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Glucose-6-phosphate dehydrogenase (G6PDH or G6PD) is the key regulatory enzyme
in the oxidative pentose phosphate pathway (OPPP). The cytosolic isoforms including
G6PD5 and G6PD6 account for the major part of the G6PD total activity in plant
cells. Here, we characterized the Arabidopsis single null mutant g6pd5 and g6pd6 and
double mutant g6pd5/6. Compared to wild type, the mutant seeds showed a reduced
germination rate and root elongation under salt stress. The seeds and seedlings lacking
G6PD5 and G6PD6 accumulate more reactive oxygen species (ROS) than the wild
type under salt stress. Cytosolic G6PD (cy-G6PD) affected the expression of NADPH
oxidases and the G6PD enzymatic activities in the mutant atrbohD/F, in which the
NADPH oxidases genes are disrupted by T-DNA insertion and generation of ROS is
inhibited, were lower than that in the wild type. The NADPH level in mutants was
decreased under salt stress. In addition, we found that G6PD5 and G6PD6 affected
the activities and transcript levels of various antioxidant enzymes in response to salt
stress, especially the ascorbate peroxidase and glutathione reductase. Exogenous
application of ascorbate acid and glutathione rescued the seed and root phenotype
of g6pd5/6 under salt stress. Interestingly, the cytosolic G6PD negatively modulated
the NaCl-blocked primary root growth under salt stress in the root meristem and
elongation zone.

Keywords: germination, glucose-6-phosphate dehydrogenase, NaCl, NADPH oxidases, reactive oxygen species,
root system architecture

INTRODUCTION

The oxidative pentose phosphate pathway (OPPP) is the major pathway of the production of
NADPH, which is used for biosyntheses and redox balance in plant cells (Esposito et al., 2003;
Kruger and von Schaewen, 2003; Hutchings et al., 2005; Cardi et al., 2011). The main regulatory
step of OPPP is catalyzed by glucose-6-phosphate dehydrogenase (G6PDH or G6PD). The majority
of NADPH in the cytoplasm is produced by G6PD and 6-phosphogluconate dehydrogenase
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(Huan et al., 2014). Arabidopsis genome-wide analysis indicates
the presence of two cytosolic (cy-G6PD) and four plastidial (pla-
G6PD) isoforms (Wakao and Benning, 2005). The cy-G6PD
includes G6PD5 and G6PD6. Based on the difference in amino
acid sequence, the pla-G6PD can be divided into P1, P2, and
P0 type: P1 mainly exists in the chloroplast (G6PD1); P2 mainly
exists in plastids and some non-oxygen cells (G6PD2, G6PD3),
P0 is a non-functional enzyme (G6PD4) (Wakao and Benning,
2005). Many studies have indicated that G6PD plays an important
role in plants to cope with stresses, including salinity and
drought (Meyer et al., 2011; Liu et al., 2013; Huan et al., 2014;
Wang et al., 2016). Certainly, salinity is a major environmental
restriction for the growth of agricultural crops and negatively
affects plant productivity (Hasegawa et al., 2000; Zhu, 2001;
Dal Santo et al., 2012).

Salinity brings about water deficit and ion stress, which
cause destabilization of cell membranes, inhibition of essential
enzymes, overproduction of reactive oxygen species (ROS), and
decrease in nutrient supply (Hasegawa et al., 2000; Dal Santo
et al., 2012). ROS regulate many biological processes including
seed germination and root growth in plants (Kwak et al., 2006;
Dunand et al., 2007). It has been documented that ROS are
produced through both enzymatic and non-enzymatic reactions
in plants (Apel and Hirt, 2004; Ma et al., 2012). ROS directly
originate from two ROS-generating NADPH oxidases, impairing
stress inhibition of primary root elongation in Arabidopsis (Kwak
et al., 2006; Jiao et al., 2013). However, continuously increased
levels of ROS exceed cellular antioxidant capacity, thus are toxic
to cells and affect all cellular biomolecules (Niforou et al., 2014;
Jia et al., 2016). In Arabidopsis genome, there are 10 NADPH-
oxidase catalytic subunit genes (AtrbohA-J) (Marino et al., 2012).
NADPH oxidase controls shoot branching and reproductive
organ development in tomato, and is required for pollen tube
growth in tobacco (Sagi et al., 2004; Potocky et al., 2007). NADPH
oxidases require NADPH to generate superoxide, which can be
dismutated subsequently to hydrogen peroxide (Stampfl et al.,
2016). In maize, ROS derived from NADPH oxidase is necessary
for normal root growth (Liszkay et al., 2004). In bacteria, studies
provide experimental evidence for a role of NADPH oxidase-
derived ROS in establishing a relationship with pattern-triggered
immunity in Arabidopsis (Stampfl et al., 2016). Such oxidative
bursts are usually accompanied by transient oxidation of the
cytosol (decreased NADPH levels) that triggers redox signaling
and activation of the OPPP (Landi et al., 2016; Stampfl et al., 2016;
Wang et al., 2016).

Plants can minimize the effects of salinity stress by
removing excess ROS via increasing antioxidant enzyme activities
(Yang et al., 2015; Landi et al., 2016). More recently, it
is reported that G6PD plays a primary role during stress
response by providing more NADPH for the antioxidant
systems favoring ROS scavenging functions (Dal Santo et al.,
2012; Landi et al., 2016). G6PD functions on modulating
reduced glutathione levels in reed callus (Wang et al., 2008),
establishing tolerance of red kidney bean roots to salt stress
(Liu et al., 2007), and upregulating plasma membrane (PM) H+-
ATPase activity, which results in the enhanced K+/Na+ ratio
(Li et al., 2011).

