0 cm
and each line scan is 0.5 millimeters (mm) apart. Hence, only Y-
and Z-values needs to be converted from the polar distance. This
conversion is performed using Equations 4 and 5.

Y = rho∗ cos (θ) (4)

Z = rho∗ sin (θ) (5)

Once converted to Cartesian coordinate system, X, Y, and
Z represents corresponding coordinates in real-world system in
centimeters (cm). These coordinates can be plotted using 3D
scatter plot to visualize a point cloud of the scene. Figures 6A,B
shows a raw data represented as a false color image and sample
3D point cloud of one of the scanned indoor plants, respectively.

Point Cloud Cleaning/Filtering and Outlier Removal
LiDAR range data tends to be noisy and have outliers because
of the reflectance near the edges, reflectance property of an
object, inclination angle of an object surface, and environmental
parameters (such as light intensity). Hence, it is required that the
acquired point cloud be processed and filtered through a filtering
algorithm. Before the data cleaning/filtering is performed, the
background is removed from the point cloud. To reduce the
computation for the filtering algorithm, a height and reflectance
value-based threshold has been applied to remove the pints
belonging to the background. For data captured with LMS400-
2000, a red reflectance has been used to threshold and remove
non-plant objects from the scan. As discovered by Jimenez-Berni
et al. (2018), reflectance from any vegetation is about 5 Digital
value. However, in the experiments, number 20 was found to be
better threshold for removing non-plant objects from the scan.
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FIGURE 6 | A sample of post-processing of acquired data. (A) Raw distance data from CSV file represented as an image. (B) Range data converted to Cartesian
coordinate system. (C) After refine/filtering the noise and outliers along with distance threshold to remove the background scene. (D) Segmented point cloud to
identify each individual leaf.

This step of applying range/reflectance threshold ensures that the
background points are not processed, and the data processing
remains simple rather than complex algorithms. At this step,
point cloud contains data captured from plant surface and can
be used to segment (differentiate) each leaf after the data filtering
operation has been performed.

In the experiments, the point cloud data were processed using
various filtering algorithms including bilateral filter (Digne and
de Franchis, 2017), but due to the nature of the plant leaf ’s
surface, they failed to perform satisfactorily. Various outlier
removal and filtering algorithms have been studied and adapted
for Airborne LiDAR data such as multi-directional (Meng et al.,
2009b), multi-resolution (Silván-Cárdenas and Wang, 2006) and
morphology-based (Meng et al., 2009a) algorithms for building
detection and digital terrain map (DTM) generation (Breunig
et al., 2000; Chen et al., 2007, 2012, 2017; Kobler et al., 2007).
However, the airborne LiDAR data is generally in meters and
centimeter-level resolution is hard to find in any airborne LiDAR
data. Hence, a neighborhood-based filtering method should be
developed that can be easy to implement and process.

Neighborhood based filtering has been used widely in the field
of image processing, but authors were unable to find one that
can work satisfactory due to the noise levels and nature of leaf
surface curvature. Moreover, plant leaves tend to absorb most
incident light in the 600 nm range (same as LMS400), which
could be a major factor in noise levels. The reason for choosing
neighborhood-based method for processing the LiDAR data is

that there is more likelihood of points’ relation to each other in
neighborhood. Also, the ability to differentiate the outlier point
in the region becomes relatively simple, as outliers tend to have
more difference to neighboring points, according to our data
analysis. The main idea behind this filtering algorithms is to find
the neighbor points based on user-defined window side, like a
mean filtering algorithm in digital image processing. For each
point in the point cloud, algorithm finds its neighborhood based
on the user-defined 3D window and number of points within that
3D box. If neighbor points within that window are more than
the user-defined threshold, then the point is refined based on the
average height of the neighboring points otherwise that point is
discarded. Hence, it provides functionality of both, point cloud
filtering and outlier removal, in one simple algorithm. In the
experiments, two iterations of this algorithm were used to refine
the obtained point cloud. Parameters (3D voxel size and number
of neighbors) can change for different leaf structures and sizes.
Result of data point cleaning and filtering is shown in Figure 6C.

