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Global warming and associated precipitation changes will negatively impact on many 
agricultural ecosystems. Major food production areas are expected to experience reduced 
water availability and increased frequency of drought over the coming decades. In affected 
areas, this is expected to reduce the production of important food crops including wheat, 
rice, and maize. The development of crop varieties able to sustain or improve yields with 
less water input is, therefore, a priority for crop research. Almost all water used for plant 
growth is lost to the atmosphere by transpiration through stomatal pores on the leaf 
epidermis. By altering stomatal pore apertures, plants are able to optimize their CO2 
uptake for photosynthesis while minimizing water loss. Over longer periods, stomatal 
development may also be adjusted, with stomatal size and density being adapted to suit 
the prevailing conditions. Several approaches to improve drought tolerance and water-use 
efficiency through the modification of stomatal traits have been tested in the model plant 
Arabidopsis thaliana. However, there is surprisingly little known about the stomata of crop 
species. Here, we  review the current understanding of how stomatal number and 
morphology are involved in regulating water-use efficiency. Moreover, we discuss the 
potential and limitations of manipulating stomatal development to increase drought 
tolerance and to reduce water loss in crops as the climate changes.
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INTRODUCTION

Changes in climate are already negatively affecting the yields of staple crops in agricultural 
areas around the world (Lobell et  al., 2011; IPCC, 2014). As the globe continues to warm, 
changes in the hydrological cycles are, in general, increasing aridity and the incidence of droughts 
(Dai, 2013; Sherwood and Fu, 2014). Agriculture will need to adapt quickly to ensure that 
water is used more efficiently, while maintaining food security in a world where human population 
is rapidly growing. Sustainable and climate-smart management of water, land, and biodiversity 
will be  important for achieving these objectives (discussed in Howden et  al., 2007; Campbell 
et  al., 2014; Lipper et  al., 2014; Iglesias and Garrote, 2015). Moreover, the development of crop 
varieties that have improved water-use efficiency (WUE) under predicted future climates will 
also be  critical (Flexas, 2016; Varshney et  al., 2018). WUE can be  estimated at different scales; 
at an agronomic level, it is described as the ratio of water used in crop production versus 
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biomass or yield (Condon et  al., 2004; Medrano et  al., 2015). 
From a plant physiology point of view, and as it will be primarily 
addressed here, WUE is the amount of CO2 fixed in photosynthesis 
(A) relative to the amount of water vapor lost to the atmosphere 
(Willmer and Fricker, 1996; Condon et  al., 2004; Bacon, 2004). 
As stomata play a fundamental role in regulating plant water 
use and carbon gain, they present a key target for improving 
WUE. Here, we  review how changes in stomatal developmental 
traits can affect plant WUE and also drought tolerance.

Stomata are microscopic structures consisting of a pair of 
specialized guard cells that surround a central pore. They are 
found on aerial surfaces of most plants, providing access to 
mesophyll cells (Zeiger et al., 1987; Hetherington and Woodward, 
2003). By actively adjusting guard cell turgor pressure, plants 
can alter stomatal pore aperture, thereby moderating gas exchange 
rates between the leaf interior and the atmosphere (Zeiger et al., 
1987; Kollist et al., 2014). Increases in guard cell turgor pressure 
lead to a greater stomatal pore aperture, which enhances the 
rates of CO2 uptake for A and of water loss, via a process 
termed stomatal conductance (gs) (Condon et  al., 2002; 
Hetherington and Woodward, 2003). On the other hand, reductions 
in guard cell turgor pressure lead to decreases in stomatal aperture 
and in gs. The signals governing the fluxes of CO2 and water 

to and from the plant mesophyll are highly coordinated, allowing 
plants to finely balance the need for carbon with the need to 
moderate water loss (Wong et  al., 1979; Haworth et  al., 2016; 
Sorrentino et  al., 2016). This internal crosstalk is influenced by 
many environmental factors, including changes in temperature, 
light intensity, atmospheric CO2 concentration, air humidity, and 
soil moisture content (Farquhar and Sharkey, 1982; Schroeder 
et  al., 2001; Mott, 2009; Assmann and Jegla, 2016; Chaves et  al., 
2016). For example, when water becomes limited, signals such 
as reduced hydraulic conductivity and increased abscisic acid 
(ABA) arise, causing guard cell turgor pressure decreases, which 
result in reduced stomatal aperture and gs (Schroeder et  al., 
2001; Mustilli, 2002; Tombesi et  al., 2015; Bartlett et  al., 2016; 
McAdam et al., 2016). These changes lead to an improved water 
conservation, but often at the expense of A (Flexas and Medrano, 
2002). Conversely, when water is plentiful in the soil or air, 
guard cell turgor increases, leading to increases in stomatal pore 
aperture and in gs, with A also often increasing.

