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Temperate conifers and broadleaved mixed forests in northeast China are ideal to
investigate the genetic consequences of climate changes during the last glacial
maximum (LGM), 29 – 16 kya. As previous studies were focused on tree species
with long generation time; here, the evolutionary history of Schisandra chinensis, a
climber species with a generation time of five years, was investigated using chloroplast
DNA (cpDNA), nuclear single copy gene (nSCG), and nuclear single sequence repeats
(nSSRs, i.e., microsatellite) markers, along with ecological niche modeling (ENM), which
predicted a suitable habitat in Korea Peninsula (KP) during the LGM. Private haplotypes
and high genetic diversity of both cpDNA and nSCG were mainly found in KP and
Changbai Mt. (CB). Although no significant phylogeographic structure was detected
in the cpDNA and nSCG, three nSSRs clusters roughly distributed in west (CB and
KP), east (north China), and north (Xiaoxing’an Range, XR) regions were found in
Structure analysis. The approximate Bayesian computation analysis showed the west
cluster diverged at 35.45 kya, and the other two clusters at 19.85 kya. The genetic
diversity calculated for each of the three markers showed no significant correlation
with latitude. Genetic differentiation of nSSRs was also not correlated with geographic
distance. Migrate analysis estimated extensive gene flow between almost all genetic
cluster pairs and BOTTLENECK analysis showed that few populations experienced
severe bottlenecks. Overall, results indicate that S. chinensis survived the LGM in situ in
multiple refugia, which likely include two macrorefugia (KP and CB) and two microrefugia
(XR and north China). Extensive postglacial gene flow among the three nSSRs clusters
led to uniformly distributed genetic diversity and low genetic differentiation.

Keywords: climber species, genetic diversity, last glacial maximum, refugia, temperate conifers and broadleaved
mixed forests

INTRODUCTION

Quaternary climate changes, especially the last glacial maximum (LGM, 29–16 kya; Clark and
Mccabe, 2009), have greatly influenced the distribution of temperate forests in the Northern
Hemisphere (Hewitt, 1996, 2000; Qiu et al., 2011). Contractions during glaciations and expansions
between or after glaciation periods of species distributions have left imprints on the genetic
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structure and distribution of genetic diversity and differentiation
(Provan and Bennett, 2008; Excoffier et al., 2009; Waters et al.,
2013). In northeast China, the temperate conifer and broadleaved
mixed forests (hereafter mixed forests) between 40 and 50◦
N are the contact zone between the southern warm-temperate
forests and the northern cool-temperate forests (Supplementary
Figure S1; Wu, 1980). Because the mixed forests are sensitive to
climate cooling and warming, it is an ideal system to investigate
the genetic consequences of the LGM (Wu, 1980; Zhang, 2007).

Vegetation reconstructions using fossil pollen data showed
that the mixed forests retreated southward to 25–30◦ N
during the LGM (Harrison et al., 2001; Cao et al., 2015).
However, phylogeographic studies provided different scenarios.
Two scenarios have been proposed, which are the single refugium
scenario and the multiple refugia scenario (Supplementary
Figure S1). The single refugium scenario suggests that Changbai
Mt. (CB), located at about 40–42◦ N, is the only macrorefugia
for conifer trees within the genus Abies (Jiang et al., 2011),
the broadleaf tree Juglans mandshurica (Bai et al., 2010), and
the perennial herb Buplerum longiradiatum (Zhao et al., 2013).
The multiple refugia scenario suggests the Korea Peninsula (KP)
as another macrorefugia in addition to CB (Guo et al., 2014;
Wang et al., 2014; Bao et al., 2015; Zeng et al., 2015). Other
microrefugia were also detected, with the northernmost ones
located at the northern mixed forests margin [Xiaoxing’an Range
(XR) and Russian Far East] (Bao et al., 2015; Zeng et al., 2015;
Wang S.H. et al., 2016). Most species examined were tree and
shrub species. The only climber species that has been studied is
Actinidia arguta, but its limited genetic variation in chloroplast
DNA (cpDNA) hindered the precise discrimination of the two
different scenarios (Ye et al., 2018). Thus, whether climber species
would follow the single refugium or multiple refugia scenario
remains unknown.

