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Drought is an important environmental factor that severely restricts crop production.
The high-affinity nitrate transporter partner protein OsNAR2.1 plays an essential role
in nitrate absorption and translocation in rice. Our results suggest that OsNAR2.1
expression is markedly induced by water deficit. After drought stress conditions and
irrigation, compared with wild-type (WT), the survival rate was significantly improved in
OsNAR2.1 over-expression lines and decreased in OsNAR2.1 RNAi lines. The survival
rate of Wuyunjing7 (WYJ), OsNRT2.1 over-expression lines and OsNRT2.3a over-
expression lines was not significantly different. Compared with WT, overexpression of
OsNAR2.1 could significantly increase nitrogen uptake in rice, and OsNAR2.1 RNAi
could significantly reduce nitrogen uptake. Under drought conditions, the expression of
OsNAC10, OsSNAC1, OsDREB2a, and OsAP37 was significantly reduced in OsNAR2.1
RNAi lines and increased substantially in OsNAR2.1 over-expression lines. Also, the
chlorophyll content, relative water content, photosynthetic rate and water use efficiency
were decreased considerably in OsNAR2.1 RNAi lines and increased significantly in
OsNAR2.1 over-expression lines under drought conditions. Finally, compared to WT,
grain yield increased by about 9.1 and 26.6%, in OsNAR2.1 over-expression lines under
full and limited irrigation conditions, respectively. These results indicate that OsNAR2.1
regulates the response to drought stress in rice and increases drought tolerance.

Keywords: drought tolerance, grain yield, water use efficiency, OsNAR2.1, rice

INTRODUCTION

Abiotic stresses, particularly drought and nitrogen (N) deficiency, are important limiting factors
for plant growth, development and agricultural production (Ding et al., 2018). Drought stress
can seriously impair the growth and development of many soil plants and is often responsible
for massive reductions in crop yields globally (Ahuja et al., 2010; Shekoofa and Sinclair, 2018).
Drought stress decreases photosynthetic rate, restricts plant growth, and leads to a decrease in
yield ranging from 13 to 94% (Farooq et al., 2009). Some studies have shown that the main
reason for rice yield reduction caused by drought stress is the decrease in seed setting rate, the
ratio of filled grains to total spikelets, and grain number per panicle (Ekanayake et al., 1989,
1990). Abiotic stresses are inevitable because plants need to grow in soil (Farooq et al., 2009).
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Therefore, improving the adaptability of plants to abiotic stress
is of great significance for improving agricultural productivity
(Ahuja et al., 2010; Chen G. et al., 2017).

Nitrogen (N) is an essential nutrient for plants; it affects all
processes of rice from metabolism to growth and development
(Xu et al., 2012). The absorption and utilization of water
and nitrogen nutrition are two coupled physiological processes
(Shangguan et al., 2000; Ding et al., 2018). Supplying plants with
N can increase drought resistance by increasing root hydraulic
conductivity (Lpr) through increased ABA and aquaporin
expression (Chaves et al., 2002; Guo et al., 2007; Shatil-Cohen
et al., 2011; Ren et al., 2015; Ding et al., 2016). Taken together,
these data suggest that increasing N uptake may be beneficial
during drought conditions.

OsNAR2.1 is a high affinity nitrate transporter partner protein
which, along with OsNRT2s, plays a central role in nitrate
absorption and translocation in rice (Yan et al., 2011; Liu et al.,
2014). Chen et al. (2016) showed that increased expression of
OsNRT2.1, using the OsNAR2.1 promoter, could improve yield
and ANUE in rice. Tang et al. (2012) reported the involvement
of rice OsNRT2.3a in the transport of NO3

− from root to
shoot. Yan et al. (2011) reported that knockdown of OsNAR2.1
by RNA interference (RNAi) could suppress OsNRT2.1 and
OsNRT2.3a expression in mutant roots and demonstrated that
OsNAR2.1 performs a crucial function in both high and low
nitrate absorption. Chen J. et al. (2017) showed that using
the OsNAR2.1 promoter to drive OsNAR2.1 expression could
improve nitrate and ammonium absorption and yield in rice.
However, the mechanisms by which OsNAR2.1 and OsNRT2s
modify drought resistance are not well known. To date, some
studies have suggested that the overexpression of stress-related
genes may improve drought tolerance in rice to some extent
(Kim et al., 2009; Lu et al., 2013). Despite a few such efforts
to develop drought-tolerant rice plants, very few have shown
an improvement in grain yields under field conditions. In this
study, the contributions of OsNAR2.1 and OsNRT2s to drought
stress regulation were studied, including effects on crop yield,
stress-related genes, and photosynthesis rate.

MATERIALS AND METHODS

Plant Materials
The generation and basic molecular properties of
OsNRT2.1/OsNRT2.2 over-expression transgenic lines (OE1,
OE2, OE3) was previously described in Chen et al. (2016). The
genetic background of OsNRT2.1 over-expression transgenic
lines was cv. Wuyunjing7 (WYJ). The generation and basic
molecular properties of OsNAR2.1 RNAi transgenic lines
(r1, r2) was previously described in Yan et al. (2011). The
genetic background of OsNAR2.1 RNAi transgenic lines was cv.
Nipponbare (WT).