In Arabidopsis, non-dormant seeds produce significant ROS
during imbibition (Leymarie et al., 2012; Chen et al., 2014a). Seed
germination and root growth are critical phases in the plant life
cycle (Chen et al., 2014a; Wang et al., 2014). The ability of seeds
to properly germinate depends on its oxidative status (Rajjou
et al., 2012; Chen et al., 2014a). Over-accumulation of ROS
causes oxidative damages to cellular components (Bailly et al.,
2008; Parkhey et al., 2012). In plants, some hydrogen peroxide-
scavenging substances protect seeds and roots from excessive
oxidative damages, for example, ascorbate (Asc) and reduced
glutathione (GSH) (Dal Santo et al., 2012; Chen et al., 2014a).
GSH and Asc detoxify H2O2 mainly through the ascorbate-
glutathione cycle, which is the most effective way to scavenge
H2O2 in plants (Noctor and Foyer, 1998; Wang et al., 2016).

Based on the above studies, although the relationship between
G6PDs and salt stress have been elucidated (Wang et al., 2008),
function of G6PDs depends upon the developmental stage,
organ/tissue, and species. In this work, we used the genetic
and molecular approaches to study the function of cy-G6PDs.
We characterized the function of G6PD5 and G6PD6, which
show enhanced tolerance to salt stress during seed germination
and root growth, and functional interaction and synergism
between G6PD and GSH during salt stress. We revealed a novel
interplay between rbohD/F, ROS, ascorbate peroxidase (APX),
and glutathione reductase (GR).

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana Col-0 was used as the WT plant. The
T-DNA insertion mutants g6pd5 (CS804669) and g6pd6
(SALK_016157C) were purchased from the Arabidopsis
Biological Resource Center1. The T-DNA in the g6pd5 mutant
is inserted in the coding region of At3g27300, and in the g6pd6
mutant it is inserted in the coding region of At5g40760. The
overexpression plants of G6PD5 (OE#1, OE#9) and G6PD6
(OE#17, OE#21) were generated by transforming the G6PD5-
or G6PD6-containing constructs into WT. The double mutant
g6pd5/6 was generated by crossing g6pd5 with g6pd6, followed
by screening the F2 progeny for homozygosity at both loci
by PCR genotyping. atrbohD1 (CS9555), atrbohF1 (CS9557),
atrbohD1/F1 (CS9558) were obtained from the Arabidopsis
Biological Resource Center. Seeds were sterilized with 1.5%
NaClO for 15 min, washed with sterile water for three times,
placed at 4◦C for 2–4 days and then planted on the half-strength
Murashige and Skoog (1/2 MS) medium (pH 5.8) containing
1% sucrose and 0.8% agar at 23◦C under 100–120 µmol
photons · m−2

· s−1 with a 16 h/8 h light/dark photoperiod in
the growth room.

Phenotypic Analysis and Statistics
In all assays, WT, g6pd5, g6pd6, g6pd5/6,OE#1,OE#9,OE#17, and
OE#21 seeds (approximately 50 seeds for each replicate. For root
elongation measurements, 15 seeds were used per replicate) were

1http://www.arabidopsis.org/
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surface-sterilized. The seeds were sown on 1/2 MS medium with
or without different concentration of NaCl and then incubated
at 23◦C with a 16 h/8 h light/dark photoperiod. The number of
planted and germinated seeds was recorded 5 days after planting
on the medium. Radicle emergence of >1 mm indicated seed
germination. Three replicates were used for each treatment. Five-
day-old seedlings with roots 1–1.5 cm long were transferred from
agar plates containing 1/2 MS medium onto a new agar medium
supplemented with different concentrations of NaCl. Increases
in root length were measured after 3 days of treatment (Rosado
et al., 2006; Nan et al., 2014). The length of the primary roots was
measured with NIH Image software (Image J, version 1.43).

Confocal Microscopy
Propidium iodide (PI) fluorescence was used to visualize the
cells in root tips. Seedling roots were stained with PI (Molecular
Probes, Sigma, United States) according to the method described
by Mei et al. (2012). Roots were incubated with 10 µg/ml PI for
5–10 min at 23◦C in the dark and then washed three times with
ddH2O. The roots were then imaged under a confocal microscope
(Olympus FV 1000; excitation 488 nm, emission 570–650 nm).

Histochemical Staining and Assay of
H2O2 Content
We used 2,7-dichlorodihydrofluorescein diacetate (H2DCF,
Molecular Probes) to detect hydrogen peroxide (H2O2)
accumulation in seeds and roots. Seeds of 12 h and roots
of 5 days seedlings were treated with 20 µM H2DCF for
5 min, and fluorescence was monitored under a fluorescence
microscope (Olympus FV 1000, excitation 488 nm and emission
500–550 nm).

For H2O2 content measurement, 10-day-old seedlings were
soaked with in 150 mM NaCl solution for 12 h. Seedlings (0.3 g)
were homogenized with 2 ml of 0.1% (w/v) TCA, then centrifuged
at 10,000 × g for 20 min at 4◦C. The supernatant (0.5 ml)
was mixed with 1 ml of 1 M potassium iodide for 1 h in the
presence of 0.5 ml of 0.1 M Tris-HCl (pH 7.6). The absorbance
was read at 390 nm and H2O2 content was determined using a
standard curve.