Over longer periods, external signals perceived by mature 
leaves can also lead to systemic responses that moderate stomatal 
development on the new leaf epidermis, resulting in changes in 
stomatal patterning (Casson and Gray, 2008; Casson et  al., 2010; 
Pillitteri and Torii, 2012; Chater et al., 2014; Qi and Torii, 2018). 

A B C D

FIGURE 1 | Stomatal traits vary between species. The eudicots (A) Arabidopsis thaliana and (B) Phaseolus vulgaris display kidney-shaped guard cells (colored in 
green). The grasses (C) Oryza sativa and (D) Triticum aestivum show dumbbell-shaped guard cells (solid green) and specialized subsidiary cells (light green 
gradient). Clear differences in stomatal size and stomatal density can be observed. Scale bars 10 μM.
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Exposure of mature leaves to high CO2 or low light levels, for 
example, is known to cause reductions in stomatal density (SD, 
number of stomata per unit of area) and in stomatal index (SI, 
ratio of stomata to epidermal cells plus stomata, multiplied by 
100) of new developing leaves (Lake et al., 2001; Miyazawa et al., 
2006). Conversely, low CO2 and high light generally have the 
opposite effect. The impact of water availability on stomatal 
development is less understood, with mixed responses and 
differences among species being reported (Clifford et  al., 1995; 
Xu and Zhou, 2008; Doheny-Adams et  al., 2012; Sun et  al., 
2014; Zhao et  al., 2015). In Arabidopsis, plants grown under 
water restriction do not show altered SD; however, reductions 
in stomatal size (SS, guard cell area, based on guard cell pair 
length and width) were observed (Doheny-Adams et  al., 2012). 
These plastic modulations of number and size of stomata allow 
plants to adjust their stomatal pore area in response to the 
surrounding environment, ultimately affecting their maximum 
and minimum gas exchange.

Stomata exhibit a diverse range of shapes, sizes, and numbers 
across different plant species (Figure 1). There are profound 
differences in how the stomata of different groups develop and 
are patterned on the epidermis (Sack, 1994; Caine et  al., 2016; 
Raissig et al., 2016; Rudall et al., 2017). Morphological differences 
include SD, SS, guard cell shape, and presence or absence of 
subsidiary cells. All of these parameters have the potential to 
influence stomatal movement and, consequently, plant A, gs, and 
WUE. Over evolutionary time, various stomatal traits have altered, 
potentially aiding in adapting plant species to new environments 
(Taylor et  al., 2012; Drake et  al., 2013; Haworth et  al., 2018). 
Eudicots, for example, typically have kidney-shaped stomata that 
are formed on the leaf epidermis without a pre-determined 
location (MacAlister et  al., 2007; Pillitteri and Dong, 2013). 
While in monocots, stomata can either be kidney-shaped or, as 
with the grasses, be  composed of dumbbell-shaped stomata  
with neighboring subsidiary cells, collectively termed a stomatal  
complex (Rudall et  al., 2017). In grasses, stomatal development 
is constrained to the leaf base, with stomatal pores being formed 
in specified cell files adjacent to veins (Stebbins and Shah, 1960; 
Rudall et  al., 2013; Hepworth et  al., 2018).

Although stomatal behavior, patterning and morphology are 
important factors that contribute to WUE (Lawson and Blatt, 
2014; Lawson and Vialet-Chabrand, 2019), relatively little is 
known about how targeted modifications of stomatal traits affect 
physiological responses in crop plants, especially in field 
experiments. Efforts to improve WUE have often led to decreases 
in yield (Flexas, 2016). By attempting to alter stomatal features 
to improve water conservation, reductions in gs may arise, 
potentially leading to detrimental effects on A, evaporative 
cooling, and plant fertility. However, recent findings suggest 
that under at least some greenhouse and controlled environment 
growth conditions, changing stomatal traits may improve WUE 
without such undesirable yield penalties (Yu et al., 2013; Hughes 
et al., 2017; Caine et al., 2019). While these studies are encouraging, 
they offer only a snapshot of how plants with modifications 
in stomatal features might perform. Here, we discuss our current 
understanding of how alterations in SS, SD, and stomatal 

morphology contribute to altered WUE and drought tolerance 
with particular emphasis on the latest advances in crop species.