We amplified the OsNAR2.1 or OsNRT2.3a open reading
frame sequence from cDNA isolated from Oryza sativa L.
ssp. Japonica cv. Nipponbare using the primers listed in
Supplementary Table S1. The PCR products were cloned into
the pMD19-T vector (TaKaRa) and confirmed by restriction

enzyme digestion and DNA sequencing. The restriction sites
(AscI and KpnI) or (SpeI and SpeI) were incorporated into
primers to facilitate cloning into the pUbi:OsNAR2.1 vector or
the p35S:OsNRT2.3a vector, respectively. These constructs were
introduced into Agrobacterium tumefaciens strain EHA105 by
electroporation and then transformed into cv. Nipponbare or
cv. Wuyunjing7 as described previously (Chen et al., 2016)
(Supplementary Figure S1).

Growth Conditions
To determine seedling survival under drought stress, the
seedlings were grown for 21 days under highly irrigated
conditions by maintaining 10 equal-sized seedlings per pot.
Irrigation was withheld for 12 days, followed by re-watering for
7 days. Photographs were taken before the stress (0 days), at the
end of the stress period, and a week after recovery. Five biological
replicates were maintained among all lines.

For hydroponic drought stress experiments, rice seedlings
were grown with the normal IRRI solution for 2 weeks and then
transferred to nutrient solution supplemented with 10% (w/v)
PEG6000 for 2 weeks. The hydroponic experiments were carried
out in a growth room with a 14 h light (30◦C) (8:00 – 22:00)/10 h
dark (22◦C) (22:00 – 8:00) photoperiod and 60% relative
humidity. In all treatments, nutrient solutions were replaced
every 2 days. At the end of the drought stress experiments,
measurements of chlorophyll content, relative water content,
photosynthesis rate and water use efficiency were recorded.

The rice plants for the limited water supply experiment were
cultivated in plots at the experimental site of Nanjing Agricultural
University, Nanjing, Jiangsu, China. The plots size was 1 m× 1 m
and the seedlings were planted in a 5 × 5 array. Urea was used
as nitrogen fertilizer, and 180 kg N/ha of fertilizer was applied
on each plot. All plants were normally irrigated for 2 weeks after
transplanting. Then limited water supply (60% field capacity) was
applied to the experimental group and fully irrigated conditions
(100% field capacity) was applied to controls until completion of
the life cycle, and its agronomic characteristics were analyzed.

RNA Extraction and qRT-PCR Assay
RNA was extracted from the root or shoot of seedlings under
well-watered and drought stress conditions. Total RNA was
extracted using TRIzol reagent (Vazyme Biotech Co., Ltd.,
China). DNase I-treated total RNAs were subjected to reverse
transcription (RT) with HiScript II Q Select RT SuperMix for
qPCR (+gDNA wiper) kit (Vazyme Biotech Co.). Triplicate
quantitative assays were performed using the 2 × T5 Fast qPCR
Mix (SYBRGreenI) kit (TsingKe Co, Ltd., China). The primers for
qRT-PCR are shown in Supplementary Table S2.

DNA Extraction and Southern Blot
Analysis
Genomic DNA was extracted from leaves of WT and transgenic
plants using the SDS method (Chen et al., 2016). 60 µg of DNA
was digested with EcoRI and HindIII restriction enzymes 10 h at
37◦C. The digested DNA was separated on a 1% (w/v) agarose
gel and transferred to a Hybond-N+ nylon membrane, and
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hybridized with the coding sequence of hygromycin-resistance
gene as hybridization probe (Chen et al., 2016).

Stress Response Measurements
The degree of relative chlorophyll content in the fully expanded
last leaf was determined using a SPAD-502 Chlorophyll Meter
(Minolta Co.). Relative water content was measured as described
(Ramegowda et al., 2014) in the leaves for chlorophyll content
measurements. Relative water content = (fresh weight - dry
weight)/(turgid weight - dry weight)× 100%.

The same leaf is used to measure photosynthetic rate.
Photosynthesis rates were measured in rice seedlings using a
Li-COR6400 portable photosynthesis system equipped with a
LED leaf cuvette (Li-COR, Lincoln, NE, United States). Water
use efficiency was calculated using photosynthesis measurements
and the transpiration rate (Ramegowda et al., 2014). Water use
efficiency = photosynthesis/transpiration rate.

Determination of Root 15N-NO3
− and

15N-NH4
+ Influx Rate

Rice seedlings of WT and transgenic plants were grown
in IRRI nutrient solution containing 1 mM NH4

+ for 2
weeks and then nitrogen starved for 5 days. The plants were
transferred first to 0.1 mM CaSO4 for 1 min, then to a
complete nutrient solution containing 1.25 mM 15NH4NO3 or
1.25 mM NH4

15NO3 (atom % 15N: 15NO3−, 99%; 15NH4
+,

99%) for 5 min, and finally to 0.1 mM CaSO4 for 1 min. And
the 15N influx rate was calculated following the method in
Chen J. et al. (2017).