Point Cloud Segmentation for Individual Leaves
The segmentation is process of identifying each individual
object from the image/point cloud. The modified region-
growing algorithm was used for segmentation of each leaf.
Region-growing is a simple neighborhood-based algorithm that
determines whether neighbors belong to the region or not.
Conventional region growing segmentation algorithm (for image
processing) requires a seed (pixel) to be selected beforehand and
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then the algorithm segments the image in different regions. In
our modified algorithm, it not only selects seeds itself (the first
point is selected as seed automatically), but it also works with
3D point clouds. However, the algorithm segments the data is a
slow process and hence it must be improved. It was improved to
work with the so-called OcTree data structure. This increases the
processing time by a huge amount because of the fact that instead
of processing all the data points in the point cloud, a block of
points is processed. This process of individual leaf segmentation
results in each leaf identified and provides set of points belonging
to a particular leaf.

Trait Extraction
Segmentation process identifies each leaf and different color
labels are assigned to each leaf as can be seen from Figure 6D.
These individual segments are treated as each leaf and fed to the
trait extraction module, where different traits are estimated using
the point cloud data. In this paper, our focus was on extraction of
leaf length, leaf width and leaf surface area. Methods of extracting
each traits is explained in the following subsections.

Leaf Length/Width Extraction
Extraction of leaf length from each of the segment was tricky
part as each leaf might have different orientation, size and
structure. Curve fitting is used on X- and Y-coordinates of the
segmented points for this purpose. First, the orientation of leaf is
estimated using the minimum and maximum values of the X-and
Y-coordinates of the segment. The absolute difference between
minimum and maximum values provides the distance between
these two. If the leaf is oriented along X-axis, distance value
between minimum and maximum of X-axis will be the highest
and vice versa. Then a polynomial of degree 2 is applied to fit X-
and Y-coordinates which results in an Equation (6).

Y = a ∗ X2
+ b ∗ X + c (6)

where:

• X is vector of X-coordinates in the segment containing 3D
data points.
• Y is vector of Y-coordinates that can be estimated using the

equation.
• a, b, and c are constants that are obtained using polynomial

fit to X and Y data.

Now if the leaf is oriented along X-axis, 50 equally spaced
samples are taken between minimum and maximum value of
X-coordinates in that segment and corresponding Y-coordinates
are estimated and vice-versa. With these obtained X-and
Y-coordinates, nearby points from the original segment are
obtained to get a straight line between minimum and maximum
value of the X- or Y-coordinate. After that Euclidean distance
between each point of the obtained line is calculated using
Equation (7).

Euclidean_distance
(
a, b

)
=

√(
ax − bx

)2
+
(
ay − by

)2
+
(
az − bz

)2 (7)

where, “a” and “b” are two points in a 3D space and ax, ay, az and
bx, by, bz are corresponding x-, y-, and z-coordinates of point “a”
and for “b”.

All these Euclidean distances are added together, which results
in the length of the leaf. This process of obtaining leaf length
is repeated for all the segments (leaves). Figure 7A presents the
leaf length measurement using the above-mentioned method of
curve fitting. The samples used for leaf length measurement are
shown as red-colored dots in the point cloud. Same method is
used for leaf width estimation, the change being plan will change
from XY to YX and vice versa. The points obtained for width are
shown in Figure 7B.

Leaf Area Extraction
Leaf surface area estimation is a different process than estimation
of leaf length and leaf width. Data points for each leaf are
available, which can be used to estimate the leaf surface area. In
this work, a widely accepted Delaunay triangulation (Delaunay,
1934) method is used for generating triangles or surface from 3D
point cloud data. The MATLAB function delaunayTriangulation
is used for generating triangles from the 3D data points6. Then
area of each triangle is calculated and added to get the area of the
surface. For any three points A(x, y, z), B(x, y, z), and C(x, y, z)
in a 3D space, surface area of that 3D triangle can be calculated
using7 Equation (8).