VARIATION IN SS AND SD INFLUENCES 
GASEOUS EXCHANGE AND WUE

Dynamic adjustments to the opening degree of stomatal pores 
are responsible for regulating gs in the short term, allowing plants 
to quickly reduce water loss according to external cues (Farquhar 
and Sharkey, 1982). Over a longer term, anatomical adjustments, 
such as changes to SS and SD, can modify the range of gs by 
altering the maximum stomatal conductance (gsmax) (Franks et al., 
2009; Dow et  al., 2014a). Gsmax refers to the maximal potential 
gas exchange in a state where all stomata are fully open. It is a 
theoretical estimate that is calculated using empirical stomatal 
anatomical measurements, including SD, stomatal pore depth 
(estimated as guard cell width), and maximum stomatal pore 
area (calculated based on pore length) (Franks and Beerling, 2009; 
Dow and Bergmann, 2014; Sack and Buckley, 2016). Despite 
operating gs normally being significantly lower than its maximum 
capacity (Fanourakis et al., 2015; McElwain et al., 2016), measured 
gs positively correlates with calculated gsmax (Franks et  al., 2009). 
Furthermore, it is suggested that adaptations in gsmax allow plants 
to adjust their operating gas exchange rates while maintaining 
guard cells turgor pressure in an optimum state. This is believed 
to provide better stomatal sensitivity and rapid adjustment of 
aperture response (Franks et al., 2012; Dow and Bergmann, 2014). 
Therefore, although SS and SD are not the only variables determining 
leaf gas exchange, changes to these stomatal traits do permit 
plants to adjust both A and water use (Franks et  al., 2009;  
Franks and Beerling, 2009; de Boer et al., 2011; Dow et al., 2014a).

Variation in size and density of stomata may arise due to 
genetic factors and/or growth under different environmental 
conditions. A negative correlation has frequently been suggested 
between these two stomatal traits. This inverse relationship 
has been observed in plastic developmental responses to changes 
in environment and also during long-term evolutionary adaptation 
(Dilcher et  al., 2000; Ohsumi et  al., 2007; Franks et  al., 2009, 
2012; Franks and Beerling, 2009; Doheny-Adams et  al., 2012; 
Taylor et  al., 2012; Sun et  al., 2014; Fanourakis et  al., 2015; 
de Boer et  al., 2016; Dittberner et  al., 2018). Analysis of 
herbarium and fossilized plant remains suggest that SS and 
SD have changed in response to atmospheric CO2 concentration 
over evolutionary time, probably to enable adjustments to gsmax 
and CO2 diffusion into the leaf (Woodward, 1987; Dilcher 
et al., 2000; Franks and Beerling, 2009). In samples from periods 
when CO2 concentrations were low, a reduction in SS and an 
increase in SD have been observed. On the other hand, when 
atmospheric CO2 levels have been high, SS has increased and 
SD decreased. Such adaptive responses to CO2 are also  
found in many extant lineages; however, this is not always 
the case in all species surveyed (Casson and Gray, 2008;  
Haworth et  al., 2013; Field et  al., 2015).

Although various combinations of SS and SD can result in 
similar alteration to gsmax, there are limitations as to how much 
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of the epidermis can be  patterned by stomata. First, other 
functionally important leaf structures such as veins and trichomes 
are also absolutely required. Second, stomata need to be  spaced 
by at least one epidermal cell to function efficiently (Franks 
and Farquhar, 2007; Dow et  al., 2014b). Therefore, changes to 
SS and SD are limited to a finite portion of the epidermis 
(Franks et  al., 2009; Franks and Beerling, 2009; de Boer et  al., 
2016). In general, plants optimize gsmax through investing in 
increases in SD coupled with reductions in SS (Franks and 
Beerling, 2009; de Boer et  al., 2012). According to Franks and 
Beerling (2009) and Franks and Farquhar (2007), changes toward 
increased SD in combination with reduced SS could maintain 
or improve total pore area (due to increased SD) but can also 
provide a shorter diffusion path (due to the smaller pore depth), 
potentially resulting in improved gas exchange.