Genetic diversity and genetic differentiation distribution
patterns in mixed forests are also complex (Ye et al., 2017).
Genetic diversity is expected to show significant declines due to
genetic drift and bottlenecks during the northward expansion
from a single source (such as the CB macrorefugia) (Excoffier
et al., 2009; Waters et al., 2013). The reduction of genetic
diversity in nuclear microsatellites (nuclear single sequence
repeats, nSSRs) of Acer mono with increasing latitude agrees
with this prediction (Guo et al., 2014; Liu et al., 2014). However,
J. mandshurica shows an inconsistent pattern. Gradual expansion
with gravity-mediated seed dispersal combined with extensive
wind-mediated pollen gene flow have prevented the decrease of
its genetic diversity in the direction of range expansions (Wang
W.T. et al., 2016). In addition, if there was substantial postglacial
southward expansion from northern microrefugia (such as XR),
the genetic diversity would also become uniformly distributed
(Bao et al., 2015; Zeng et al., 2015). Genetic differentiation can
also show different patterns. An increased genetic differentiation
with increased distance (i.e., isolation by distance, IBD) pattern
in re-colonized areas is predicted under rapid range expansion,
while ample gene flow among source and colonized populations
would erase the IBD pattern (Lafontaine et al., 2013). It should
be noticed that the above-mentioned studies were performed on
tree species with long generation time. Thus, the distributions of

genetic diversity and genetic differentiation in plants with short
generation time need additional investigation.

Schisandra chinensis (Turcz.) Baill, a common climber species
with short generation time (about five years) (Li and Zhang,
2017), was chosen for the present study. Its seeds are dispersed
by birds (Yuan, 2007), while its pollen is mainly dispersed
by insects and, occasionally, by wind (Ai et al., 2007). The
genetic patterns in cpDNA, nuclear single copy gene (nSCG),
and nSSRs were combined with ecological niche modeling
(ENM) to investigate the evolutionary history of S. chinensis.
Firstly, genetic structure and potential habitat predictions were
used to infer potential refugia. Potential divergence histories
were compared and parameters of the most possible scenario
were estimated using approximate Bayesian computation (ABC).
Then, the correlations between genetic diversity and latitude or
IBD were calculated. Historical gene flow was estimated using the
maximum-likelihood (ML) algorithm, and whether populations
have experienced genetic bottleneck was also estimated.

To further understand the influence of the LGM on mixed
forests, the present study aimed to (1) determine whether
S. chinensis conforms to the single refugium or multiple refugia
scenario, and (2) reveal the distribution patterns of genetic
diversity and genetic differentiation of S. chinensis and their
potential causes.

MATERIALS AND METHODS

Sampling
We collected 355 individuals of S. chinensis from 20 populations
(Table 1) and four individuals of Kadsura longipedunculata were
collected as outgroups. There were at least 30 m between any two
individuals in each population. Silica gels was used to desiccate
and preserve all leaf samples. Voucher specimens were deposited
at the Beijing Normal University Herbaria (BNU), Beijing, China.

Chloroplast and Nuclear DNA Sequence
Analyses
DNA Extraction and Sequencing
Total genomic DNA was extracted using a Plant Genomic
DNA Kit (DP305-03; Tiangen, Beijing, China). We amplified
and sequenced four chloroplast gene fragments, namely matK,
ndhA, trnL-trnF, and trnS-trnG (Supplementary Table S1) for
148 individuals and the nuclear gene PEPC for 167 individuals
(Table 1). The PCR amplification was performed as described
by Guo et al. (2014). The amplicons were sequenced from both
directions at the Beijing Genomics Institute (Beijing, China).
All electropherograms of DNA sequences were visually analyzed
before they were assembled and read in CodonCode Aligner 3.6.1
(CodonCode Corporation1, Centerville, MA, United States).

