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Several halophytes and a few crop plants, including Poaceae, synthesize and
accumulate glycine betaine (GB) in response to environmental constraints. GB plays
an important role in osmoregulation, in fact, it is one of the main nitrogen-containing
compatible osmolytes found in Poaceae. It can interplay with molecules and structures,
preserving the activity of macromolecules, maintaining the integrity of membranes
against stresses and scavenging ROS. Exogenous GB applications have been proven to
induce the expression of genes involved in oxidative stress responses, with a restriction
of ROS accumulation and lipid peroxidation in cultured tobacco cells under drought
and salinity, and even stabilizing photosynthetic structures under stress. In the plant
kingdom, GB is synthesized from choline by a two-step oxidation reaction. The first
oxidation is catalyzed by choline monooxygenase (CMO) and the second oxidation
is catalyzed by NAD+-dependent betaine aldehyde dehydrogenase. Moreover, in
plants, the cytosolic enzyme, named N-methyltransferase, catalyzes the conversion
of phosphoethanolamine to phosphocholine. However, changes in CMO expression
genes under abiotic stresses have been observed. GB accumulation is ontogenetically
controlled since it happens in young tissues during prolonged stress, while its
degradation is generally not significant in plants. This ability of plants to accumulate
high levels of GB in young tissues under abiotic stress, is independent of nitrogen (N)
availability and supports the view that plant N allocation is dictated primarily to supply
and protect the growing tissues, even under N limitation. Indeed, the contribution of GB
to osmotic adjustment and ionic and oxidative stress defense in young tissues, is much
higher than that in older ones. In this review, the biosynthesis and accumulation of GB in
plants, under several abiotic stresses, were analyzed focusing on all possible roles this
metabolite can play, particularly in young tissues.

Keywords: glycine betaine (GB), salinity, osmotic adjustment, compatible compound, CMO, ROS

GLYCINE BETAINE METABOLIC PATHWAYS

Diverse halophytes, but only a few crop plants, including Poaceae, synthetize and accumulate
glycine betaine (GB) in response to environmental constrains (Weretilnyk et al., 1989).

In plants, GB synthesis starts from choline, which, in turn, is synthesized through three
sequential adenosyl-methionine dependent methylations of phospho-ethanolamine (PE) catalyzed
by the cytosolic enzyme phospho-ethanolamine N-methyltransferase (PEAMT; EC 2.1.1.103)
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(Nuccio et al., 2000). The PEAMT enzyme has two
methyltransferase domains in tandem at the N and
C-terminal domains; the former converting PE into phospho-
monomethylethanolamine (P-MME), and the latter methylating
P-MME to phospho-dimethylethanolamine (P-DME) and
P-DME to phospho-choline (Brendza et al., 2007). The product
of PEAMT is phospho-choline (PC) which in different plants can
undergo different pathways for the transformation to choline.
In spinach, PC is directly dephosphorylated to choline, while
in tobacco it is first included in phosphatidyl-choline and then
metabolized to choline (McNeil et al., 2001). Subsequently, GB is
synthesized by two oxidations on choline, via betaine aldehyde,
catalyzed by a ferredoxin-dependent choline monooxygenase
(CMO; EC 1.14.15.7), and a NAD+-dependent betaine aldehyde
dehydrogenase (BADH; EC 1.2.1.8), respectively (Rhodes and
Hanson, 1993; Sakamoto and Murata, 2002; Chen and Murata,
2011) (Figure 1A). CMO has a Rieske-type [2Fe-2S] active
site, in addition to a transit peptide sequence, and it is usually
localized in the chloroplast or other subcellular compartments
(Rathinasabapathi et al., 1997). BADH can be either NAD+ or
NADP+ dependent, but in plants it shows higher activity with
NAD+ (Fitzgerald et al., 2009). It belongs to the superfamily
of aldehyde dehydrogenases, and also has a non-specific action
on other aldehyde substrates: this also explain its presence in
non-GB accumulating plants or in organs of plants that do
not contain GB (Rhodes et al., 2002). BADH is induced by
abscisic acid (ABA) in cereals, but neither NaCl, ABA nor turgor
reduction seem to be directly involved in the induction, but
rather in an unknown signal coming mainly from roots as well as
other plant parts (Takabe et al., 1998).