While small SS coupled with high SD often leads to a higher 
gsmax, it is also possible for gsmax to be  reduced by a smaller SS 
alone. Decreases in gsmax due to a smaller SS have been associated 
with higher water conservation, as reported for plants exposed 
to drought (Doheny-Adams et  al., 2012) and ABA treatment 
(Franks and Farquhar, 2001). Smaller stomata are also associated 
with improved WUE in Arabidopsis thaliana (Dittberner et  al., 
2018); and rice varieties with smaller SS have the ability to 
strongly decrease gs under drought (Ouyang et al., 2017). Growth 
under low soil moisture conditions has been shown to cause 
a decrease in SS in several species (Xu and Zhou, 2008; Doheny-
Adams et  al., 2012; Sun et  al., 2014; Zhao et  al., 2015), but 
the effect on SD is less consistent (Clifford et  al., 1995; Xu 
and Zhou, 2008; Doheny-Adams et  al., 2012; Sun et  al., 2014; 
Zhao et al., 2015). Stomatal size and density responses to vapor 
pressure deficit (VPD) are also variable. Under high VPD 
conditions, the woody angiosperm, Toona ciliata, displays smaller 
SS and higher SD (Carins Murphy et  al., 2014), while tomato 
and sweet pepper show decreases in both stomatal traits (Bakker, 
1991), and in poplar, changes in SD are dependent on CO2 
concentration. (Miyazawa et  al., 2006). Thus, changes in SS 
and SD in response to soil moisture or VPD appear to be specific 
to species and environmental variables (Bakker, 1991; Miyazawa 
et  al., 2006; Xu and Zhou, 2008; Sun et  al., 2014). Nutrient 
availability can also affect plant development. However, as 
described for soil moisture and VPD responses, adjustments 
in stomatal development in response to nutrient availability 
appear to be  variable with no consistent response emerging 
(Gao et  al., 2006; Sekiya and Yano, 2008; Yan et  al., 2012;  
Sun et  al., 2014; Hepworth et  al., 2016).

ARE SMALL STOMATA FASTER?

Small stomatal size can provide a reduction in total leaf pore 
area and might also facilitate faster aperture response (Franks 
and Beerling, 2009; Drake et al., 2013; Lawson and Blatt, 2014). 
The higher cell surface area to volume ratio of smaller cells 
is believed to permit faster ion fluxes, leading to faster guard 
cell turgor changes and a more rapid gs response (Lawson and 
Vialet-Chabrand, 2019). This faster stomatal behavior in plants 
with smaller SS has been observed in response to changes in 

light intensity across species of Banksia, rainforest trees, and 
in cereal species with dumbbell-shaped guard cells (Drake 
et  al., 2013; McAusland et  al., 2016; Kardiman and Raebild, 
2017). However, although rapid stomatal movements might 
help to maximize WUE under fluctuating light environments, 
this is unlikely to have much impact on water loss over long 
periods of water stress under field conditions.

SS is clearly not the only anatomical trait influencing stomatal 
behavior. The shape of guard cells and the presence of subsidiary 
cells are also suggested to impact on stomatal responses (as 
discussed in “Stomatal morphology and improved WUE” below). 
In addition, the distribution of stomata between leaf abaxial 
and adaxial surfaces may also affect plant responses to 
environmental stresses. For example, stomata on the abaxial 
surfaces of wheat leaves show a stronger decrease in gs than 
adaxial stomata when they are exposed to water stress (Lu, 
1989), and abaxial and adaxial stomata of cotton show differing 
responses to light quality (Lu et al., 1993). Moreover, as shown 
by Elliott-Kingston et  al. (2016), Haworth et  al. (2018), and 
McAusland et al. (2016), simple differences in SS do not always 
correlate with stomatal speed, especially when comparing distant 
taxa. Comparisons of cultivars or mutants of the same species 
with altered SS, but similar SD, would improve our understanding 
of the effect of guard cell size on speed of stomatal movement 
and explore if there is potential for SS as trait for improving 
WUE. Although a correlation between SS and genome size 
has been documented (Beaulieu et  al., 2008; Jordan et  al., 
2015; Monda et al., 2016), the genetic and molecular mechanisms 
regulating SS remain unstudied, which currently limits our 
understanding of this trait.