Genetic Diversity and Construction of the Most
Parsimonious Network
CodonCode Aligner 3.6.1 with the CLUSTAL module was
used to align all sequences. The alignment was verified

1http://www.codoncode.com/aligner/
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visually and low-quality sections at the beginning and end
of sequences were deleted. The PHASE function in DnaSP
5.10.01 (Rozas et al., 2003) was used to determine heterozygous
sequences in the nSCG. Then, DnaSP 5.10.01 was used
to determine haplotypes, without considering indels, and to
calculate nucleotide diversity (π) and haplotype richness (HR).
Permut 1.02 with 1000 permutations was used to compare two
forms of genetic differentiation (GST and NST) in all populations.
The most parsimonious network was inferred using Network
4.6.1.1 (Bandelt et al., 1999). Pearson correlations (“corr.test”
function) between HR and latitude were performed in R 3.2.3
(R Core Team, 2013).

Microsatellite Data Analysis
Amplification and Genotyping
Eight nSSRs loci were used to determine the genotypes of
all sampled individuals in each population (Supplementary
Table S2). The PCR procedures were the same as those
for amplifying nuclear and cpDNA sequences, except for the
annealing temperature (Supplementary Table S2). Amplicons
were loaded onto a 3730XL Automated Genetic Analyzer
(Applied Biosystems, Foster City, CA, United States) and scored
using GeneMapper 4.0 (Applied Biosystems). To reduce score
error, alleles were independently read by two people, and any
disputes (<5% of calls) were decided by a third person.

Genetic Diversity and Bottleneck
The neutral test in Lositan (Antao et al., 2008) indicated that
no loci violated the neutral hypothesis; thus, all eight loci were
used for further analyses. For each locus and population, standard
genetic diversity statistics were calculated. The deviation of the
fixation index (FIS) from zero was used to test the deviation from
Hardy–Weinberg equilibrium in each population. Genotypic
disequilibrium was tested for all loci pairs in all populations by
randomization, and the obtained P-values (=0.05) were adjusted
using the Bonferroni correction. All the above calculations
were performed in Fstat 2.9.3 (Goudet, 2001). Allele richness
(RS) and private allele richness (PAR) in all populations were
calculated in hp-rare 1.0 (Kalinowski, 2005) using rarefaction
with a sample number of 10. Pearson correlations (“corr.test”
function) between nSSRs genetic diversity (RS, PAR, and He,
expected heterozygosity) and latitude were performed in R 3.2.3.
Severe population size decreases were detected in BOTTLENECK
(Cornuet and Luikart, 1996), applying the two-phase mutation
(TPM) with 70% stepwise mutation model (SMM) and 30%
multistep mutations.

Population Structure
The genetic differentiation index FST (Weir and Cockerham,
1984) was determined for the eight loci using Fstat 2.9.3. Genetic
distance, Nei’s Da, was used to create a neighbor-joining (NJ)
tree using Poptree2 (Takezaki et al., 2010) with 1000 bootstrap
pseudoreplicates. Structure 2.3.4 (Falush et al., 2007) was used to
detect potential population structure without using population
location as prior information. Ten independent runs were

2http://www.pierroton.inra.fr/genetics/labo/Software/Permut/

performed for each K (K = 1–20) with 1 × 105 initial burn-
in, followed by 1 × 106 Markov Chain Monte Carlo (MCMC)
steps using an admixture model with correlated allele frequencies.
Potential clusters (K) were determined by LnP(D), the change in
log-likelihood of the data for each run (Pritchard et al., 2000),
and by 1K, the second-order rate of change of LnP(D) between
successive K values (Evanno et al., 2005). Isolation by distance
(Wright, 1943) was evaluated according to Rousset (1996) using
a Mantel test between genetic differentiation in terms of FST/(1 –
FST) and the natural logarithm of geographic distance. The
Mantel test was performed with 9999 permutations in GenAlEx
6.5 (Peakall and Smouse, 2012).