Antioxidant Enzyme and Activities of
G6PD Assays
Ten-day-old seedlings were soaked in 150 mM NaCl solution
for 12 h. After treatment, the enzymes extraction and activity
determination of G6PD and antioxidant enzymes were carried
out according to the method of Liu et al. (2007) and Wang et al.
(2008). Briefly, crude enzymes were extracted in extraction buffer
containing 50 mM Hepes-Tris (pH 7.8), 1 mM EDTA, and 3 mM
MgCl2. The homogenate was then centrifuged at 12,000 × g
for 20 min at 4◦C. The supernatant was used to determine
enzyme activity.

For ascorbate peroxidase (APX) activity, the reagent was
composed of 0.1 mM EDTA-Na2 and 0.3 mM ascorbate. The
enzyme extract (100 µl) and 1 ml reagent were mixed in cuvette in
the presence of 20 µl of 9 mM H2O2. The absorbance at 290 nm
was recorded for 1min.

For catalase (CAT) activity, the experiment group contained
1 ml of 15 mM H2O2 and 100 µl of enzyme extract. The change
of absorbance at 240 nm was recorded.

For glutathione reductase (GR) activity, 0.52 mM Tris–HCl
(pH 7.5), 6 µM EDTA, 2 mM GSSG, 4 mM NADPHNa4, and
crude enzyme (100 µl) were mixed into 3 ml. GR activity was
measured at 340 nm for the initial 3 min of the reaction at 25◦C.

For peroxidase (POD) activity, the enzyme extract (25 µl) was
mixed with 1 ml of 20 mM guaiacol in the presence of 20 µl of
H2O2 for 3 min. The change of absorbance at 470 nm was record.

Superoxide dismutase (SOD) activity was measured in test
tube. Reaction solution contained 2 ml of 39 mM methionine
solution, 2 ml of 0.225 mM nitroblue tetrazolium, 1 ml of
0.6 mM EDTA-Na2 and 1 ml of 0.012 mM riboflavin. One tube
was incubated in the light for 30 min, and the other tube was
incubated in dark for 30 min. After 30 min the absorbance at
560 nm was recorded using a spectrophotometer.

For G6PD activity assay, the reagent was composed of 50 mM
Hepes-Tris (pH 7.8), 1 mM EDTA, and 3 mM MgCl2. The G6PD
activity was analyzed by detecting NADPH formation at 340 nm
in the presence of 0.5 mM D-glucose-6-phosphate disodium salt
(Sigma) and 0.5 mM NADPNa2. To distinguish the activity of
cytosolic G6PD isoforms, 1,4-dithiothreitol (DTT) was added
into the reaction mixture.

Determination of Glutathione Content,
NADPH and NADP+ Content
Ten-day-old seedlings were soaked in 150 mM NaCl solution
for 12 h. After treatment, the glutathione content was measured
using the GSH content determination kit (Cat# BC1170, Solarbio,
China). Glutathione can react with 5,5′-dithiobis-2-nitrobenoic
acid (DTNB) to produce 2-nitro-5-fluorenyl benzoic acid and
glutathione disulfide (GSSG). 2-nitro-5-mercaptobenzoic acid is
a yellow product with maximal light absorbance at 412 nm.

NADPH and NADP+ were detected through NADPH and
NADP+ determination kit (Cat# BC1100, Solarbio, China).
NADP+ and NADPH were extracted from the samples using
acidic and basic extracts, respectively. NADPH reduces the
oxidized thiazole blue (MTT) to formazan by the hydrogen
transfer of phenazine methyl sulfate (PMS), and the absorbance
at 570 nm was detected to determine the NADPH content.
The NADP+ content was determined by reducing NADP+ to
NADPH using glucose-6-phosphate dehydrogenase.

Activities of NADPH Oxidase Assays
Ten-day-old seedlings were soaked in 150 mM NaCl solution
for 12 h. After treatment, the activities of NADPH oxidase were
evaluated according to the method of Wang et al. (2016).

Western Blot Analysis
Ten-day-old seedlings were soaked in 150 mM NaCl solution
for 12 h. After treatment, the protein extraction, SDS-PAGE
and subsequent western blot analysis were carried out according
to the method of Wang et al. (2008). About 50 µg proteins
were solubilized and separated on 12% acrylamide gels (Bio-
Rad Mini protein II apparatus). After electrophoresis, the
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separated proteins were transferred to a polyvinylidene difiuoride
membrane, and the membrane was blocked for 90 min with 5%
non-fat milk in 0.5% (w/v) Tween 20, 10 mM Tris–HCl (pH
8.0), and 150 mM NaCl. At present, we do not have specific
antibodies for different G6PD isoforms. The antibody of G6PD
(Sigma) is a polyclonal antibody, which only detects the total
protein levels of G6PD. Subsequently, the polyclonal G6PD
antibody was added and incubated overnight with the membrane.
After washing, alkaline phosphatase-coupled secondary antibody
was added and incubated for 2 h. The chemiluminescence was
determined with the Pro-light horseradish peroxidase kit (PA112,
Tiangen, China). The western blotting images were caught by
Tanon-5200 Chemiluminescent Imaging System (Tanon, China).

Quantitative Real-Time PCR Analysis
Total RNA was extracted with Trizol (TaKaRa) from shoots
and roots. RNA was treated with RNase-free DNase (Transgen,
China). First-strand cDNA was synthesized with the PrimeScript
II 1st Strand cDNA Synthesis Kit (TaKaRa, Transgen, China).
Quantitative real-time PCR was performed using the SYBR
PrimeScript RT-PCR Kit (Perfect Real Time; TaKaRa). PCR
was performed using a CFX 96 Real-Time system (Bio-Rad,
Hercules, CA, United States) with the following standard cycling
conditions: 95◦C for 10 s, followed by 40 cycles of 95◦C for 5 s,
and 60◦C for 30 s. Primer sequences used in the study was shown
in Supplementary Table S1. The cycle threshold 2(−11C(T))-
based method was used for relative quantitation of gene
expression. Expression levels of genes were normalized to Actin2.