Chenopodiaceae, such as spinach and sugar beet, have CMO
and BADH enzymes localized in the chloroplast stroma (Fujiwara
et al., 2008). In Hordeum vulgare, a peroxisomal NADPH-
dependent CMO is involved in the first step of GB synthesis
exerting choline oxidation; while BADH is localized in the cytosol
and in the chloroplast (Weigel et al., 1986).

In animals and many bacteria, a membrane-bound choline
dehydrogenase (CHDH; EC 1.1.99.1) catalyzes the oxidation
of choline to betaine aldehyde; while the enzyme involved in
the second step is BADH again (Figure 1B). In Arthrobacter
globiformis and Arthrobacter pascens a soluble choline oxidase
(CHO; EC 1.1.3.17), coded by a single gene codA, catalyzes the
direct four-electron oxidation of choline to GB, with betaine
aldehyde as an intermediate. It contains a covalently linked
flavin adenine dinucleotide (FAD), and acts through two hydride-
transfer reactions, the two reductions of flavin and the rate-
limiting steps (Ikuta et al., 1977; Rozwadowski et al., 1991;
Fan and Gadda, 2005) (Figure 1C). This enzyme has become
relevant due to its biotechnological applications for the metabolic
engineering of economically important plants for osmotic stress
resistance (Sakamoto and Murata, 2000), and the production
of sensors for the determination of choline and derivatives in
biological fluids (Shimomura et al., 2009; Salvi et al., 2014).

Glycine betaine can also undergo a stress-inducible
synthesis, since it may be derived from the serine that is
synthetized by the (i) non-phosphorylated glycerate pathway,
(ii) the phosphorylated phospho-hydroxypyruvate pathway

(Kleczkowski and Givan, 1988; Igamberdiev and Kleczkowski,
2018), or iii) the salt-stress-induced photorespiratory glycolate
pathway (Wingler et al., 2000; Carillo et al., 2008). Serine is the
precursor of PE via ethanolamine. In plants, the latter is formed
directly by the action of a pyridoxal 5′′-phosphate-dependent
L-serine decarboxylase (SDC) (Rontein et al., 2001); while
in plants and animals, but not in fungi, it can indirectly be
synthetized through a base exchange between serine and existing
PE (Kwon et al., 2012). Thereafter, the phosphorylation of
ethanolamine is catalyzed by a choline/ethanolamine kinase
(CEK; EC 2.7.1.32).

Salinity, specifically, increases the CMO and BADH
gene expression two- to three-fold and, consequently, the
corresponding enzyme levels (Weretilnyk et al., 1989; Weretilnyk
and Hanson, 1990; Rhodes et al., 2002).

Xu et al. (2018) identified a CGTCA-motif in the promoter
region of Citrullus lanatus CMO and BADH genes that are
responsive to methyl jasmonate (MeJA). When C. lanatus cells
were activated by MeJA, they synthetized GB even without
osmotic stress, and the new cells derived by the activated
ones retained a high GB content without previous stress
or MeJA activation. This finding suggests that JA signal
transduction is involved in GB biosynthesis, which plays a
key role in both osmotic stress tolerance and osmotic stress
hardening (Xu et al., 2018).

However, the interactive effects of simultaneous salinity and
other stresses can decrease the expression of CMO and the
relative GB production (Carillo et al., 2011; Woodrow et al., 2017;
Ciarmiello et al., 2018). This is particularly relevant because the
step catalyzed by CMO is the rate-limiting one in GB biosynthesis
(Bhuiyan et al., 2007). Moreover, it is important to underline
that GB is not actively metabolized, therefore its concentration
depends on the control of its synthesis, transport and dilution by
growth (Rhodes and Hanson, 1993; Carillo et al., 2008).