Area (A,B,C)

=
1
2

√√√√√√
∣∣∣∣∣∣
Ax Bx Cx
Ay By Cy
1 1 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
Ay By Cy
Az Bz Cz
1 1 1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
Az Bz Cz
Ax Bx Cx
1 1 1

∣∣∣∣∣∣
2

(8)

Area of each triangle generated using Delaunay triangulation
are calculated and added to get the final surface area of the leaf.
Figure 7C shows the Delaunay triangulation of the point cloud
data to estimate the area of the leaf. As mentioned above, area of
the individual triangle is calculated and then all those areas are
summed up to finally get the area of the leaf.

Accuracy Assessment
Absolute Percentage Error (APE) is used to evaluate the results
of the estimation of the leaf traits (length, width, and area). Two
experiments were performed in this work, one is on the indoor
plants shown in Figure 8A and another, for validation, on canola
plants presented in Figure 8B. Equation (9) is used to calculate
the percentage error of estimation.

APE =

∣∣Actual value− Estimated value
∣∣

Actual value
∗ 100 (9)

The relation between the ground truth and estimation results
can be best represented using the linear correlation plot. In this
work, the Root Mean Square Error (RMSE) and coefficient of
determination (r2) are used to represent the relationship between
the ground truth data acquired using the manual measurement

6https://www.mathworks.com/help/matlab/ref/delaunaytriangulation.html
7https://en.wikipedia.org/wiki/Triangle
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FIGURE 7 | Measurement methods on individual leaf point cloud data: Leaf Length measurement on LMS400 and LiDARPheno data (A). Leaf width measurement
on LMS400 and LiDARPheno acquired point clouds (B) Delaunay triangulation for leaf area measurement on LMS400 and LiDARPheno point clouds (C).
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FIGURE 8 | Leaf number annotation for plants in (A) experiment 1, and (B)
experiment 2.

of the leaf length and the estimated leaf length using the LMS400
data. RMSE was calculated using the Equation (10).

RMSE =

√∑n
i=1
(
groundTruthi − estimatei

)2

n
(10)

RESULTS AND DISCUSSION

Leaf Number Annotation
An RGB images taken with raspberry pi camera module are used
as reference to assign a number to individual leaf for referencing
the estimated traits to the leaf individually. For experiment 1, the
annotated leaf numbers are shown in Figure 8A. Generally, leaf
numbers are given in the clockwise direction. For example, if the
result table refers to the leaf 1 of an arbitrary wild plant, the leaf
annotated with number 1 is being referred. Also, the annotated
leaf number was used in the auto-calculation of the error rate
and generate a report in the form of an excel file. Similarly,
Figure 8B shows the leaf number annotation for the experiment 2
of this study.

Leaf Length Extraction Results
Experiment 1 consisted of five plants with three different species
of indoor plants. Table 1 shows the error rates of the leaf length
estimation using LMS400 and LiDARPheno.

TABLE 1 | Leaf length estimation results.