Statistical Analysis
All data were analyzed by ANOVA using the statistical SPSS 10
program (SPSS Inc., Chicago, IL, United States). The different
letters indicate a significant difference between the transgenic line
and the WT (P < 0.05, one-way ANOVA).

RESULTS

The Response of OsNAR2.1 and
OsNRT2s Relative Expression to Drought
Stress
The expression of OsNAR2.1 and OsNRT2s under drought
stress was analyzed by qRT-PCR. The results showed that the
expression of OsNAR2.1, OsNRT2.1, OsNRT2.2, and OsNRT2.3a
was affected by 10% PEG6000 treatment and OsNRT2.4 did not
show any response to drought stress (Figure 1). Expression of
OsNAR2.1 and OsNRT2.3a was increased by 10% PEG6000. As a
result, the expression of OsNRT2.1 and OsNRT2.2 was inhibited.
Among them, OsNAR2.1 expression showed the most drastic
change under drought stress, the expression increased by nearly
4 times that of fully irrigated conditions (Figure 1).

Results showed that the expression of OsNAR2.1 was
significantly enhanced in both shoots and roots of plants treated
with 10% PEG6000 (Figure 2). Overall, OsNAR2.1 expression
in roots was significantly higher than in shoots, which was

FIGURE 1 | Relative expression analysis of OsNAR2.1 and OsNRT2s under
drought stress treatment by real-time RT-PCR. Rice seedlings were supplied
with normal IRRI solution for 7 days and then transferred to nutrient solution
containing 10% (w/v) PEG6000 for 3 days. RNA was extracted from roots of
rice cv. Nipponbare. Error bars: SE (n = 3 plants).

consistent with published work by Feng et al. (2011). In roots,
OsNAR2.1 expression increased after 10% PEG6000 application
and reached maximal expression levels after 6 h, followed by a
gradual decline with prolonged treatment (12–72 h) to a 3 to 5-
fold increase (Figure 2A). In shoots, the expression of OsNAR2.1
reached the highest level after 12 h of treatment, with a 3.5-fold
increase (Figure 2B).

Identification of OsNAR2.1 and OsNRT2s
Transgenic Lines
The OsNRT2.1 over-expression transgenic lines were designated
as OE1, OE2 and OE3 and OsNAR2.1 RNAi transgenic lines as
r1 and r2 previously used in Chen et al. (2016) and Yan et al.
(2011). We also performed molecular verification to confirm
these lines. qRT-PCR analysis showed that the expression
of OsNRT2.1 in OE1, OE2 and OE3 increased significantly
as compared with WYJ, (Supplementary Figure S2A).
Southern blot analysis showed that OsNAR2.1 RNAi transgenic
lines r1 and r2 are two independent lines (Supplementary
Figure S3A) and, compared with WT, the expression of
OsNAR2.1 in root and shoot of r1 and r2 decreased significantly
(Supplementary Figure S3C).

We used the Agrobacterium tumefaciens-mediated method to
generate transgenic lines. The p35S:OsNRT2.3a expression
vector was inserted into Wuyunjing7 (O. sativa L. ssp.
Japonica cv., WYJ) and the pUbi:OsNAR2.1 expression
vector was inserted into Nipponbare (O. sativa L. ssp.
Japonica cv., WT). On the basis of Southern blot analysis
and RNA expression level, we selected three independent
lines of p35S:OsNRT2.3a designated as WA1, WA2, and
WA3 (Supplementary Figures S2B,C), two independent
lines of pUbi:OsNAR2.1 designated as Ox1 and Ox2
(Supplementary Figures S3B,D).
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FIGURE 2 | Relative expression analysis of OsNAR2.1 under drought stress treatment by real-time RT-PCR. Rice seedlings were supplied with normal IRRI solution
for 7 days then transferred to nutrient solution containing 10% (w/v) PEG6000 for different time. RNA was extracted from (A) roots and (B) shoots of rice cv.
Nipponbare. Error bars: SE (n = 3 plants).

Drought Stress Sensitivity of OsNAR2.1
and OsNRT2s Transgenic Lines at the
Seedling Stage
To test the involvement of OsNRT2.1, OsNAR2.1, and OsNRT2.3a
in drought tolerance, the drought stress response of their
transgenic lines was tested at the vegetative stage. Irrigation
was withheld for 12 days, followed by re-watering for 7 days
(Figure 3A). The survival rate of WYJ, OsNRT2.1 and OsNRT2.3a
over-expression transgenic lines was not significantly different
and was about 27% (Figure 3B).

However, in OsNAR2.1 transgenic lines (Figure 4A),
the change in survival rate was significant. The
recovery rate in WT was approximately 43.6%, in

OsNAR2.1 RNAi transgenic lines was 21.0%, and
in OsNAR2.1 over-expression transgenic lines was
86.3% (Figure 4B).