Ciarmiello et al. (2018), showed that a transcript in durum
wheat, coding a putative CMO-like enzyme with a different
Rieske-type motif that showed similarity with the CHO,
was isolated in Ruegeria sp., Pseudomonas fluorescens, and
Rhodococcus sp. suggesting a possible alternative pathway for the
production of GB in durum wheat similar to that operating the
direct oxidation of choline to GB.

GENETICALLY ENGINEERED
BIOSYNTHESIS OF GB

Different genera, and even different species within the same
genus, accumulate contrasting amounts of GB, and are therefore
classified as accumulators and non-accumulators (Rhodes and
Hanson, 1993). Natural accumulators of GB accumulate large
amounts of GB only under abiotic stresses (Storey et al., 1977).
Homozygous lines for Bet1 (GB accumulators), that are part of
near-isogenic maize lines presenting different GB accumulation
capacity, showed a 10–20% higher biomass under salinity than
the non-accumulating lines (Saneoka et al., 1995; Munns and
Tester, 2008). Therefore, metabolic engineering strategies, aimed
at increasing the synthesis and accumulation of GB, have been
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FIGURE 1 | Alternative biosynthetic pathways for glycine betaine (GB) in (A) plants, (B) animals and many bacteria and (C) Arthrobacter globiformis and
Arthrobacter pascens.

associated with an amelioration in plant stress tolerance. In
particular, important crop species like rice (Oryza sativa), potato
(Solanum tuberosum), and tomato (Solanum lycopersicum),
which are not able to synthesize and accumulate GB, have been
considered as potential targets for metabolic engineering of GB
biosynthesis (McCue and Hanson, 1990).

Several genes involved in the GB biosynthetic pathway have
been isolated, cloned and used to generate transgenic plants,
accumulating GB with an enhanced tolerance to abiotic stress
(Wani et al., 2013). The transformations were quite successful
for several plant species, improving plant tolerance to salt,
drought and extreme temperatures, notwithstanding the very low
amounts of GB accumulated by the engineered plants (Nuccio
et al., 2000; Sakamoto and Murata, 2002; Chen and Murata,
2008). Among such engineered plants, those transformed with
codA from A. globiformis, encoding the enzyme CHO that
catalyzes the direct oxidation of choline to GB, also showed the
accumulation of GB directly in the chloroplasts. In particular, a
successful transformation with codA was obtained in Arabidopsis
thaliana (Hayashi et al., 1997, 1998; Sulpice et al., 2003),
Brassica chinensis, Brassica juncea, and Brassica napus (Huang
et al., 2000; Prasad et al., 2000; Wang et al., 2010), O. sativa
(Sakamoto and Murata, 1998; Mohanty et al., 2002; Kathuria
et al., 2009) and even in woody plants such as the Japanese
persimmon (Gao et al., 2000) and Eucalyptus globulus (Yu et al.,
2009). The plants engineered with codA showed an enhanced
tolerance to chilling, freezing, salinity, high temperature, and
high light in different growth stages, from seed germination to
growth, development and reproductive stages (Wani et al., 2013).
Likewise, significant success has been achieved by engineering
plants with betA, betB or both genes from Escherichia coli

encoding CHDH and BADH, respectively, such as in Gossypium
hirsutum (Lv et al., 2007), Medicago sativa (Liu et al., 2011),
Nicotiana tabacum (Holmström et al., 2000). codA-transformed
rice plants, showed a GB concentration of 5 and 1 µmol g−1

fresh weight in leaves when the transformation was targeted to
the cytosol and chloroplast, respectively (Sakamoto and Murata,
1998). While, the transformation of maize, an accumulator plant,
with betA increased GB concentration to about 5.7 µmol g−1

fresh weight, a value higher than that present in wild-type (WT)
maize plants under drought stress (Quan et al., 2004).