Population Divergence History and Gene Flow
To detect population divergence history, all populations were
assigned to one of the three gene pools corresponding to its
largest proportion of ancestry; population LW (Table 1) was
the exception as its proportion of ancestry was approximately
identical for the three clusters (see section “Results”). Population
divergence history was modeled using the ABC procedure
(Beaumont et al., 2002) and performed in DIYABC 2.0 (Cornuet
et al., 2014). Three possible divergence history scenarios were
compared among the three genetic clusters (see section “Results”;
Supplementary Figure S2 and Supplementary Table S3). The
simulations were summarized based on the following statistics:
mean number of alleles, mean genetic diversity and FST for
each lineage, mean classification index, and shared allele distance
between pairs of lineages. The simulations were repeated
3,000,000 times and, after logit transformation, local linear
regression was applied to choose the 1% simulated data sets
that were closest to the observation. Using these data sets, we
compared the posterior probability (PP) of the three scenarios
and estimated the parameters of the most possible scenario.

The historical gene flow among the nSSRs clusters was
estimated using the ML algorithm in Migrate 3.6.8 (Beerli, 2006).
We estimated θ = 4Nµ (N, the effective population size; µ, the
mutation rate per locus per generation) and M = m/µ (m, the
migration rate per generation) to calculate the effective number
of migrants (Nm). We used 10 short chains (10,000 trees), three
long chains (100,000 trees), 20 genealogies, and burn-in of 10,000
initial trees. The starting values for θ and M were estimated from
FST values. All individuals were included and the analyses were
run three times, independently.

Ecological Niche Modeling
The maximum entropy modeling technique (MAXENT) (Phillips
et al., 2006) was utilized to predict the current potential
distribution of S. chinensis as well as those during the
LGM and last interglacial (LIG). Fifty-five presence records
were obtained from this study (20 sample sites) and from
the Global Biodiversity Information Facility3 (35 occurrence
locations). Seven climate variables with low correlation (<0.8)
were used to model the niche (Supplementary Table S4)
(Hijmans et al., 2005). Model validation was performed 10
times independently, with 20% randomly chosen data. The

3http://data.gbif.org
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accuracy of model predictions was evaluated based on the
area under the receiver operating characteristic (ROC) curve
(AUC) (Fawcett, 2006).

The established model was projected to both MIROC 3.24

and CCSM4 (Shields et al., 2012) models to predict potential
distributions during LGM and LIG distribution. All climate
layers were prepared using a 2.5 arc-minute resolution. The
paleocoastlines during the LGM were estimated assuming that
the sea level was 130 m lower than the current sea level.

RESULTS

cpDNA and nSCG Sequences
In cpDNA, seven variable sites, including two singleton variable
sites and five parsimony informative sites, were detected
(Supplementary Table S5). Six haplotypes were identified
with a total alignment length of 3,507 bp (Supplementary
Table S5). Haplotype 2 (H2), located in the center of
the network, was likely the ancestral haplotype. It was
also the most abundant haplotype, being distributed in
almost all populations. Only three populations had private

4http://pmip2.lsce.ipsl.fr/

haplotypes: FY (H4), in northernmost Changbai Mt., and
ZY (H6) and JW (H5) in Korea Peninsula. These three
populations also had high HR (Table 1); other populations
with high HR were mostly distributed in Changbai Mt. (DS,
BS, and LW) and in the northern mixed forests margin
(KD and RH) (Figure 1).

In the nSCG, twelve variable sites, including three singleton
variable sites and nine parsimony informative sites, were
detected. Twelve haplotypes were identified with a total
alignment length of 809 bp (Supplementary Table S6).
Because nuclear haplotype 6 (N6) was located in the center
of the network, it was likely the ancestral haplotype. It
was distributed in north China (LM, QS, and CB) and
Changbai Mt. (CB). Populations ZY (N11 and N12), JW
(N8 to N10), and CH (N7) in northernmost Changbai Mt.
had private haplotypes. Private haplotypes in Korea Peninsula
(N8, N9, and N10 in JW, N11 and N12 in ZY) populations
were not closely linked (Figure 2). All populations except
XR (HR = 0.250) had high HR ranging from 0.556 to
0.867 (Table 1).