Effect of OsNAR2.1 Expression on Rice
Growth at Seedling Stage Under Drought
Stress
To further assess the effect of OsNAR2.1 on growth response
to drought stress, the seedlings of OsNAR2.1 transgenic lines
were grown in normal IRRI solution for 14 days and then
transferred into the nutrient solution containing 10% PEG6000
for 14 days, nutrient solution without PEG6000 was used
as a control (Supplementary Figures S4A,B). Under drought

FIGURE 3 | Drought stress sensitivity of OsNRT2s transgenic lines at the seedling stage. The seedlings were grown for 21 days in full irrigation by maintaining 10
equal-sized seedlings per pot. Irrigation was withheld for 14 days, followed by re-irrigation for 7 days. (A) Phenotype of drought-stressed plants followed by recovery.
(B) Seedling survival after recovery, the number of seedlings with at least one fully expanded leaf was counted. Error bars: SE (n = 5 pots). The different letters
indicate a significant difference between the transgenic line and WT (P < 0.05, one-way ANOVA).
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FIGURE 4 | Drought stress sensitivity of OsNAR2.1 transgenic lines at the seedling stage. The seedlings were grown for 21 days in full irrigation by maintaining 10
equal-sized seedlings per pot. Irrigation was withheld for 12 days, followed by re-irrigation for 7 days. (A) Phenotype of drought-stressed plants followed by recovery.
(B) Seedling survival after recovery, the number of seedlings with at least one fully expanded leaf was counted. Error bars: SE (n = 5 pots). The different letters
indicate a significant difference between the transgenic line and WT (P < 0.05, one-way ANOVA).

conditions, wilting and foliar chlorosis was observed in WT and
OsNAR2.1 RNAi lines but not in OsNAR2.1 over-expression lines
(Supplementary Figure S4C).

Compared to control, drought stress led to the suppression
of root and shoot growth in all plants (Figures 5A,B and
Supplementary Figure S4D). As compared with WT, the biomass
per plant of OsNAR2.1 RNAi lines was reduced by 34.2%
and that of OsNAR2.1 over-expression lines was increased
by 35.7% in normal solution (Supplementary Figure S4D).
However, under drought stress, the biomass of OsNAR2.1 RNAi
lines was reduced by 60.3% and in OsNAR2.1 over-expression
lines biomass was increased by 68.2% as compared with WT
(Supplementary Figure S4D). Compared with WT, the roots
biomass of OsNAR2.1 RNAi lines was reduced by 40.7% in
normal solution and by 76.1% under drought stress (Figure 5A).
The shoots biomass of OsNAR2.1 RNAi lines was reduced by
35.1% in normal solution and by 66.9% under drought stress
(Figure 5B). Similarly, compared with WT, the roots biomass
of OsNAR2.1 over-expression lines was increased by 36.8% in
normal solution and by 62.8% under drought stress (Figure 5A).
Moreover, the shoots biomass of OsNAR2.1 over-expression lines
increased by 33.8% in normal solution and by 59.9% under
drought stress (Figure 5B).

There was no significant difference in chlorophyll content,
relative water content, photosynthesis rate or water use efficiency
between OsNAR2.1 RNAi lines and OsNAR2.1 over-expression
lines under normal solution (Figures 5C–F). However, after 14
days of drought stress as compared with WT, the chlorophyll
content of OsNAR2.1 RNAi lines was reduced by 15.6% and
the OsNAR2.1 over-expression lines was increased by 14.5%

(Figure 5C). Under drought stress, the OsNAR2.1 RNAi lines
showed a reduction in relative water content of about 13.1%
compared with WT, but OsNAR2.1 over-expression lines showed
an increase of 15.5% (Figure 5D). Compared with WT, the
photosynthesis rate of OsNAR2.1 RNAi lines was reduced by
26.1% and the OsNAR2.1 over-expression lines was improved by
20.1% following drought stress (Figure 5E). Water use efficiency
of WT in normal conditions was significantly lower than that
under drought conditions (Figure 5F). The OsNAR2.1 RNAi lines
showed a reduction in water use efficiency by 19.9% as compared
with drought-stressed WT and OsNAR2.1 over-expression lines
showed an increase of 17.5% (Figure 5F).

OsNAR2.1 Transgenic Lines Altered
Expression of Stress-Responsive Genes
Under Drought Conditions
To understand the role of OsNAR2.1 in drought stress
responses, we analyzed the expression of several known
genes involved in abiotic and biotic stress in OsNAR2.1
transgenic lines, including OsMYB2 (Yang et al., 2012),
OsNAC10 (Jeong et al., 2010), OsSNAC1 (Hu et al., 2006),
OsDREB2a (Cui et al., 2011; Mallikarjuna et al., 2011),
OsAP37 (Oh et al., 2009; Ramegowda et al., 2014), OsP5CS1
(Sripinyowanich et al., 2013) and OsRAB16C (Chen et al.,
2015). Under normal conditions as compared with WT, the
expression of all of these genes in the roots of OsNAR2.1
RNAi lines was decreased and in OsNAR2.1 over-expression
lines was increased (Figure 6A). Moreover, in shoots, only
OsMYB2 and OsRAB16C expression responded to OsNAR2.1
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FIGURE 5 | Growth parameters of OsNAR2.1 transgenic lines under well-watered and drought stress conditions. Rice seedlings were grown in normal IRRI solution
for 14 days and then transferred to nutrient solution containing 10% (w/v) PEG6000 for 14 days. (A) Root biomass, (B) shoot biomass, (C) chlorophyll content, (D)
relative water content, (E) photosynthesis rate and (F) water use efficiency were assayed. Relative Water Content = (fresh weight – dry weight)/(turgid weight – dry
weight) × 100%. Water Use Efficiency (umol/mmol) = photosynthesis/transpiration rate. WW, well-watered; DR, drought stress (10% PEG6000). Error bars: SE
(n = 5 plants). The different letters indicate a significant difference between the transgenic lines and WT (P < 0.05, one-way ANOVA).