TARGETED CHANGES IN SD LEADING 
TO ALTERATIONS IN WUE

Reductions in SD also have the potential to constrain gs and 
transpiration (E), representing a shift towards a more 
conservative use of water. If not limiting A or evaporative 
cooling, this reduction in water loss should represent an 
advantage under low water availability scenarios. In comparison 
to SS, significant advances have been made in understanding 
the molecular signals regulating stomatal density and patterning, 
which allow the study of the physiological effects of altering 
SD. Stomatal development in Arabidopsis thaliana is controlled 
by a complex genetic network, of which the basic helix-
loop-helix (bHLH) transcription factors SPCH, MUTE, and 
FAMA together with either ICE1/SCREAM (SCRM) or SCRM2 
control the sequential cell fate transitions. Additionally, an 
intercellular signaling pathway that includes peptide ligands, 
leucine-rich repeat receptor kinases (LRR-RKs) and a MAPK 
cascade, regulates the activity of the bHLHs (reviewed in 
Bergmann and Sack, 2007; Vatén and Bergmann, 2012; Zoulias 
et  al., 2018). This signaling network includes the secretory 
peptides EPIDERMAL PATTERNING FACTOR1 (EPF1), EPF2, 
and EPF-like 9. EPF1 and EPF2 both negatively regulate 
stomatal density, with EPF1 also preventing stomatal clustering 
(Hara et  al., 2007; Hunt and Gray, 2009), while EPFL9 
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functions antagonistically to promote stomatal development 
(Hunt et  al., 2010; Sugano et  al., 2010; Lee et  al., 2015).

In Arabidopsis, the overexpression of AtEPF2 results in 
plants with particularly low SD. Despite a coupled increase 
in SS, these plants have significantly lower gs and gsmax, with 
minor reductions in carbon assimilation, leading to an increase 
in intrinsic WUE (iWUE, estimated by A/gs to water vapor) 
(Doheny-Adams et  al., 2012; Franks et  al., 2015). The large 
reduction in SD resulted in plants with improved tolerance 
to drought, without detrimental effects to uptake of nitrogen 
or phosphate (Hepworth et  al., 2015, 2016). Improved plant 
drought responses were also achieved by Wang et  al. (2016) 
in poplar plants overexpressing PdEPF1. Transgenic poplar 
lines showed a 28% reduction in SD, which led to a 30% 
decrease in E, despite an increase in SS. WUE and drought 
tolerance were improved in poplar plants with lower SD, 
which also showed relatively lower decreases in levels of A 
and biomass under water restricted conditions (Wang et  al., 
2016). The manipulation of another regulator of stomatal 
development, the subtilisin-like protease STOMATAL DENSITY 
AND DISTRIBUTION1 (SDD1), also leads to a significant 
alteration to SD in Arabidopsis, with overexpression of this 
gene reducing SD by 40% (Von Groll et  al., 2002). This 
reduction was translated into a lower gs under high light 
intensities; however, A was compromised under some light 
conditions (Büssis et  al., 2006). A more encouraging result 
was achieved by Yoo et  al. (2010) by manipulating a 
transcriptional repressor of SDD1, GT-2 LIKE 1 (GTL1). GTL1 
loss-of-function Arabidopsis mutants had higher SDD1 
expression resulting in lower SD and gs, without detrimental 
effects to the photosynthetic rates over a range of light levels. 
The lower water loss observed in the gtl1 mutants significantly 
improved WUE, when water loss versus shoot dry weight 
was assessed. Taken together, these data indicate that it is 
possible to improve WUE by altering gsmax and gs using genetic 
engineering tools. It is not fully understood, however, how 
severe reductions in gsmax may limit short-term stomatal 
responses or whether adjustments to stomatal development 
in response to changes in environmental conditions would 
be  affected in these genetically modified plants.

Although stomatal development in grasses differs from that 
of eudicots in various aspects, recent findings demonstrate 
that several components of the stomatal signaling pathway, 
including bHLH transcription factors (Liu et  al., 2009; Raissig 
et  al., 2016, 2017) and peptide signals controlling stomatal 
density, mediate similar events (Hughes et al., 2017; Yin et al., 
2017; Caine et  al., 2019). This has allowed researchers to 
begin to test the implications of targeted manipulations in 
stomatal density in grasses, a family of plants that comprises 
many important food crops. Research on barley and rice 
(further discussed below) shows that the overexpression of 
EPF1 can result in improved WUE without yield penalty, 
despite in some cases small reductions in photosynthetic rate 
under well-watered conditions (Hughes et  al., 2017; Caine 
et  al., 2019). Interestingly, in both crops, an increase in guard 
cell size was not observed in plants with reduced SD, contrasting 
with that described for poplar and Arabidopsis above. These 

observations suggest that the response of SS to altered SD 
may be differentially regulated between monocots and eudicots.