However, the efficacy of GB engineering for important
cultured field crops has never been demonstrated. The main
reason is that even if the levels of GB in the engineered
plants were significantly increased, they were still lower than
those of high accumulator species, which range from about
4 to 40 µmol g−1 fresh weight (Rhodes and Hanson, 1993;
Sakamoto and Murata, 2002). One possible explanation for this
is that choline availability may limit GB accumulation in some
plants. In fact, transformed tobacco plants, with a spinach cDNA
encoding CMO, showed a very low GB production of about
0.02–0.05 µmol g−1 fresh weight in both control and salt stress
conditions, and were able to accumulate large amounts of GB
only when choline was supplemented (Nuccio et al., 1998).
Moreover, the concentration of endogenous choline did not
change significantly in all transgenic plants expressing the codA
gene (Giri, 2011). Its availability does not affect the GB synthesis
of all transgenic plants, most probably due to synergism in the
demand and supply of choline to chloroplast.

In fact, the cytosolic choline in plants, synthetized in the
cytosol or exogenously supplied, needs to be transported to
the chloroplast for GB biosynthesis. Therefore, it could be
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possible that different capacities of plants to synthetize GB,
could be also dependent on their diverse ability to transport
choline to the chloroplast and not only on its availability
in the cytosol (McNeil et al., 2000; Khan et al., 2009).
Besides, transformed tobacco plants overexpressing CHO in
the chloroplast and supplemented with choline, accumulated
GB at only 1 µmol g−1 FW, while Arabidopsis which over
expressed CHO in the cytosol and were supplemented with
choline, accumulated GB at about 120 µmol g−1 FW (Huang
et al., 2000; Fariduddin et al., 2013). Similarly, CHO-transgenic
tomato plants were able to accumulate more GB in the cytosol
than in the chloroplast (Park et al., 2007). CHO-transgenic maize
and rice were able to accumulate similar amounts of GB in
both subcellular compartments, confirming that, independent of
choline concentration in the cytosol, its species-specific capacity
of transport from the cytosol to the chloroplast, highly affects GB
production in the chloroplast and the plants tolerance to stress
(Khan et al., 2009).

Several plant species engineered to express CMO and/or
BADH and which are supplemented with 10 mM betaine
aldehyde, are able to synthesize GB in amounts comparable
to accumulator plants (Chen and Murata, 2011). Specifically,
N. tabacum, O. sativa and Daucus carota, transformed with betB
and supplemented with betaine aldehyde, were able to produce
4.6, 6, and 10 µmol g−1 fresh weight GB (Kishitani et al., 2000;
Kumar et al., 2004; Yang et al., 2007), demonstrating that a
significant increase of GB is achievable.

Recently, a novel gene, GB1, differentially expressed in low
and high GB accumulating genotypes of maize, was identified
by Castiglioni et al. (2018). Transgenic GB1-maize and soybean
lines accumulated GB at concentrations 4–10-fold higher than
WT plants. GB1 protein is a member of the Pfam fatty acid
hydroxylase superfamily, with a suggested peroxisomal location.
Its predicted sequence showed 60% identity as a putative C-4
sterol methyl oxidase from rice. GB1 protein certainly has a main
role in the GB accumulation in plants, and can be used as an
innovative tool to improve tolerance to abiotic stress in crop
plants (Castiglioni et al., 2018).