FIGURE 6 | Expression of stress-responsive genes in OsNAR2.1 transgenic lines. Growth conditions and treatments were the same as described in Figure 4. RNA
was extracted from root of seedlings under (A) well-watered and (B) drought stress (10% PEG6000) conditions. RNA was extracted from shoot of seedlings under
(C) well-watered and (D) drought stress (10% PEG6000) conditions. Error bars: SE (n = 3 plants). The different letters indicate a significant difference between the
transgenic line and WT (P < 0.05, one-way ANOVA).

manipulation, showing a decrease in OsNAR2.1 RNAi lines
and an increase in OsNAR2.1 over-expression lines. Conversely,
no significant difference was found in the expression of non-
stress related genes in transgenic lines (Figure 6C). Under

drought stress, the expression of all of these genes was
significantly decreased in the roots or shoots of OsNAR2.1 RNAi
lines and significantly increased in OsNAR2.1 over-expression
lines (Figures 6B,D).
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FIGURE 7 | Comparison of grain yield between OsNAR2.1 RNAi lines and OsNAR2.1 over-expression lines in limited and fully irrigated conditions. All plants were
normally irrigated for 2 weeks after transplantation. Then limited water supply (60% field capacity) was applied to experimental groups and maintained throughout
the experiment until completion of the life cycle, full irrigation (100% field capacity) was applied to controls. Then agronomic traits were assayed. WW: (full irrigation);
DR: drought stress (limited water supply). (A) Effective tiller number per plant, (B) grain number per panicle, (C) seed setting rate and (D) grain yield. Error bars: SE
(n = 5 plants). The different letters indicate a significant difference between the transgenic line and WT (P < 0.05, one-way ANOVA).

Effect of OsNAR2.1 Expression on Rice
Grain Yield Under Drought Stress
Detailed analysis of drought response in OsNAR2.1 transgenic
lines was performed by maintaining plants at 60% field capacity
(Supplementary Figure S5), the yield of transgenic lines was
measured by comparing the results with the fully irrigated field
which we designated as a normal field. The seed setting rate and
the grain number per panicle of WT under limited irrigation were
16.5 and 13.1%, respectively, lower than those of fully irrigated
field. As a result, grain weight was reduced by 23.3% and grain
yield was reduced by 26% (Figures 7B–D and Supplementary
Figure S6D). Moreover, the yield of OsNAR2.1 over-expression
lines under limited irrigation was not significantly different from
the WT under full irrigation (Figure 7D).

As compared with WT, the effective tiller number and grain
number showed no difference in transgenic lines in the normal
field. However, in the drought field, OsNAR2.1 RNAi lines
showed a decrease of 30.6 and 29.8%, respectively and OsNAR2.1
over-expression lines increased by 24.4 and 13%, respectively
(Figures 7A,B). Compared with WT, the seed setting rate and
grain yield of RNAi lines was decreased by 14.3 and 18.2%,
respectively in the normal field. In addition, as compared with
WT, the seed setting rate and grain yield were reduced by 45

and 65.2% in RNAi lines under drought stress. However, the seed
setting rate and grain yield in OsNAR2.1 over-expression lines
were increased by 5.6 and 9.1% in the normal field as compared
to WT. Under drought conditions the OsNAR2.1 over-expression
lines, seed setting rate and grain yield was increased by 16.3 and
26.6%, respectively (Figure 7C and Supplementary Figure S6D).

We also analyzed other agronomic traits amongst OsNAR2.1
transgenic lines. When there was plentiful irrigation available, the
total tiller number per plant and 1000-grains weight of transgenic
lines of OsNAR2.1 showed no difference. However, in limited
water supply a 13.2% decline and 11.5% increase were observed
in OsNAR2.1 RNAi lines and OsNAR2.1 over-expression lines,
respectively, for tiller number and a similar pattern was observed
in 1000-grain weight as compared to WT (Supplementary
Figures S6A,C). When full irrigation was applied, panicle length
declined in OsNAR2.1 RNAi lines and increased in OsNAR2.1
over-expression lines by about 19.0 and 25.8%, respectively, for
grain weight it was 15.8 and 8.6%, respectively, for dry weight
it was 11.1 and 8.4%, respectively as compared to WT. In
contrast, when water supply was limited panicle length declined
in OsNAR2.1 RNAi lines and increased in OsNAR2.1 over-
expression lines by 39.1 and 25.8%, respectively, for grain weight
it was 50.4% decrease and 31.5% increase, respectively, for dry
weight it was 50.0 and 17.1%, respectively. Furthermore, the
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grain/straw ratio in OsNAR2.1 RNAi lines decreased by 43.5%
and in OsNAR2.1 over-expression lines increased by 17.4% under
drought conditions (Supplementary Figure S6).