STOMATAL MORPHOLOGY AND 
IMPROVED WUE

The shape of guard cells and the presence or absence of subsidiary 
cells have implications for the mechanics and responsiveness of 
stomatal movement (Franks and Farquhar, 2007). Diversity in 
stomatal morphology is commonly observed across species and 
can be  linked to adaptability to certain environments (Chen 
et al., 2017; Müller et al., 2017). In the grass family, for example, 
stomatal morphology has often been hypothesized to have 
contributed to successful diversification, particularly in habitats 
with fluctuating water availability (Hetherington and Woodward, 
2003; Cai et  al., 2017; Chen et  al., 2017). In contrast to the 
two kidney-shaped guard cells observed in many species, grass 
species develop stomatal complexes formed by a pair of dumbbell-
shaped guard cells, which are flanked by two paracytic subsidiary 
cells (Stebbins and Shah, 1960; Sack, 1994; Rudall et  al., 2017; 
Hepworth et  al., 2018; McKown and Bergmann, 2018). Several 
studies comparing stomatal opening and closing responses, between 
grasses and species with kidney-shaped stomata, suggest that 
grasses exhibit faster and more efficient stomatal regulation 
(Grantz and Zeiger, 1986; Vico et  al., 2011; Merilo et  al., 2014; 
McAusland et al., 2016; Haworth et al., 2018). The linear dumbbell-
shaped guard cells require only small changes in volume to 
bring about stomatal opening and, consequently, to achieve a 
higher diffusible pore area (Hetherington and Woodward, 2003). 
The large and rapid responses of grass stomata are also related 
to the physical interaction between dumbbell-shaped guard cells 
and flanking subsidiary cells. Subsidiary cells are not only able 
to limit but also to accommodate guard cell movement, providing 
a mechanical advantage (Franks and Farquhar, 2007). They 
function by promptly supplying ions to guard cells, facilitating 
a reciprocal change in turgor pressure (Raschke and Fellows, 
1971; Franks and Farquhar, 2007; Schäfer et  al., 2018). This 
efficient osmotic flux aids rapid stomatal movement and therefore 
is believed to confer adaptive advantages to grasses.

Slow stomatal responses are proposed to lead to less efficient 
uptake of CO2 during stomatal opening and unnecessary water 
loss during stomatal closure (McAusland et  al., 2016; Lawson 
and Vialet-Chabrand, 2019). Under particular environmental 
conditions (e.g., fluctuations in irradiance), plants with stomata 
which are highly responsive might achieve higher WUE. Recently, 
the absence of subsidiary cells was investigated in Brachypodium 
distachyon plants with a mutation in BdMUTE, an ortholog 
of an Arabidopsis bHLH gene. Mutant plants lacking subsidiary 
cells failed to open guard cells as widely as control plants and 
also showed slower stomatal responses to changes in light 
intensity, further suggesting that subsidiary cells are integral 
for efficient stomatal functioning in grasses (Raissig et  al., 
2017). The receptor-like proteins PANGLOSS (PAN) 1 and 
PAN2 are also integral for the formation of subsidiary cells, 
primarily by enabling subsidiary mother cells to polarize in 
the correct orientation to guard mother cells during stomatal 
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development (Cartwright et  al., 2009; Zhang et  al., 2012; 
Sutimantanapi et  al., 2014). Defective pan1 and pan2 mutants 
and pan1/pan2 double mutants have misshapen subsidiary cells, 
which could impact on stomatal responsiveness; however, it 
is not known whether gas exchange is affected in these mutant 
plants. Despite the relatively recent discoveries of MUTE and 
PAN proteins in grasses, there are still many unanswered 
questions in relation to subsidiary and guard cell interactions, 
especially in non-grass species, which show a diversity of 
stomatal complex morphologies, with different numbers and 
positions of subsidiary cells (Rudall et al., 2017). Further study 
of how the diversity of stomatal complex morphologies affects 
plant physiology could improve our understanding of how 
these features might contribute to improved WUE.