Arabidopsis Genome Initiative locus identifiers for the
genes mentioned in this article are as follows: ACTIN2
(AT3G18780), G6PD5 (AT3G27300), G6PD6 (AT5G40760),
G6PD1 (AT5G35790), G6PD2 (AT5G13110), G6PD3
(AT1G24280), G6PD4 (AT1G09420), AtrbohD (AT5G47910),
AtrbohF (AT1G64060), APX1 (At1G07890), SOD1 (At1G08830),
POD1 (At1G67960), CAT1 (At1G20630), GR2 (At3G54660).

Generation of the G6PD5 and G6PD6
Overexpressing Lines
Arabidopsis full-length G6PD5 or G6PD6 cDNA was obtained
using reverse transcription PCR, cloned into the pENTR-TOPO
cloning vector (Invitrogen) and sequenced. After the LR reaction,
G6PD5 or G6PD6 cDNA was inserted into the pGWB2 vector
driven by the 35S promoter; this vector was named pGWB2-
G6PD5 or pGWB2-G6PD6. Transformed plants were selected on
hygromycin-containing medium. Plants of the second generation
after transformation were used for the experiments. The empty
pGWB5 vector (the ccdb gene was substituted by a nonsense
segment with a termination codon) was also transferred into WT
and used as control plants.

Statistical Analysis
Each experiment was repeated at least three times. Values were
expressed as mean ± SE. The data were statistically analyzed
using SPSS version 17.0. All comparisons were carried out with
one way analysis of variance (ANOVA) followed by Duncan’s

multiple range test for independent samples. In all cases, the
confidence coefficient was set at P < 0.05.

RESULTS

Expression Analyses of Cytosolic G6PD
To study the underlying role of cytosolic G6PD in Arabidopsis,
we obtained T-DNA insertion mutants from the Arabidopsis
Biological Resource Center (Supplementary Figure S1A). The
results of quantitative real-time PCR and RT-PCR revealed
that both g6pd5 or g6pd6 are loss-of function null mutants
because the G6PD5 or G6PD6 transcript level in corresponding
mutant was hardly detected (Supplementary Figures S1B,D). In
order to further clarify the function of G6PD5 and G6PD6, we
generated overexpression lines of G6PD5 (OE#1 and OE#9) and
G6PD6 (OE#17 and OE#21). All overexpression lines showed
elevated expression levels of G6PD5 (4- and 13-fold increase
for OE#1 and OE#9, respectively) or G6PD6 (6- and 19-fold
increase for OE#17 and OE#21, respectively) (Supplementary
Figures S1C,D). Homozygous transgenic plants (5OE#9 and
6OE#21) were chosen for further analysis.

We also found that different G6PD family genes have
different expression patterns (Supplementary Figure S2 and
Figures 1A,B). The high expression level of cytoplasmic G6PD
(G6PD5 and G6PD6) was observed in all organs examined. The
total G6PD enzymatic activities in cy-G6PD loss-of-function
mutants were much lower than that in WT seedlings, especially
in g6pd5 and g6pd5/6 (Figure 1D). Similarly, the activities of
cy-G6PD were lower in mutants than in WT (Figure 1E). It
was noteworthy that cy-G6PD activity was the main factor in
the enhanced total G6PD activity under salt stress, which was
responsible for approximately 71% of the total G6PD activity. The
western blot results were consistent with the G6PD enzymatic
activities in seedlings (Figure 1F). Interestingly, under the
normal condition, the expression of G6PD1 and G6PD2 in the
g6pd6 or g6pd5/6 mutants was higher than that in WT. The
expression of G6PD3 in the mutants was similar to WT, whereas
the expression of G6PD4 in the mutants was lower than that
in WT with the exception of g6pd6. Under salt stress, in single
mutants, the expression of G6PD1, G6PD2, and G6PD3 was
higher than that in WT, while G6PD4 had no obvious difference
compared to WT. In the double mutant, the expression of the
G6PD1 had no obvious difference compared to WT, while G6PD2
expression was higher than that in WT. The expression of G6PD3
and G6PD4 was lower than that in WT (Figure 2).

Phenotypic Analyses of cy-G6PD
Mutants
Seed germination is a critical phase in the plant life cycle.
Successful execution of the germination program greatly depends
on the oxidative homeostasis of seeds (Chen et al., 2014b).
We evaluated the germination rates of cy-G6PD mutants under
different conditions. The germination of the mutant seeds was
slightly delayed compared with WT seeds but the mutant
seedlings exhibited similar growth rates and plant sizes as
WT (Figure 3). To determine the sensitivity of the g6pd5 or
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FIGURE 1 | The analysis of cy-G6PD in Arabidopsis seedlings with or without salt treatment. (A,B) The qRT-PCR analysis of G6PD5 (WT and 5OE#9) and G6PD6
(WT and 6OE#21) expression in Arabidopsis different organs. (C) Relative transcript levels of G6PD5 and G6PD6 in wild-type (Col-0) seedlings with the 150 mM NaCl
treatment. Uppercase letters represent the error analysis of G6PD6, and lowercase letters represent the error analysis of G6PD5. (D,E) The activities of G6PD or
cy-G6PD in Arabidopsis WT and mutants exposed to salt treatment. (F) Western blot analysis of G6PD expression in Arabidopsis. In this experiment, 150 mM NaCl
was used for treatment. The Coomassie Brilliant Blue-stained gel was present to show that an equal amount of proteins was loaded in all lanes. Data are mean ± SE
of three independent experiments, bars with different letters are significantly different at the level of P < 0.05. The experiment was repeated three with similar results.