Rates of NO3
− and NH4

+ Influx in WT
and Transgenic Plants
We analyzed short-term NO3

− and NH4
+ uptake in same-

size seedlings of the transgenic lines by exposing the plants
to 1.25 mM NH4

15NO3 or 1.25 mM 15NH4NO3 for 5 min
to determine the effect of OsNRT2.1, OsNRT2.3a or OsNAR2.1
expression on root NO3

− and NH4
+ influx into intact plants.

Compared with WYJ, overexpression of OsNRT2.1 increased
NH4

15NO3 and 15NH4NO3 influx by 29.4% (Supplementary
Figure S7A) and 12.6% (Supplementary Figure S7B), the ratio of
15NH4

+ to 15NO3
− influx decreased by 12.9% (Supplementary

Figure S7C). Compared with WYJ, overexpression of OsNRT2.3a
did not significantly affect the influx of NH4

15NO3 and
15NH4NO3 by rice roots at seedling stage (Supplementary
Figures S7A,B). As compared with WT, the NH4

15NO3 and
15NH4NO3 influx of OsNAR2.1 RNAi lines decreased by 43.0%
and 46.0%, that of OsNAR2.1 over-expression lines increased by
32.8% and 30%, there was no significant difference in the ratio of
15NH4

+ to 15NO3
− influx (Supplementary Figures S7D–F).

We also analyzed OsNAR2.1 and OsNRT2s expression
in OsNRT2.1, OsNRT2.3a or OsNAR2.1 transgenic lines.
Compared with WYJ, the expression of OsNAR2.1 increased
significantly in OsNRT2.1 over-expression lines, but there
was no significant difference in the expression of OsNRT2.2,
OsNRT2.3a and OsNRT2.4 (Supplementary Figure S8A). There
was no significant difference in the expression of OsNAR2.1,
OsNRT2.2 and OsNRT2.4 between OsNRT2.3a over-expression
lines and WYJ (Supplementary Figure S8B). The expression of
OsNRT2.1, OsNRT2.2 and OsNRT2.3a decreased in OsNAR2.1
RNAi lines, increased in OsNAR2.1 over-expression lines,
and the expression of OsNRT2.4 is not affected by OsNAR2.1
(Supplementary Figure S8C).

DISCUSSION

Rice (Oryza sativa L.) is the staple food for more than
half of the world’s population. Therefore, an increase rice
production will be needed to meet the growing demand of
future populations (Sharp et al., 2004). Previous studies have
shown that drought stress strongly affects plant growth and
nitrogen metabolism (Allahverdiyev, 2016). Under drought
stress, adjusting nitrogen supply can enhance the adaptability
of crops by improving water relationship (Chaves et al., 2002;
Guo et al., 2007).

OsNAR2.1 is a high affinity nitrate transporter partner protein.
Yan et al. (2011) reported that the OsNAR2.1 plays a key role
in both high and low nitrate absorption. (Chen J. et al. (2017))
found that pOsNAR2.1:OsNAR2.1 expression enhances nitrogen
uptake efficiency and grain yield in transgenic rice plants. In this
study, we examined the possibility of OsNAR2.1 participating in
regulation of the response to drought stress and its effect on rice

yield by using OsNAR2.1 RNAi and OsNAR2.1 over-expression
transgenic lines.

OsNAR2.1 Involvement in Drought
Tolerance of Rice Seedlings
Many studies have shown that nitrogen supply has an essential
influence on the response of plants to drought stress (Chaves
et al., 2002; Guo et al., 2007; Ding et al., 2018). OsNRT2.1 is
a high affinity nitrate transporter, mainly expressed at the root
and responsible for nitrate uptake (Katayama et al., 2009; Feng
et al., 2011). Previous studies have shown that overexpression
of OsNRT2.1 increases the expression of OsNAR2.1 and this
may be responsible for increased nitrogen uptake (Chen et al.,
2016; Luo et al., 2018). This is consistent with our data showing
that compared with WYJ, overexpression of OsNRT2.1 increased
NH4

15NO3 influx by 29.4% (Supplementary Figure S7A)
and the expression of OsNAR2.1 increased significantly in
OsNRT2.1 over-expression lines (Supplementary Figure S8A).
Increased nitrate uptake could promote ammonium uptake by
rice (Duan et al., 2006; Li et al., 2006). However, although
15NH4NO3 influx of OsNRT2.1 overexpression lines increased
by 12.6% as compared with WYJ (Supplementary Figure S7C),
the ratio of 15NH4

+ to 15NO3
− influx decreased by 12.9%

(Supplementary Figure S7C).
Tang et al. (2012) reported that OsNRT2.3a is responsible

for the transport of nitrate from root to shoot. Previous
studies have shown that overexpression of OsNRT2.3a did
not increase 15NH4

15NO3 uptake in rice (Fan et al., 2016).
This is consistent with our data showing compared with
WYJ, overexpression of OsNRT2.3a did not significantly affect
the influx of NH4