GENETIC MANIPULATION OF 
STOMATAL DEVELOPMENT IN CROPS, 
THE IMPLICATIONS FOR WUE, AND 
DROUGHT RESPONSES

An increasing number of genetic resources are enabling researchers 
to test whether targeted alterations in stomatal development can 
improve WUE and drought tolerance in crop species (Winter 
et  al., 2007; Goodstein et  al., 2012; Yin et  al., 2017). Although 
results are yet to be demonstrated in the field, in overexpressing 
orthologs of Arabidopsis SDD1 in maize and tomato, respectively, 
Liu et  al. (2015) and Morales-Navarro et  al. (2018) have been 
able to reduce leaf SD, leading to reduced water consumption 
and improved drought tolerance in both crops, as well as improved 
WUE in maize. Similar results were achieved in barley by 
overexpressing HvEPF1 (Hughes et al., 2017). With approximately 
50% reduction in SD and shorter guard cells, under drought 
conditions, transgenic barley lines were able to retain higher 
levels of soil water content. These plants were able to avoid 
water stress for longer periods, showing drops in photosystem 
II activity 4–5 days later than the control plants. Carbon isotope 
analysis suggested that plants with reduced SD had improved 
WUE under the water stress treatment, and despite small 
reductions in A, no detrimental effects on plant growth or yield 
were observed (Hughes et  al., 2017). Similarly, overexpression 
of rice OsEPF1 resulted in rice plants with improved WUE 
(Caine et  al., 2019). Two genetically modified lines, one with 
moderate (~58%) and the other with severe (~88%) reductions 
in SD, had improved water conservation during the vegetative 
stage, using 42% and 38% less water, respectively, than the control.

An opposite effect on stomatal development was created by 
overexpressing the maize gene SHORTROOT 1 (ZmSHR1) in 
rice, leading to higher SD and in some cases reduced SS (Schuler 
et al., 2018). Despite the changes in stomatal properties, neither 
A nor gs was significantly different from controls suggesting 
that increased SD neither positively or negatively impacted on 
gaseous exchange. In this particular study, WUE was not reported, 
but based on A and gs values, alterations seem unlikely. Given 
the predicted temperature increases for the coming century, 
however, crop plants with more stomata and potentially increased 

gas exchange capacity may be important in mitigating the effects 
of heat stress through increased transpiration-mediated cooling.

While most of the crop studies discussed above have 
characterized drought and photosynthetic performance, to better 
understand how crops with altered SD, SS, or function might 
perform under future climate scenarios, it is important to consider 
the combinatory effects of multiple abiotic factors. Of particular 
importance are the predicted reductions in water availability, 
increasing atmospheric CO2, concentration, and increasing 
temperature. While reduced water availability and elevated CO2 
often result in stomatal closure leading to reduced gs, increased 
temperature might have the opposite effect, forcing stomata to 
open to mitigate the effects of overheating (Zhou et  al., 2007; 
Chaves et  al., 2016; Caine et  al., 2019). This essentially means 
that in future climates, if plants are going to conserve water, 
they may be  less able to prevent overheating, possibly leading 
to photoinhibition, leaf damage, and reduction in yields.

This trade-off between WUE and evaporative cooling was 
recently investigated in the OsEPF1 overexpressing (OsEPF1oe) 
rice. Under well-watered conditions at high temperature (40°C), 
plants with substantially reduced SD (and SS) exhibited increased 
gs, reaching similar rates as control plants. The increase in gas 
exchange rates were seemingly achieved through regulation of 

A

C D E F

B

FIGURE 2 | OsEPF1oe rice plants with reduced stomatal density and size 
are able to maintain high rates of gas exchange under heat stress conditions 
by opening their stomatal pores (adapted from Caine et al., 2019).  
Epidermis of (A) non-transgenic control and (B) OsEPF1oe plants grown at 
30°C, bars = 25 μM. Stomata of control plants grown at (C) 30°C and (D) 
40°C. Control plants show increases in stomatal density and in maximum leaf 
stomatal conductance average values under high temperature conditions. 
OsEPF1oe plants grown at (E) 30°C and (F) 40°C. Transgenic line shows an 
increase in stomatal aperture at 40°C, reaching similar gs levels as control 
plants, despite lower maximum stomatal conductance. Units: gsmax and 
gs = mol m−2 s−1, SD = mm−2.
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stomatal apertures (Figure 2), with the trade-off being a loss 
of superior WUE relative to control plants (Caine et al., 2019). 
However, at 40°C, OsEPF1oe plants with severe SD reductions 
showed enhanced survival rates under drought stress, perhaps 
because of their improved soil water conservation under these 
conditions. Although these responses suggest that having low 
SD with reduced SS could be beneficial at very high temperature, 
at present the operational dynamics of stomata when temperature 
exceeds 40°C are not well understood. Modeling of gsmax suggested 
that despite the much reduced SD, OsEPF1oe plants still use 
only up to 40% of their theoretical maximum gas exchange 
capacity at 40°C, but the actual level of gs (and A and WUE) 
at more extreme temperatures remains untested (Caine et  al., 
2019). These results raise a number of questions regarding the 
physiological behavior of these reduced SD plants. Firstly, will 
plants with fewer, smaller stomata be  capable of continuing 
to increase gs to maintain water flow and A at extreme 
temperatures, and will this be  at the expense of WUE? If so, 
will plants with the lowest SD be  less water-use efficient than 
plants with higher SD at very high temperatures in order to 
maintain cooling? The answers to such questions are critical 
to understand if targeted SD reductions are to be  an effective 
tool to improve rice production in areas where drought and 
high temperatures are predicted to become more prevalent.