g6pd6 mutant to salt stress during seed germination and root
elongation, different concentrations of NaCl (50 and 100 mM)
were supplied in the medium (Figure 3). The results showed
that both g6pd5 and g6pd6 single mutant exhibited slightly
reduced seed germination rate (Figures 3A,B) and primary root
length (Figures 3C,D) compared to WT. Because g6pd5 or g6pd6
single mutant is not significantly different from WT under salt
stress, we generated the double mutant g6pd5/6 by crossing
g6pd5 with g6pd6. RT-PCR results revealed that the transcripts
of both G6PD5 and G6PD6 in g6pd5/6 were undetectable
(Supplementary Figure S1B). Significantly, the double mutant
g6pd5/6 exhibited low seed germination rate and short primary
root length with increased NaCl concentrations compared to WT
and single mutants, indicated the function redundancy of G6PD5
and G6PD6 (Figure 3). To determine whether the function
of cy-G6PD in response to a relative higher concentration
of NaCl, we analyzed the seed germination and primary

root elongation under 150 mM NaCl treatment. Consistent
with those in 50 or 100 mM NaCl treatment, the mutants
exhibited more significant salt sensitivity compared with WT
(Supplementary Figures S3A,B), whereas the length of primary
roots was severely inhibited in 150 mM NaCl (Supplementary
Figures S3C,D). NaCl from 50 to 150 mM promoted obvious cy-
G6PD accumulation, but only 50 or 100 mM NaCl had significant
effects on Arabidopsis stress tolerance.

Under normal growth conditions, slight difference in the
germination and primary root growth was observed between
the WT and the overexpression lines (Figure 3). However,
under salt stress, the OE lines exhibited a significantly
higher seed germination rate than WT (Figures 3A,B)
and the root growth of OE plants was less sensitive to
NaCl treatment (Figures 3C,D). These data indicate that
overexpression of cy-G6PD increases salinity tolerance
in Arabidopsis.
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FIGURE 2 | The qRT-PCR analysis of G6PDs expression in WT and cy-G6PD mutants. The transcript levels were normalized to Actin2 gene expression. Results are
averages ± SE (n = 3), bars with different letters are significantly different at the level of P < 0.05. All experiments were repeated at least three times with similar
results.

We also examined the transcript level of G6PD5 and G6PD6
in Arabidopsis seedlings under salt treatment using qRT-PCR.
In accordance with our previous results, the expression of
G6PD5 and G6PD6 in WT seedlings was significantly induced
by salt stress (Figure 1C). In summary, G6PD5 and G6PD6 are
involved in seed germination and root growth under salinity
in Arabidopsis.

Response to Oxidative Damage in
cy-G6PD-Overexpressing and cy-g6pd
Mutant Plants
Reactive oxygen species (ROS) play a key regulatory role
in the germination program under salt stress (Chen et al.,
2014a). The ROS levels in cy-g6pd mutants and WT under
NaCl stress were explored in this study. As shown in
Figure 4, the ROS content in seeds and roots of both cy-
g6pd mutant and WT was increased in response to NaCl
treatment. It is noteworthy that such effects were significantly
enhanced in the g6pd5/6 double mutant but attenuated in OE
lines (Figure 4). Additionally, ROS content analysis revealed
significantly higher levels of H2O2 in the double mutant than
WT in seedlings under salt treatment, which was consistent with
previous findings in seeds and roots (Figure 4E). To further
dissect the role of cy-G6PD involvement in ROS signaling,
exogenous H2O2 was supplied to the medium. The double
mutant g6pd5/6 showed increased sensitivity to the oxidative
stress, as manifested by delayed germination and retarded root
elongation relative to WT (Supplementary Figures S4A,B).

In contrast, OE lines exhibited reduced sensitivity to the
oxidative stress (Supplementary Figures S4A,B). Moreover,
exogenous application of diphenyliodonium iodide (DPI),
an inhibitor for H2O2, partially rescued the root growth
phenotype of g6pd5/6 (Supplementary Figure S4C). These
results suggest that the oxidative level is higher in g6pd5/6
than in WT.