15NO3 and 15NH4NO3 by rice roots at
seedling stage (Supplementary Figures S7A,B). This is likely
due to the fact that overexpression of OsNRT2.3a did not
lead to a significant increase in expression of OsNAR2.1
(Supplementary Figure S8B). Previous work has shown that
overexpression of OsNAR2.1 increase nitrate and ammonium
absorption in rice, and increase rice biomass under 1.25 mM
NH4NO3 treatment (Chen J. et al., 2017). These results are
consistent with our data showing as compared with WT, the
NH4

15NO3 and 15NH4NO3 influx of OsNAR2.1 RNAi lines
was reduced by 43.0 and 46.0%, that of OsNAR2.1 over-
expression lines was increased by 32.8 and 30%, there was
no significant difference in the ratio of 15NH4

+ to 15NO3
−

influx (Supplementary Figures S7D–F). Also, the expression of
OsNRT2.1, OsNRT2.2 and OsNRT2.3a decreased in OsNAR2.1
RNAi lines and increased in OsNAR2.1 over-expression lines
(Supplementary Figure S8C).

Photosynthesis is the main source of biomass accumulation
in all plants, it is also one of the most sensitive physiological
processes during abiotic stress (DaMatta et al., 2002). Drought
stress can inhibit stomatal opening and photosynthesis, and can
lead to an increase in water use efficiency (Silva et al., 2010;
Waraich et al., 2011; Allahverdiyev, 2016). Compared with WT,
there were no significant differences in chlorophyll content,
relative water content, photosynthesis rate and water use
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efficiency between OsNAR2.1 RNAi lines and OsNAR2.1 over-
expression lines in well-watered conditions (Figures 5C–F).
After 14 days of drought stress as compared with WT, the
photosynthesis rate of OsNAR2.1 RNAi lines decreased by 26.1%,
and of OsNAR2.1 over-expression lines increased by 20.1%
(Figure 5E). OsNAR2.1 RNAi lines showed a 19.9% reduction
in water use efficiency compared with drought-stressed WT
and OsNAR2.1 over-expression lines increased efficiency by
17.5% (Figure 5E). Because of changes in nitrogen uptake,
photosynthetic rate and water use efficiency, compared with
WT, the biomass of OsNAR2.1 RNAi decreased by 34.2% under
normal solution and 60.3% under drought stress, the biomass
of OsNAR2.1 over-expression lines increased by 35.7% under
normal solution and 68.2% under drought stress (Figures 5A,B
and Supplementary Figure S4D).

There are two kinds of nitrogen applications for rice plants:
ammonium and nitrate, with different nitrogen supply patterns
and effects on plant growth. The root activity of rice with
ammonium was significantly higher than that with nitrate, which
might be related to the characteristics of aquaporins (Siemens
and Zwiazek, 2003). Plants supplied with NH4

+ had a higher
assimilation rate and stomatal conductance than those applied
with NO3

− (Guo et al., 2002). Compared with nitrate nutrition,
ammonium nutrition increases photosynthesis rate under water
stress at the early development stage of rice (Guo et al., 2007) and
enhances the tolerance of rice seedlings to drought conditions
(Li et al., 2009). Under drought stress, rice seedlings grow
better in ammonium nutrition (Guo et al., 2002, 2007). Under
PEG6000 treatment water stress, plants under NO3

− treatment
had significantly lower chloroplast content than those under
NH4

+ treatment (Li et al., 2012; Xiong et al., 2017). Wilkinson
et al. (2007) observed that the decrease in stomatal closure and
leaf elongation rate was more sensitive to drought stress in maize
plants supplied with high nitrate. Compared with nitrate supply,
ammonium can significantly improve the drought resistance
of rice. In the present study, irrigation was withheld for 12
days, followed by re-watering for 7 days (Figures 3A, 4A).
The survival rate of WYJ, OsNRT2.1 transgenic lines and
OsNRT2.3a transgenic lines was not significantly different, about
27% (Figure 3B). Approximately 43.6% of the WT recovered,
21.0% of the OsNAR2.1 RNAi transgenic lines recovered,
and 86.3% of the OsNAR2.1 over-expression transgenic lines
recovered (Figure 4B). The results showed that over-expression
of OsNRT2.1 could increase ammonium uptake by rice, but at
the same time increased more nitrate uptake (Supplementary
Figure S7C), which might counteract the positive effect of
ammonium on rice drought resistance. Overexpression of
OsNRT2.3a did not increase nitrogen uptake or drought tolerance
in rice. Compared with WT, the NH4

15NO3 and 15NH4NO3
influx of OsNAR2.1 RNAi lines decreased significantly, and that
of OsNAR2.1 over-expression lines increased significantly, there
was no significant difference in the ratio of 15NH4