Neither significant phylogeographic structure (NST = 0.323
and GST = 0.311 in cpDNA and NST = 0.100 and GST = 0.065
in nSCG, P > 0.05) nor correlations between HR and latitude
(r = 0.21, P = 0.38 in cpDNA and r = 0.21, P = 0.37 in nSCG)

FIGURE 1 | The most parsimonious network (a) and geographic distribution (b) of haplotypes based on four Schisandra chinensis chloroplast fragment, matK,
ndhA, trnL-trnF and trnS-trnG. Outgroups represents Kadsura longipedunculata. Circle sizes are proportional to sample size of each population.
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FIGURE 2 | The most parsimonious network (a) and geographic distribution (b) of haplotypes based on one Schisandra chinensis nuclear single copy gene, PEPC.
Outgroups represents K. longipedunculata. Circle sizes are proportional to sample size of each population.

were found. All the newly obtained sequences were uploaded to
GenBank (Accessions MH580160–MH580199).

Nuclear Microsatellites
The genetic diversity of the eight nSSRs loci and 20 populations
are shown in Table 1 and Supplementary Table S7. For
each population, FIS showed no significant deviation from
zero (Table 1), suggesting no violations of the Hardy–
Weinberg equilibrium assumptions. No significant genotypic
disequilibrium was observed among the 28 loci pairs in any
population. No significant correlations between genetic diversity
and latitude were found when all populations were considered
(HE, r = 0.35, P = 0.13; RS, r = 0.20, P = 0.40; PAR, r = –
0.30, P = 0.19) or when populations with sample size < 10 were
excluded (HE, r = –0.30, P = 0.32; RS, r = –0.45, P = 0.12;
PAR, r = –0.23, P = 0.45) (Figure 3). An IBD pattern was not
detected (r = 0.22, P = 0.06; Figure 4). Two populations (KY
and MJ) with limited sample size and population HN experienced
bottlenecks (Table 1).

In Structure analysis, 1K was high for K = 2 or K = 3
(Supplementary Figure S3), indicating that populations can be
clustered into two or three groups. However, LnP(D) and 1K
were both higher at K = 3 than at K = 2, indicating that three
clusters were more likely than two clusters. The three clusters

were roughly distributed in the east, west and north regions
(Figure 5). No population structure was detected using the NJ
tree (Supplementary Figure S4).

In the DIYABC analysis, the most possible scenario was
that the west cluster diverged before the other two clusters
(Supplementary Figure S5, PP = 0.90). The population
divergence times between west and north clusters (t2) and among
all three clusters (t1) were estimated as 3.97 × 103 generations
with a 95% highest-probability-density interval (HPD) of
0.79 × 103 – 1.20 × 103) and 7.09 × 103 generations (95%
HPD: 1.64 × 103 – 12.40 × 103), respectively. The generation
time of S. chinensis is assumed to be five years. Therefore, the
absolute t2 was 19.85 kya (95% HPD: 3.95 – 60.00 kya) and the
absolute t1 was 35.45 kya (95% HPD: 8.20 – 62.00 kya). The
mutation rate was estimated as 3.91 × 10−5/locus/generation.
The estimated effective population size in west, north, and
east clusters were 4.31 × 104, 8.18 × 104, and 7.13 × 105,
respectively (Table 2, Supplementary Figure S5). In Migrate
analysis, almost all the estimated gene flows (4Nm) were very
high (Table 3).

Ecological Niche Modeling
High ROC values (0.958 ± 0.012) indicated good accuracy of
model predictions. During LGM, both models predicted range
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FIGURE 3 | Correlations between genetic diversity, HE , expected
heterozygosity (A); RS, allelic richness (B); and PAR, private allelic richness (C)
in eight nuclear microsatellites, with latitude in Schisandra chinensis. Light
gray dots represent population with sample size lower than ten.

contractions. The CCSM4 predicted that the most suitable habitat
was located at KP, while MIROC 3.2 indicated the Yellow Sea
land bridge and adjacent regions and KP as the most suitable

locations. During the LIG, suitable habitats were predicted to be
more limited than that at present (Figure 6).