cy-G6PD Influences the Expression of
NADPH Oxidases AtrbohD and AtrbohF
Plasma membrane NADPH oxidase is considered to be an
important producer of ROS, which has been shown to play a
role in plant acclimation to salt stress (Ma et al., 2012; Jiao
et al., 2013). In addition, the NADPH oxidases AtrbohD and
AtrbohF are important in stress-inhibited primary root growth
in Arabidopsis (Ma et al., 2012). To determine whether the
function of cy-G6PD in response to salt stress is achieved
through the NADPH oxidase signaling pathway, we analyzed
the expression of NADPH oxidases genes in WT, g6pd5, g6pd6,
and OE plants with or without salt treatment. As shown in
Figure 5, the expression of AtrbohD and AtrbohF was markedly
increased by salt treatment in all materials, and the salt-induced
gene expression levels in g6pd5/6 was significantly higher than
that in WT plants (Figures 5A,B). Consistently, the activity of
NADPH oxidase was also higher in g6pd5/6 than in WT under
salt stress (Figure 5C). These results suggest that cy-G6PD is
involved in RBOH-dependent ROS production in salt-stressed
seedlings. To prove the hypothesis, we examined the expression
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FIGURE 3 | Seed germination and root growth of WT, g6pd5 mutant, g6pd6 mutant, g6pd5/6 mutant, G6PD5-OE, and G6PD6-OE Arabidopsis in response to NaCl
stress. Seeds were germinated on 1/2 MS agar plates with or without various concentrations of NaCl. (A) Photographs were taken 3 days in terms of radical
emergence after NaCl treatment. (B) Percentage of seed germination in WT, g6pd5 mutant, g6pd6 mutant, g6pd5/6 mutant, G6PD5-OE, and G6PD6-OE with or
without different NaCl treatment. (C,D) 5-day-old seedlings were grown vertically on 1/2 MS agar plates supplemented with the indicated concentrations of NaCl for
3 days. Root growth was monitored and analyzed using ImageJ software. Data are reported as the average value of three replicates using >50 seeds for each
genotype. One-way Duncan’s test was performed, and statistically significant differences are indicated by different lower case letters (P < 0.05). Bar, 1 cm. The
experiments were repeated at least three times with similar results, and data from one representative experiment are presented.

of G6PD5 and G6PD6 in NADPH oxidase mutants, atrbohD1
(CS9555), atrbohF1 (CS9557), and atrbohD1/F1 (CS9558). In
these mutants, the expression of both G6PD5 and G6PD6
was lower than that in WT plants (Figures 5D,E). As
expected, the G6PD enzymatic activity in atrboh loss-of-
function mutants was also lower than that in WT, especially in
atrbohD1/F1 (Figure 5F).

cy-G6PD Affects the Intracellular NADPH
Levels Under Salt Stress
As a reducing power, NADPH is the substrate of the NADPH
oxidase. NADPH oxidase uses NADPH to generate superoxide,
which can be dismutated subsequently to hydrogen peroxide
(Wang et al., 2008; Stampfl et al., 2016; Wang et al., 2016).
Moreover, the NADPH/NADP+ ratio is considered a possible
mechanism for G6PD regulation (Cardi et al., 2011, 2015).
Thus, NADPH is a key connector between G6PD and the
ROS scavenging system. Figure 6 showed that cy-G6PD
affected the intracellular NADPH and NADP+ levels and the
NADPH/NADP+ ratio. Consistent with the reduced cy-G6PD
activity, the intracellular NADPH level and the NADPH/NADP+

ratio were significantly decreased in g6pd5/6 mutant plants
exposed to salt stress. In salt-stressed cy-G6PD-overexpression
plants, the NADPH level and the NADPH/NADP+ ratio were
higher than that in WT (Figure 6), indicating that G6PD is
important for the intracellular NADPH homeostasis.

cy-G6PD Enhances the Expression of
Antioxidant Responsive Genes
Antioxidant enzymes are responsive to stresses to scavenge
extra ROS to maintain the balance between ROS production
and scavenging (Liu et al., 2015). To investigate the effects
of cy-G6PD on the expression of antioxidant enzymes,
we determined the activities and expression levels of
antioxidant enzymes, including APX, CAT, GR, POD,
and SOD (Supplementary Figures S5A,B). The results
showed that the salt stress-induced activity and expression
levels of APX and GR in the g6pd5/6 mutant were
significantly lower than that in WT plants (Supplementary
Figures S5A,B). In contrast, the expression levels of
APX and GR in OE lines were higher than that in WT
(Supplementary Figures S5A,B). These results suggest that
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FIGURE 4 | The g6pd5, g6pd6, and g6pd5/6 mutant affect the ROS levels under salt stress. 1-day-old seeds and 5-day-old seedlings were grown vertically on 1/2

MS agar plates supplemented with the 150 mM NaCl for 12 h. (A) The levels of H2O2 were measured using the H2DCF-DA fluorochrome dyes in Arabidopsis seeds.
Bar, 200 µm. (B) The levels of H2O2 were measured using the H2DCF-DA fluorochrome dyes in Arabidopsis roots. Bar, 200 µm. (C,D) Quantification of the
fluorescence in Arabidopsis seeds and roots under NaCl treatment. (E) 10-day-old seedlings were grown vertically on 1/2 MS agar plates supplemented with the
150 mM NaCl for 12 h. Data are mean ± SE of three independent experiments, bars with different letters are significantly different at the level of P < 0.05. The
experiment was repeated three with similar results.

cy-G6PD involvement in the regulation of seed germination
and root growth is mediated by APX and GR and that cy-
G6PD enhances the capacity of plants to scavenge excessive
ROS under salt stress to maintain the balance between
ROS production and scavenging. The g6pd5/6 mutant is

more sensitive to oxidative damages caused by salt stress
because it has reduced ROS scavenging capability. These
data indicate that enhanced cy-G6PD activity provides
more NADPH for the antioxidant system to remove
excess ROS.
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FIGURE 5 | The response of G6PD5 and G6PD6 to salt stress through NADPH oxidases signaling pathway. (A,B) Relative transcript levels of NADPH oxidases
AtrbohD and AtrbohF genes in Arabidopsis seedlings with or without 150 mM NaCl treatment. (C) The activities of NADPH oxidase in Arabidopsis WT and mutants
exposed to salt treatment. (D,E) Relative transcript levels of G6PD5 and G6PD6 in WT and NADPH oxidases mutant seeds (atrbohD1, atrbohF1, and atrbohD1/F1)
exposed to salt treatment. The transcript levels were normalized to Actin2 gene expression. (F) The activities of G6PD in Arabidopsis WT and mutants exposed to
salt treatment. Results are averages ± SE (n = 3), bars with different letters are significantly different at the level of P < 0.05. All experiments were repeated at least
three times with similar results.

cy-G6PD Enhances Glutathione Levels
Under Salt Stress
Glutathione (GSH), one of the essential antioxidants and redox
buffers, is involved in plant development as well as tolerance to
various stresses (Wang et al., 2008). As shown in Supplementary
Figure S6, the GSH content was increased by salt treatment in
WT seedlings. Consistent with the role of cy-G6PD in redox
regulation, the GSH level was decreased in g6pd5/6 under salt
stress (Supplementary Figure S6). These results indicated that
G6PD is essential for the glutathione level.