EXOGENOUS GB APPLICATIONS

Glycine betaine improves growth and survival of plants
counteracting metabolic dysfunctions caused by stress. Due
to the beneficial effects of GB, numerous experiments of
exogenous application of this compatible compound, on low-
accumulator and non-accumulator plant species have been done.
Recent studies, and related reports have proven its effectiveness
in increasing plant tolerance to various stresses (Table 1).
Exogenous GB is able to preserve Photosystem II (PSII) and
the photosynthetic oxygen evolving complex (OEC) association
under salinity in Lycopersicon esculentum (Mäkelä et al., 1998,
1999; Park et al., 2006), H. vulgare (Oukarroum et al., 2012) and
N. tabacum (Ma X.L. et al., 2006), and to induce the expression
of oxidative stress response genes, decreasing ROS accumulation
and lipid peroxidation in cultured tobacco cells under salinity
(Demiral and Türkan, 2004; Banu et al., 2010). Application of

GB to bread wheat leaves, reduces the accumulation of Na+ and
increases the accumulation of K+ and Ca2+, improves leaf water
potential, enhances the activities of SOD, CAT and POD and,
reduces photoinhibition enhancing growth and yield (Ma Q.-Q.
et al., 2006; Raza et al., 2007, 2014).

Khan et al. (2014) showed that salicylic acid induced GB
accumulation in Vigna radiata under salinity, with a consequent
increase of glutathione, reduction of ethylene and oxidative
stress, and improvement of photosynthesis. GB also protects
photosynthesis by modifying the lipid composition of the
thylakoid membranes in Triticum aestivum (Zhao et al., 2007).
It increases soluble sugars and free amino acid accumulation to
protect plant cells from salinity- and drought-induced osmotic
stress in Vigna unguiculata (Manaf, 2016), Phaseolus vulgaris
(Osman and Salim, 2016), and Pisum sativum (Osman, 2015). GB
specifically increases its own content and improves the activity of
antioxidant enzymes and metabolites, such as SOD, CAT, APX,
proline and γ-amino butyric acid (GABA), reducing H2O2 and
malondialdehyde (MDA) in Prunus persica (Shan et al., 2016),
Lolium perenne (Hu et al., 2012), Glycine max (Malekzadeh,
2015), and O. sativa (Yao et al., 2016).

DNA microarrays performed to study the gene expression
modification induced by the application of exogenous GB
(100 mM) to Arabidopsis leaves and roots, revealed that
the expression of genes encoding enzymes involved in ROS
scavenging, as well as gene encoding functions related to
membrane trafficking (RabA4c GTPase) and to extracellular
ferric reduction (FRO2 and FRO4), was prevalently enhanced.
This evidenced the involvement of stress-induced ROS signaling
in GB action (Einset and Connolly, 2009) (Figure 2).

However, the GB applied to roots is usually taken up
and accumulated in the cytosol and only a small amount is
translocated to chloroplasts, while, when applied to leaves, it is
translocated to meristematic tissues, in particular flower buds
and shoot apices, and then translocated to actively growing and
expanding tissues (Mäkelä et al., 1996; Park et al., 2006). Ladyman
et al. (1980) also found that after the application of GB to
mature leaves of H. vulgare under water stress, osmolytes were
translocated to the young expanding tissues. Therefore, in plants
even if GB is applied to old or mature tissues, it reallocates to
young actively growing tissues, where its protective functions are
mainly required.

GLYCINE BETAINE TRANSPORT AND
TRANSLOCATION

Although it is clear that GB endogenously accumulated or
exogenously applied is reallocated in growing expanding tissues,
knowledge on glycine transport and translocation remains
fragmentary (Masood et al., 2016), and to date no specific
transporters for GB have been reported in plants (Chen and
Murata, 2011; Kumar et al., 2017).

The first direct demonstration of a GB transport activity was
obtained by Schwacke et al. (1999) through the heterologous
expression of a tomato gene, homologous to Arabidopsis proline
trasporter LeProT1 (Rentsch et al., 1996), in the yeast mutant
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TABLE 1 | Effect of exogenous GB under abiotic stress conditions.