Minimum Mean Maximum Segmentation

% error % error % error rate

Arbitrary
wild plant

LMS400 1.03 8.33 27.83 1.00

LiDARPheno 2.24 11.86 29.70 0.77

Orchid LMS400 0.08 22.85 37.54 0.83

LiDARPheno 5.44 20.75 35.03 0.83

Aglaonema
plant 1

LMS400 0.58 9.08 29.30 1.00

LiDARPheno 5.19 18.43 38.45 1.00

Aglaonema
plant 2

LMS400 2.65 10.52 36.10 1.00

LiDARPheno 8.52 23.24 35.61 1.00

Aglaonema
plant 3

LMS400 0.87 3.75 8.37 1.00

LiDARPheno 5.47 11.16 18.22 1.00

Canola
plant 1

LMS400 0.14 23.56 39.77 0.8

LiDARPheno 7.99 28.97 50.70 0.6

Canola
plant 2

LMS400 0.32 11.36 30.22 0.9

LiDARPheno 0.51 14.73 39.40 0.7

Canola
plant 3

LMS400 3.88 23.57 57.49 1.00

LiDARPheno 3.89 20.83 59.57 1.00

It is evident from the Table 1 that leaf length estimations
using the developed LiDARPheno system data are reasonably
comparable to the one acquired using the LMS400 commercial
LiDAR. However, the LiDARPheno acquired point cloud is not
as dense and due to the density of the point cloud, some of the
leaves are not detected or filtered out in the filtering algorithm.
These leaves in an arbitrary wild plant are leaf numbers 9, 10,
and 12. If looked carefully in Figure 8A, those leaves are occluded
by another leave, or they are inclined, i.e., due to the inclination
angle, LiDARPheno was not able to capture enough number of
points to be considered by algorithms to be an object.

The mean (average) error rate for the LiDARPheno and
LMS400 are quite similar, LMS400’s mean error rate for
estimation of the leaf length is 8.33% while that of the
LiDARPheno is 11.86%. The maximum error rate for the leaf
length estimation using the LiDARPheno data was 29.7% while
for the LMS400 it was 27.83%. The minimum error rate of
estimating the leaf length is about 1.03% for the LMS400 data,
and 2.24% for the LiDARPheno acquired data. Similarly, the error
rates are calculated for all the plants in both the experiments.

Figure 9 shows the relation between the estimation using
LMS400 data and the ground truth leaf length. The data acquired
with LMS400 for experiment 1 on indoor plants show a good
relationship between the two with r2 = 0.7971 and RMSE of
1.65 cm. Experiment 2 on the canola plants, however, has an
r2 = 0.6642 and RMSE = 1.79 cm.

On the other hand, the estimate for the leaf length from
the LiDARPheno data indicates RMSE of 2.08 and 1.8 cm for
experiments 1 and 2, respectively. Moreover, the coefficient
of determination (r2) for experiments 1 and experiment 2 is
r2 = 0.6811 and r2 = 0.5042, respectively.

Leaf Width Estimation Results
The relationship between the ground truth data and the estimated
leaf width with LMS400 and LiDARPheno data is shown in
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FIGURE 9 | Relation of (A) LMS400- and (B) LiDARPheno-derived Leaf lengths with Ground truth data.

Figures 10A,B. The estimation of the leaf width using LMS400
data has RMSE of 1 cm in experiment 1 and RMSE = 1.97 cm
for experiment 2. Coefficient of determination r2 = 0.47 and
r2 = 0.5168 was achieved for experiments 1 and 2, respectively.

On the other hand, estimation of the width using LiDARPheno
data have RMSE = 1.6 cm for plants in experiment 1
and RMSE = 1.73 cm for plants in experiment 2. The
correlation coefficients r2 are 0.29 and 0.56 for experiments
1 and 2, respectively.

Leaf Area Estimation Results
The relation between LMS400 estimated area and ground truth
leaf area as shown in the plot of Figure 11A. For the experiment 1,

r2 is 0.5611 and RMSE of 17.41 cm2. The experiment 2 on
canola plants shows a better correlation with the ground truth
leaf area with r2 = 0.8583 and RMSE of 11.32 cm2. This
suggests the LMS400 is able to correctly estimate the leaf
area for the values below 60 cm2 and more than that it fails
to estimate the leaf area correctly. However, the quality of
data acquisition is also dependent on the plant material. For
example, the better reflection is necessary for any LiDAR sensor
to correctly estimate the distance to that plant, which results
in the point cloud.

The leaf area computed using the LiDARPheno point cloud
data, and ground truth are related using the scatter plot and linear
regression in Figure 11B. Experiment 1 on the various plants of
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FIGURE 10 | Relation of (A) LMS400- and (B) LiDARPheno-derived Leaf widths with Ground truth data.

three different species has an RMSE of 19.51 cm2 when compared
to the ground truth leaf area while r2 = 0.3368. For experiment
2 on the canola plants, the leaf area estimation results using the
LiDARPheno data are compared to the ground truth, and the
RMSE of 15.22 cm2 is achieved. Moreover, the r2 of 0.5957 shows
good relation to ground truth data.