Our further analysis showed that exogenous application of
ascorbate acid (ASC) or glutathione partially or fully rescued the
seed germination and root growth phenotype in g6pd single and

double mutants (Supplementary Figure S7). It was noteworthy
that GSH was more effective than ASC (Supplementary
Figure S7). In short, cy-G6PD participates in the reduction of
H2O2 to H2O possibly through the glutathione peroxidase cycle
or the ascorbate-glutathione cycle.

cy-G6PD Is Required for Cell Elongation
and Root Meristem Maintenance
Previous studies have shown that ROS can control root
elongation by loosening cell walls and inhibiting cell division
(Liszkay et al., 2004; Jiao et al., 2013). To further dissect the
mechanisms of cy-G6PD function in salt-repressed root growth
in Arabidopsis, we measured the primary roots length in WT
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FIGURE 6 | G6PD5 and G6PD6 affects NADPH content in Arabidopsis under
salt stress. 10-day-old seedlings were grown vertically on 1/2 MS agar plates
supplemented with the 150 mM NaCl for 12 h. Results are averages ± SE
(n = 3), bars with different letters are significantly different at the level of
P < 0.05. All experiments were repeated at least three times with similar
results.

and cy-G6PD mutants supplied with 100 mM NaCl. The root
meristem length was evaluated by determining the number of
cortical cells in the region from the quiescent center (QC) to the
first-elongated cell (Dello Ioio et al., 2007). The root growth of
WT and mutants was similar on NaCl-free medium (Figure 7).
However, g6pd mutant plants had shortened root elongation zone
compared to WT after growing on NaCl-containing medium for
12 h (Figures 7A,B). These results indicate that NaCl suppresses
the enlargement of the elongation zone in roots of cy-G6PD
mutants relative to WT. In addition to cell elongation in the
elongation zone, cell division in the root meristem zone also
contributes to root growth. Therefore, we also determined the
size of root apical meristem. The number of meristem cells in

FIGURE 7 | G6PD5 and G6PD6 regulate root meristem and elongation zone.
(A) Root meristems of propidium iodide (PI)-stained images in Arabidopsis WT
seedlings. The meristem zone was marked with white arrows in (A).
Bars = 100 µm. (B) Root meristem cell number, meristem zone size,
elongation cell number, and elogation zone size in Arabidopsis WT seedlings.
The 5-day-old seedlings were treated with 100 mM NaCl for 12 h. Mean
values and SE were calculated from three independent experiments (n = 20).
Within each set of experiments, bars with different letters were significantly
different at the 0.05 level.

g6pd mutant plants was less than that in WT in the presence of
NaCl, implying that cy-G6PD is required for cell division in the
root meristem (Figures 7A,B).

DISCUSSION

G6PDs have critical functions in plant development and stress
responses (Wang et al., 2008, 2016). cy-G6PD plays a key role
in plant adaptation to various stresses in several species (Dal
Santo et al., 2012; Stampfl et al., 2016; Wang et al., 2016). The
aim of this study was to elucidate the function and regulatory
mechanism of cy-G6PD inArabidopsis response to salt stress. The
high expression level of cy-G6PD in various organs of A. thaliana
suggests its important function (Supplementary Figure S2).
Under normal condition, the expression of the G6PD1 and
G6PD2 (both are plastidial G6PDs) in the g6pd5/6 mutants is
higher than that in WT (Figure 2), suggesting that plastidial
G6PDs may have function redundancy with cy-G6PDs, but this
notion still needs to be further proved.
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In this study, the involvement of cy-G6PD in the response
of to salt stress was investigated during seed germination and
root development in Arabidopsis (Figure 3). Our results showed
that G6PD5 and G6PD6 play central roles in seed germination
and seedling growth under unfavorable conditions. The seed
germination rate of the double mutant g6pd5/6 was reduced by
approximately 60% compared to WT under salt stress, implying
that cy-G6PD is involved in this process (Figure 3). It was
reported that the G6PD activity is increased in drought-stressed
soybean seedlings and the drought-tolerant cultivar shows higher
G6PD activity than the drought-sensitive cultivar (Liu et al.,
2013; Wang et al., 2016). However, how stress activates the cy-
G6PD activity and the regulatory roles of cy-G6PD in stress
tolerance need further clarification. Thus, we characterized the
g6pd5/6 mutant, which is hypersensitive to salt stress during
seed germination and root elongation of seedlings. With the
genetic evidence, we further determined the function of cy-
G6PD in response to stress conditions. Overexpression of G6PD5
or G6PD6 results in enhanced tolerance, whereas the g6pd5/6
mutant shows attenuated tolerance compared to WT.