OTHER POTENTIAL STOMATAL-
RELATED TARGETS TO IMPROVE WUE

The central position of stomata in the gas exchange process 
makes them an obvious target for improving WUE; nonetheless, 
the manipulation of other processes with potential for improving 
plant carbon and water relations has also been investigated 
(Lefebvre et  al., 2005; Taylor et  al., 2011; Ort et  al., 2015; 
Kromdijk et  al., 2016; Głowacka et  al., 2018). Alterations in 
mesophyll conductance (gm), for example, can have a great 
impact in A, and its coregulation with gs is essential for plant 
WUE. Indeed, it has been suggested that increases in gm coupled 
with decreases in gs could improve WUE, without the potential 
detrimental impacts in A and yield (Flexas et  al., 2013).

Moreover, stomata are not the only structures on the epidermis 
to prevent water loss – trichomes, the cuticle, and cuticular 
waxes are also important (Guo et  al., 2016; Ichie et  al., 2016; 
Bi et  al., 2017; Zeisler-Diehl et  al., 2018). While research into 
crop plant stomata is of long-standing (Teare et  al., 1971; Gay 
and Hurd, 1975; Liao et  al., 2005; Ohsumi et  al., 2007), new 
approaches are looking at drought-tolerant relatives of crops or 
desert-growing species for novel ways to increase WUE. For 
example, by crossing the wild drought tolerant tomato relative, 
Solanum pennellii (which has abundant trichomes), with the 
cultivated species Solanum lycopersicum, Galdon-Armero et  al. 
(2018) showed that the coordinated development of trichomes 
and stomata may be  a key tool for enhancing WUE in crops. 
It was found that the plants with the best WUE were those 
with the highest ratio of trichomes to stomata. One possible 
explanation for this is that plants with fewer stomata and abundant 
trichomes have a more significant boundary layer, thus creating 

a greater resistance to diffusion of water from the leaf (Galdon-
Armero et  al., 2018). Another example of increased resistance 
to diffusion of water due to adaptations to the epidermis has 
also recently been reported in the desert crop, date palm (Phoenix 
dactylifera) (Müller et  al., 2017). In this study, wax chimneys 
were detected on the cuticle that encircled stomata, which like 
trichomes, prevented excessive water loss, thereby potentially 
improving WUE. Further investigations exploring how stomata 
and other epidermal structures jointly contribute to regulate 
WUE may be  a critical piece in the jigsaw of preserving water 
and negating drought. Indeed, the recent discovery of the Fused 
Outer Cuticular Ledge1 stomata gene in Arabidopsis may help 
facilitate such studies (Hunt et  al., 2017).

CONCLUSION

The knowledge relating to the genetics underpinning stomatal 
development and physiology in both Arabidopsis and crop 
species has advanced substantially, with noticeable advancements 
made in improving WUE. However, there are still many questions 
to answer, of particular importance is how SS is regulated at 
the genetic level and why do SS-SD responses vary so much 
between species. In addition to this, understanding how stomatal 
complex architecture is modified and how ion fluxes are directed 
between guard and subsidiary cells at the genetic level is the 
key area where further advances in knowledge are required. 
In crops, recent studies are showing that engineering plants 
to reduce stomatal number may be an effective tool to improve 
plant WUE and drought tolerance without yield reductions. 
Of course, as modified plants have typically been evaluated 
in laboratory conditions, it is still necessary to answer how 
such plants might perform in the real world. In a field context, 
many other environmental variables and stressors will impact 
on performance. Additional studies are necessary to understand 
how plants with altered stomatal development will respond to 
multiple stresses in different developmental phases. Moreover, 
combining changes in stomatal traits with other alterations 
associated with improved water relations, such as modifications 
to the leaf epidermis, photosynthesis, gm, and root growth, 
among others, could further benefit plant WUE and drought 
tolerance under future predicted climate scenarios.
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