Comparing LiDARPheno and LMS400
Derived Results
Table 2 shows the comparison of the developed LiDARPheno
system with the LMS400-based 3D scanning system. The first
and most important parameter in comparison is the cost of the

system. The cost to build LiDARPheno is almost 96% less than
the LMS400 device itself. Moreover, the LMS400-based system
requires external setup to acquire the 3D point cloud data, while
LiDARPheno is an independent system. The LiDARPheno system
is much more lightweight than the LMS400-based setup for data
acquisition. The power requirement for LMS400 is 25 Watts
compared to about 3 watts for LiDARPheno, and hence the small
rechargeable LiPo battery can power the LiDARPheno system.
LiDARPheno, due to its low-resolution, acquires relatively fewer
points and hence, has small file-size. Consequently, the post-
processing of the LiDARPheno data is faster compared to
the LMS400-based system. Authors were unable to find any
related research material to compare the obtained results. Hence,
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FIGURE 11 | Relation of (A) LMS400- and (B) LiDARPheno-derived Leaf area with Ground truth data.

the comparison between commercial and developed system
were presented.

The LiDARPheno is designed so that anyone with a little or
no technical knowledge can build it using the widely available
off-the-shelf components used in the system. On the other hand,
even though LiDARPheno has many benefits, the LiDARPheno
is a slow system due to use of two servo motors and the
LiDAR sensor used itself. Hence, the LiDARPheno may take
up to 16 min for the scan of 1 m2 area, while the LMS400-
based system can scan the same area in about 5 s. Moreover,
the density of the acquired point cloud using LiDARPheno
does not permit the analysis of the smaller areas of the object.
Also, availability of the reflectance information from the LMS400

device can be used in many cases which are not provided
by the LiDARPheno.

The comparisons of the results derived with two different
systems, LiDARPheno and LMS400, are presented using the
correlation plots of the trait estimation data Figure 12A shows
the comparison of the LMS400 and LiDARPheno derived leaf
length; Figure 12B shows the comparison of the leaf width
extraction using two different data, and the relation between
the leaf areas estimated using the two systems is presented in
Figure 12C. The relation can be determined using r2 and RMSE
between two results.

The leaf length estimation using the commercial LiDAR
system LMS400 and LiDARPheno data has a good correlation
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TABLE 2 | Comparison of the LMS400-based system with LiDARPheno.

LMS400–based system LiDARPheno

Material cost ∼ $10,000 ∼ $400

Scan ready? No
(requires external setup to
hold the LiDAR and move it
along scan direction)

Yes
(the LiDARPheno is
designed to work
independently of any
external requirements)

Setup Bulky
(∼1.5 kg for LMS400)

Light-weight
(Less than 500 g)

Battery powered? Could be
(requires large battery)

Yes
(can run for up to 5 h on
7.4 V 2 Ah LiPo battery)

Scan time (for
1 m × 1 m)

∼5 s ∼16 min

File Size (for
1 m × 1 m2)

∼10 Mbytes ∼300 Kbytes

Point cloud
density
(for 1 m × 1 m)

∼2.4 Million points ∼40,000 points

Post-processing
computational
complexity

Highly complex
(due to dense point cloud)

Relatively simple

Do-it-yourself
(DIY)?

No
(sound technical knowledge
is required to acquire data)

Yes
(The system can be bilt by
anyone with little technical
knowledge)

Other external
equipment?

Yes
(an external computer is
required to acquire the
data)

No
(the system itself has a
mini-computer in the
design)

Bold values represent superior feature of either system.

with the r2 of 0.64 and 0.66 for experiments 1 and 2,
respectively. Moreover, the RMSE of 2 cm in experiment
1 and 1.76 cm in experiment 2 was achieved. The leaf
length measurements relation between LMS400-derived
and LiDARPheno-derived results indicate that there is a
reasonable level of agreement between results estimated
using two different data obtained with two different
LiDAR sensors.