+ to 15NO3
−

influx (Supplementary Figures S7D–F). This ability to increase
uptake of NH4

+ as well as NO3
− may play a role in the

mechanism of OsNAR2.1 induced drought tolerance in rice.
We analyzed the expression of several known genes involved

in abiotic and biotic stress in OsNAR2.1 transgenic lines,

including OsMYB2, OsNAC1, OsSNAC1, OsDREB2a, OsAP37,
OsP5CS1, and OsRAB16C. Under normal conditions as
compared with WT, the expression of all of these genes in
the roots of OsNAR2.1 RNAi lines was decreased and in
OsNAR2.1 over-expression lines was increased (Figure 6A).
Conversely, no significant difference was found in the expression
of other genes in transgenic lines (Figure 6C). In drought
stress, the expression of all of these genes was significantly
decreased in the roots or shoots of OsNAR2.1 RNAi lines and
increased in OsNAR2.1 over-expression lines (Figures 6B,D).
Previous studies have shown that overexpression of these
genes increases drought tolerance in rice (Hu et al., 2006;
Kim et al., 2009; Oh et al., 2009; Jeong et al., 2010; Cui et al.,
2011; Mallikarjuna et al., 2011; Yang et al., 2012; Ramegowda
et al., 2014; Chen et al., 2015). Overexpression of OsNAR2.1
increased ammonium uptake in rice, while OsNAR2.1 RNAi
decreased ammonium uptake (Supplementary Figures S7E,F).
Ammonium supply significantly increased abscisic acid (ABA)
accumulation in plants (Zdunek and Lips, 2001; Rahayu et al.,
2005; Fernández-Crespo et al., 2015; Ding et al., 2016). Under
drought stress, ABA accumulation is essential to regulate
the expression of drought-tolerant genes (Jang et al., 2004;
Schraut et al., 2005; Lian et al., 2006; Mahdieh and Mostajeran,
2009; Parent et al., 2009), promote root water uptake and
plant growth (Sharp, 2002; Zhang et al., 2006). OsNAR2.1
regulates the expression of these drought regulating genes in
rice under stress (Figures 6B,D); suggesting that the OsNAR2.1
mediated increase in their expression is involved in rice
drought tolerance.

Effect of OsNAR2.1 Expression on Rice
Grain Yield Under Drought Stress
Compared with fully irrigated conditions, the grain yield of
WT decreased by 26% under limited water supply (Figure 7D).
The seed setting rate and grain number per panicle of WT in
limited water supply were 16.5 and 13.1% lower than those
in full irrigation; resulting in a 23.3% reduction in grain
weight (Figures 7B,C and Supplementary Figure S6D). This
agrees with previous studies showing that drought conditions
impair pollen germination, seed setting rate, and grain number
per panicle, resulting in decreased grain yield (Ekanayake
et al., 1989, 1990; Saini and Westgate, 1999; Kim et al., 2009;
Guan et al., 2010).

Drought stress also reduced the tiller number of rice (Kang
et al., 2017). Compared with WT, the effective tiller number of
OsNAR2.1 RNAi lines and OsNAR2.1 over-expression lines had
no significant difference under complete watering conditions.
The effective tiller number of OsNAR2.1 RNAi lines decreased by
30.6% and OsNAR2.1 over-expression lines increased by 24.4%
under limited water supply (Figure 7A). Compared with WT,
there was no significant difference in the grain number per
panicle between OsNAR2.1 RNAi lines and OsNAR2.1 over-
expression lines under complete watering conditions, but under
limited water supply, the grain number per panicle of OsNAR2.1
RNAi lines decreased by 29.8% and that of OsNAR2.1 over-
expression lines increased by 13.0% (Figure 7B). Similarly,
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compared with WT, the seed setting rate of OsNAR2.1 RNAi
lines decreased by 14.3% and that of OsNAR2.1 over-expression
lines increased by 5.6% in fully irrigated field. Further, that
of OsNAR2.1 RNAi lines was decreased by 45.0% and that of
OsNAR2.1 over-expression lines was increased by 16.3% under
limited water supply conditions (Figure 7C).

The grain yield of rice is the result of various factors
(Kim et al., 2009; Guan et al., 2010). In our experiments,
changes in photosynthetic rate, water use efficiency, tiller
number, grain number per panicle and seed setting rate led
to changes in rice yield. Finally, compared with WT, the
grain yield of OsNAR2.1 RNAi lines decreased by 18.2% and
that of OsNAR2.1 over-expression lines increased by 9.1%
under full watering conditions (Figure 7D). Further, OsNAR2.1
RNAi lines decreased by 65.2% and that of OsNAR2.1 over-
expression lines increased by 26.6% under limited water supply
(Figure 7D). In conclusion, overexpression of OsNAR2.1 could
improve the drought resistance without causing adverse growth
phenotypes in rice.

CONCLUSION

We confirmed that OsNAR2.1 is involved in drought stress
tolerance through regulating drought stress sensitivity and stress-
related gene expression in rice, overexpression of OsNRT2.1
or OsNRT2.3a alone could not improve rice tolerance to
drought. The reason may be that overexpression of OsNAR2.1
can significantly increase nitrogen uptake in rice, and does
not reduce the ratio of 15NH4

+ to 15NO3
− influx, while

overexpression of OsNRT2.1 or OsNRT2.3a alone cannot
improve nitrogen uptake or reduce the ratio of 15NH4

+ to
15NO3

− influx in rice. After variation in water supply, we

found that even in limited water availability, OsNAR2.1 over-
expression significantly increased grain yield as compared to
WT and led to minimal growth defects in drought stress.
These results indicate that over-expression of OsNAR2.1 is a
promising strategy to improve abiotic tolerance, especially to
drought in rice.
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