DISCUSSION

In situ Glacial Survival in Multiple Refugia
Previous phylogeographic studies in mixed forests provide
limited information for climber species (Ye et al., 2017). Here, we
investigated the evolutionary history of S. chinensis, a common
climber species in mixed forests, in detail based on multiple
genetic markers and potential habitat predictions. Contrary to the
southern contraction of mixed forests during the LGM inferred
by vegetation reconstructions (Harrison et al., 2001; Cao et al.,
2015), the current investigation clearly showed that S. chinensis
survived the unsuitable climate during the LGM in situ in
multiple refugia, with the northernmost contacting the northern
mixed forests margin.

Low genetic differentiation (GST = 0.311 in cpDNA,
GST = 0.065 in nSCG, and FST = 0.130 in nSSRs) was revealed by
the different genetic markers and no phylogeographic structure
was revealed in either cpDNA and nSCG and in the NJ tree
of nSSRs. However, nSSRs Structure analysis indicated that
populations could be divided into three clusters (west, north,
and east) roughly corresponding to their geographic ranges. The
DIYABC analysis showed the west cluster diverged before the
other two clusters (35.45 kya) and before the LGM, and persisted
through the LGM. The divergence time between the north and
east clusters (19.85 kya) indicated their divergence was likely
triggered by LGM and these two clusters have persisted in situ
since the LGM. Thus, the three S. chinensis clusters probably had
multiple LGM refugia.

The macrorefugia of S. chinensis can be inferred through
potential habitat prediction. The Korea Peninsula was suggested
as one of the macrorefugia for this species, as it provided a
suitable habitat during the LGM in both climate models in the

FIGURE 4 | Isolation by distance in Schisandra chinensis. Pairwised genetic distance (as measured by FST/(1 – FST)) is regressed onto the natural logarithm of
pairwised geographic distance between all populations. Light gray dots represent population with sample size lower than 10.
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FIGURE 5 | (A) Color-coded grouping of the 20 Schisandra chinensis populations according to the most likely K = 3 in Structure analysis. (B) Histogram of the
Structure assignment test for all populations at the likely K = 2 and 3. Three genetic clusters (west, north and east) were also shown. Circle sizes are proportional to
sample size of each population.

TABLE 2 | Posterior median estimation and 95% highest posterior density interval (HPDI) for demographic parameters in the seventh divergence scenario of
S. chinensis in DIYABC.

N1 ( × 104) N2 ( × 104) N3 ( × 105) t2( × 103) t1 ( × 103) µ ( × 10−5) P

Median 4.31 8.57 7.13 3.97 7.09 3.19 0.42

q(0.05) 1.07 2.64 2.29 0.79 1.64 0.99 0.09

q(0.95) 8.85 16.40 11.30 12.00 12.40 9.99 0.86

N1, N2, N3: The current population size of east cluster, north cluster, west cluster and ancestral populations at t2, respectively; t: divergence time; µ: mutation rate (per
generation per locus); P, the proportion of multiple step mutations in the generalized stepwise model, GSM.
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TABLE 3 | Estimates of gene flow (4Nm) among three groups of S. chinensis based on nuclear microsatellite structure division.

Cluster, i Gene flow (95% HPD)

East→ i North→ i West→ i

East 59.20 (55.38–63.28) 56.00 (52.33–59.93)

North 58.95 (55.81–62.31) 28.69 (26.90–30.60)

West 4.26 (3.57–5.07) 113.68 (104.26–124.20)

FIGURE 6 | Potential species distribution of S. chinensis based on ENM at present (a), during the last glacial maximum using the MIROC 3.2 model (b) and in the
CCSM4 model (c), and during the last interglacial (d).