In Figure 12B, the relationships between the leaf width
measurements using the LMS400 and LiDARPheno data is
compared using the linear regression plot. The RMSE of 1.61 cm
for experiment 1 and 1.16 cm for experiment 2 indicates the
error of estimation in cm. However, the correlation between
the two is r2 = 0.3021, and r2 = 0.6118 for experiments 1 and
2 are presented. This indicates the feasibility of the developed
LiDARPheno system to compete with the commercial LiDAR
system. The agreement in results of experiment 2, where relatively
small canola leaves were scanned, is more satisfactory than
the leaf length.

The leaf area measurement agreement between the two
LiDAR-based systems is shown in Figure 12C. The leaf
area measurements with both the systems show a functional
relationship between the two LiDAR data. For the experiment
on indoor plants, the r2 = 0.5693 and RMSE of 12.9 cm2 are
achieved, and experiment on canola plants show r2 = 0.832 and
RMSE = 6.96 cm2. The relation of the estimating the leaf area

FIGURE 12 | Relation of LMS400- and LiDARPheno-derived leaf length (A),
leaf width (B), and leaf area (C).

using the 3D point cloud data is entirely satisfactory. The results
on a canola show excellent agreement for leaf area extraction
using LMS400 and LiDARPheno.

Overall, the LiDARPheno system is an excellent combination
of cost-feature trade-off. With just a fraction of the cost for
a commercial LiDAR-based scanning system, the LiDARPheno
enables to monitor some of the critical characteristics of the
plants while losing some details. The combination of multiple
LiDARPheno systems might prove beneficial and may surpass the
results of the commercial LiDAR-based systems.

CONCLUSION

In this work, a new low-cost, accessible LiDAR-based technology
is developed. A miniature version of the “LiDARPheno” is
designed and developed with low-cost, off-the-shelf components
and modules. Moreover, the design included the use of the
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wireless communication for the actual remote operation of
the device with the feasibility of deploying the device in
the greenhouse as well as field environment. Use of the
existing libraries and APIs provide the feasibility for non-
technical users to build and operate a system. The experimental
setup consisting the commercial LiDAR was presented, and
a low-cost ground-truth leaf area acquisition method was
developed. A method of conversion from raw LiDAR data
to the Cartesian coordinates to generate a point cloud was
discussed. Simple algorithms for cleaning and segmenting
the point clouds were developed and presented. The simple
operation of the algorithms helps the user in developing
the software for analysis. The high correlation between the
estimates of leaf traits with commercial LiDAR and the
developed LiDARPheno system was achieved. Moreover, the
estimation of the leaf traits using the developed methods
shows considerable accuracy. Performance analysis for the
developed system and methodologies were carried out in this
work to provide the utility of the low-cost system in plant
phenotyping tasks.

Finally, this work shows the utility of low-cost LiDAR device
in the plant phenotyping tasks. The leaf length, width, and
area were estimated using the developed methods for the traits
characterization. This work also compared the performance of
the developed system with commonly used LiDAR sensor for
phenotyping. The developed prototype shows the utility and
advantages of the low-cost devices in the plant phenotyping
research. Devices developed with the aim of the low-cost system
can help fill the gap of the plant phenotyping research and
provide opportunities for the researchers in the field to explore
the possibilities to 3D imaging and may lead to findings that are

entirely novel. This work presents a good trade-off between cost
and accuracy of results for leaf trait extraction.

Despite having many benefits, the developed system and
methodologies have considerable opportunities to explore the
possibilities and improving the methods. For instance, a high-
speed low-cost LiDAR can be incorporated to improve the
scanning speed, 3D point cloud segmentation algorithms can be
explored for better leaf characterization, 3D fusion of the color
and LiDAR data can be explored to make a better estimation
using the color information for segmentation, and an effort can
be put on extracting phenotypes other than presented here.
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