In addition, we demonstrated that cy-G6PD inhibited the
ROS generation in the germination program under salt stress
(Figure 4). ROS are the ever-present danger due to their
physicochemical toxicity that they accumulate under many stress
conditions (Liu et al., 2015; Wang et al., 2016). Previous reports
showed that H2O2 increases the G6PD activity in red kidney
bean roots and reed callus under salt stress (Wang et al., 2008;
Liu et al., 2012). Furthermore, H2O2 plays a role in drought-
induced increase of the total G6PD activity (Wang et al., 2016).
Our results of H2O2 on G6PD5 and G6PD6 suggest that cy-
G6PD is enhanced to scavenge the excessive ROS under salt stress
in order to maintain the balance between ROS production and
scavenging, and that the enhanced cy-G6PD activity provides
more NADPH for the antioxidant system to remove excessive
ROS (Figure 4).

Glutathione peroxidase cycle and ascorbate-glutathione cycle
can catalyze the reduction of H2O2 to water. We investigated
the role of cy-G6PD in regulating the levels of reduced form
of glutathione (GSH) under salt stress and found that G6PD
is involved in GSH maintenance and H2O2 accumulation
(Supplementary Figures S5, S6). In plants, NADPH could
be generated by ferredoxin-NADP reductase and four NADP-
dehydrogenases: G6PD, 6-phosphogluconate dehydrogenase
(6PGD), NADP-isocitrate dehydrogenase, and the NADP-malic
enzyme (Leterrier et al., 2016). Loss-of-function of cy-G6PD
dramatically decreases the intracellular NADPH level and the
NADPH/NADP+ ratio under salt stress (Figure 6), suggesting
that G6PD contributes to the major part of NADPH production
in Arabidopsis seedlings. A similar decrease in the GSH content
was observed (Supplementary Figure S6). Overexpression of cy-
G6PD leads to the enhanced GSH pool and oxidative tolerance
by providing more NADPH. From the above results, we
concluded that cy-G6PD, the major contributor to the total
G6PD activity, is the key factor for maintaining intracellular
GSH and NADPH levels under salt stress; disruption of the
NADPH and GSH homeostasis resulted in oxidative damages in
Arabidopsis seedlings.

Understanding the roles of G6PD and NADPH oxidases
will increase our knowledge of the plant ROS network in
developmental and physiological challenges. As key ROS-
generating enzymes, NADPH oxidases AtrbohD and AtrbohF
are essential components for numerous biological processes
(Chaouch et al., 2012; Jiang et al., 2013). The expression and
activities of the NADPH oxidases are markedly increased by

FIGURE 8 | Schematic illustration of a proposed model for the link between
G6PD5, G6PD6, ROS, and APX-GR in Arabidopsis seed germination and root
growth. In this model, arrows indicate positive regulation, bars indicate
negative regulation. Salt stress induces cy-G6PD, which subsequently
maintain the intracellular NADPH homeostasis, and involved in regulating key
enzymes (APX and GR) in ASC-GSH cycle. The APX and GR inhibit the level
of H2O2 in cells through GSH content. cy-G6PD is involved in H2O2

accumulation through applying NADPH to PM NADPH oxidase. The
enhanced cy-G6PD thus control germination of Arabidopsis seeds and
growth of Arabidopsis primary roots.
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salt treatment (Figure 5). This is consistent with previous
findings that an NADPH oxidase inhibitor (DPI) interfered
with a defense-induced ROS burst after salt stress, and that
the Arabidopsis double mutant rbohD/F exhibits decreased
cy-G6PD enzymatic activities. These results suggest that cy-
G6PD is involved in RBOH-dependent ROS production in
salt-stressed seedlings.

In plants exposed to high salinity, G6PD contributes to ROS
detoxification and the maintenance of cellular redox balance
(Dal Santo et al., 2012). However, in addition to their damaging
role in plants challenged by prolonged salt stress, ROS also
have important signaling functions. RBOHD is involved in
regulating ROS signaling in response to salinity (Miller et al.,
2009, 2010; Baxter et al., 2014). cy-G6PD might also be involved
in RBOH-dependent ROS production and signaling in salt-
stressed plants (Stampfl et al., 2016). In this study, the expression
of NADPH oxidase genes AtrbohD and AtrbohF in salt-induced
g6pd5/6 seedlings is higher than that in control plants, however,
expression levels of APX and GR in the g6pd5/6 mutant is
significantly lower than that in WT plants. These results suggest
that the high levels of ROS in g6pd5/6 plants may be sufficient
to activate antioxidative defense systems. Undoubtedly, the
dual role of cy-G6PD in ROS scavenging and generation in
Arabidopsis still needs to be further illustrated.

CONCLUSION

Our results showed that H2O2, NADPH, RBOHD/F, APX/GR,
and GSH are required for salt-induced cy-G6PD gene function,
and that the enhanced cy-G6PD plays an important role against
oxidative stress by increasing the ASC and GSH levels, which
in turn dampen ROS accumulation. Our findings point to a
different node of this crosstalk that is activated by an increase
in the cytosolic H2O2 and that is involved in dormancy,
germination control, and the stress responsiveness of seeds.
Based on the results presented here, we proposed a hypothetical
model shown in Figure 8. In this model, salt stress induces

cy-G6PD. The enhanced cy-G6PD is involved in regulating
key enzymes (APX and GR) in ASC-GSH cycle by utilizing
NADPH, which eventually results in the increased ASC and
GSH levels. The enhanced antioxidant ability can maintain a
steady-state level of H2O2 in cells, thus avoiding ROS damages.
cy-G6PD is also involved in RBOH-dependent ROS production
in salt-stressed seedlings. Moreover, cy-G6PD is involved in root
apical meristem (RAM) maintenance through the glutathione
redox-affected ROS pathway.
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