ENM. Further, KP populations showed high proportion of private
alleles in all three markers indicating long-term persistence.
Although the ENM failed to detect a potential suitable habitat in
CB during the LGM, populations in CB showed high proportion
of private alleles and high genetic diversity in cpDNA and nSCG
data. Based on these data and on previous phylogeographic
studies (Ye et al., 2017), CB might be another macrorefugia.
The Changbai Mountains harbor several forest types, and glacial
advances in late Pleistocene only took place at elevations above
2000 m above sea level (Zhang et al., 2008). Thus, low elevation
regions with varied vegetation types could serve as a refuge for
S. chinensis. This hypothesis also explains the existence of the
west cluster, which is mainly distributed in KP and CB, and has

persisted for longer and much higher effective population size
than other two clusters as inferred by the DIYABC analysis.

Potential microrefugia cannot be effectively detected by ENM,
because it uses spatially and temporally smoothed climate data,
thus being unable to capture climatic variance and the effects of
topography on microclimate (Gavin et al., 2014). As proposed
by Zeng et al. (2015), our nSSRs also revealed the existence
of northern microrefugia. The north nSSRs cluster was mostly
distributed in the XR and it diverged during the LGM (19.85 kya)
indicating that XR, at the northern mixed forests margin, might
be a microrefugium. Moreover, the nSSRs cluster distributed in
the east indicated another possible refugium in north China.
The ancestral nSCG haplotype N6 distributed mainly in north
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China also supports the existence of a refugium in this region.
Thus, contrasting to the mixed forests’ retreat to 30◦ N proposed
by vegetation reconstructions using fossil pollen data (Harrison
et al., 2001; Cao et al., 2015), S. chinensis is proposed to have
survived the LGM in situ in multiple refugia, i.e., in KP, CB, XR,
and north China.

Our study on S. chinensis provides information on the
evolution of another climber species in mixed forests. Ye et al.
(2018) suggested repeated expansions and fragmentations in
A. arguta linked to Pleistocene climate changes have shaped its
genetic structure across its distribution from northeast China
to subtropical China, although limited cpDNA variation was
found. The present study on S. chinensis using multiple datasets
provides a more detailed evolutionary history of a climber species
and a substantial complement to previous mixed forests studies.
A brief evolutionary history of mixed forests can be thus be
inferred. The mixed forests have survived in situ during the LGM
using KP and CB as the most important macrorefugia (Jiang
et al., 2011; Guo et al., 2014; Wang et al., 2014; Zeng et al.,
2015) and microrefugia located in other southern or northern
regions were also used. Southern microrefugia can be found in
north China (Wang S.H. et al., 2016; Wang W.T. et al., 2016),
Shandong Province (Ye et al., 2018), and northern microrefugia
can be found in the northern mixed forests margin, such as XR
(Bao et al., 2015; Wang S.H. et al., 2016) or the Russian Far
East (Zeng et al., 2015).

Uniformly Distributed Genetic Diversity
and Genetic Differentiation
Assuming that the two southern macrorefugia (KP and CB) as
sources for northward range expansion, S. chinensis is certainly
expected to show significant genetic changes along latitude
(Excoffier et al., 2009; Waters et al., 2013). However, no significant
decreases in genetic diversity, allelic richness, or allelic privacy
in organelle and nuclear markers were detected with latitude
increase. The same genetic diversity distribution pattern was
revealed for Pinus koraiensis (Bao et al., 2015). The ABC
procedure estimated significant gene flow between southern
macrorefugia (KP or CB) and the northern microrefugium XR
in P. koraiensis. Bao et al. (2015) suggested that this ample
gene flow resulted in uniformly distributed genetic diversity
and shared dominant haplotypes. In Quercus mongolica, Zeng
et al. (2015) suggested that if northern microrefugia (such
as the Russian Far East) contributed little to post-glacial
expansions, the genetic diversity of this species would also
show a significant decline. In agreement with that found for
P. koraiensis (Bao et al., 2015), the present study revealed a
northern macrorefugium for S. chinensis at XR, and Migrate
estimations showed extensive gene flow among the three
Structure clusters, the greatest being found from the north
to the west cluster (4Nmnorth→west = 113.68, Table 3). Thus,
after the in situ LGM persistence of the different S. chinensis
nSSRs clusters, postglacial seed movement by birds (Yuan,
2007), pollen movement by wind (Ai et al., 2007), and the
species short generation time led to ample gene flow among
the different clusters. Most of the genetic diversity present

in macrorefugia (CB and KP) or in the microrefugium (XR)
has been preserved in populations in the contact zone among
different refugia, and private cpDNA or nSCG haplotypes can
only be found in a few S. chinensis populations. Therefore, no
significant negative correlations with latitude were found for
genetic diversity indices using the three independent genetic
markers. The homogenizing gene flow among all populations also
resulted in the absence of IBD.

CONCLUSION

A detailed evolutionary history was revealed for S. chinensis
using multiple genetic markers and potential habitat predictions.
Divergence times among the three nSSRs clusters showed that
S. chinensis persisted in situ through and since the LGM.
Two macrorefugia, at KP and CB, were revealed by ENM
and high allelic privacy and genetic diversity distributions.
Haplotype and nSSRs cluster distributions indicated two possible
microrefugia located at XR and north China. Extensive gene
flow among clusters resulted in the uniform distribution of
genetic diversity and in the absence of an IBD pattern. Short
generation time, and seed and pollen movement have facilitated
this extensive gene flow. The present study using a common
climber species with short generation time is an important
complement of previous studies that mainly used tree species
with long generation times.
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FIGURE S1 | Location of the macrorefugia and microrefugia in the temperate
conifers and broadleaved mixed forests inferred by Ye et al. (2017). The blue
region indicates the range of the mixed forests following Wu (1980). The 35
occurrence records (black dots) obtained from the Global Biodiversity Information
Facility database and from the 20 sampled populations (red dots) are shown.

FIGURE S2 | Illustration of the three scenarios (a–c) proposed for the divergence
history of the three clusters of Schisandra chinensis obtained in DIYABC using
eight nuclear microsatellites. N1, N2, and N3 represent the effective population
sizes of the east, north, and west genetic clusters inferred by Bayesian clustering.
Posterior probability (PP) of the different scenarios is shown. Divergence times for
the depicted events are labeled as t1 and t2.

FIGURE S3 | 1K and LnP(D) obtained in the Structure analysis of the 20
Schisandra chinensis populations conducted for predefined group numbers
(K = 1–10). The standard deviations of LnP(D) obtained from 10 independent runs
for each predefined group size are also shown.

FIGURE S4 | Neighbor-joining tree of Schisandra chinensis populations using
Nei’s Da as the genetic distance of nSSRs. Bootstrap values above 70% are
presented above nodes.

FIGURE S5 | Prior (red line) and posterior (green line) distribution of P, the
proportion of multiple step mutations in the generalized stepwise model (a), t2,
divergence time between west and north Structure clusters (b), t1, divergence
time of all three Structure clusters (c), µ, mutation rate (d), and effective
population sizes of west (e), north (f), and east (g) Structure clusters.

TABLE S1 | Primers used for chloroplast DNA and nuclear single copy gene
sequencings in Schisandra chinensis. An annealing temperature of 54 ◦C was
used in each case.

TABLE S2 | Nuclear microsatellite locus, motif, allele size range, and annealing
temperate in Schisandra chinensis.

TABLE S3 | Prior distributions for model parameters used in the seven divergence
scenarios of Schisandra chinensis in DIYABC.

TABLE S4 | Selected bioclimatic variables with low correlations (r < 0.8) used in
ecological niche modeling for Schisandra chinensis.

TABLE S5 | Haplotypes derived from four chloroplast DNA fragments in
Schisandra chinensis.

TABLE S6 | Haplotypes derived from PEPC sequence in Schisandra chinensis.

TABLE S7 | Genetic diversity and genetic differentiation of eight nuclear
microsatellite loci in Schisandra chinensis.
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