Crop Abiotic stress Effect of exogenous GB under abiotic stress conditions Reference

Brassica napus Osmotic stress Inhibition of osmo-induced proline response, inhibitory effect on protein
synthesis

Gibon et al., 1997

Brassica rapa Drought and salt stress Increased net photosynthesis, increased stomatal conductance, decrease
of photorespiration

Mäkelä et al., 1999

Glycine max Salt stress Reduced lipid peroxidation (MDA content), increased proline content of
seedlings, increased CAT and APX enzyme activity, reduced ROS level,
reduced Na+/K+ ratio

Malekzadeh, 2015

Hordeum vulgare Cold stress Increase in total osmolality, higher endogenous GB levels, induction of
wcor410 and wcor413 genes, improved tolerance to photoinhibition of PSII

Allard et al., 1998

Hordeum vulgare Heat stress Increase tolerance of PSII and protective effect on the OEC (oxygen
evolving complex)

Oukarroum et al., 2012

Lolium perenne Salt stress Higher shoot and root fresh weight, lower decline of RWC and Chl, reduced
electrolyte leakage and MDA content, increased GB content, SOD, CAT
and APX activity, reduced Na+/K+ ratio in leaves and stems

Hu et al., 2012

Lycopersicon esculentum Cold stress Higher PSII activity, lower H2O2 levels, increased catalase activity and
catalase gene (CAT1) expression

Park et al., 2006

Lycopersicon esculentum Drought and salt stress Increased net photosynthesis and stomatal conductance, decrease of
photorespiration

Mäkelä et al., 1999

Lycopersicon esculentum Salt and heat stress Increased fruit yield, increased rate of net photosynthesis Mäkelä et al., 1998

Medicago sativa Cold stress Reduced loss of ions from the shoot tissues Zhao et al., 1992

Nicotiana tabacum Drought stress Improved growth of plants, improved osmotic adjustment, enhanced
photosynthesis, higher efficiency of PSII, increased anti-oxidative enzyme
activities

Ma et al., 2007

Oryza sativa Salt stress Improved height, fresh weight and dry weight in plant, enhanced total
chlorophyll and proline content, reduced MDA content

Yao et al., 2016

Phaseolus vulgaris Salt stress Higher plant fresh weight, increased values of leaf area ratio, leaf area index,
RWC and MSI (Membrane Stability Index), higher total soluble sugar and
free amino acids concentrations in the leaves and pods

Osman and Salim, 2016

Pisum sativum Drought stress Enhanced growth, pods and leaves number per plant, increased level of
soluble sugars, higher free amino acids and soluble proteins in leaves,
increased activity of antioxidant enzymes, reduction of proline accumulation

Osman, 2015

Prunus persica Cold storage Lower content of MDA, higher level of endogenous GB, increased activity of
BADH, P5CS and OAT, increased GABA content, higher level of ATP
content

Shan et al., 2016

Solanum lycopersicum Drought stress Improved yield Jokinen et al., 1999

Triticum aestivum Cold stress Increase in total osmolality, higher endogenous GB levels, induction of
wcor410 and wcor413 genes, improved tolerance to photoinhibition of PSII

Allard et al., 1998

Triticum aestivum Drought stress Increased grain yield and higher number of grains per spike Díaz-Zorita et al., 2001

Triticum aestivum Drought stress Improved STI (Stress tolerance index), enhanced levels of osmolytes
(proline and GB), increased RWC

Gupta et al., 2014

Triticum aestivum Drought stress Higher net photosynthetic rate, higher maximal photochemistry efficiency of
PSII, higher antioxidativeenzyme activities

Ma X.L. et al., 2006

Triticum aestivum Drought stress Increased spike length, higher number of spikelets per spike and of grains,
improved yield, higher leaf turgor potential

Raza et al., 2014

Triticum aestivum Drought stress Stabilization of the function of the thylakoid membranes, suppression of
chlorophyll degradation and enhancement of Ca2+-ATPase and Hill
reaction activities, improved lipid composition of the thylakoid membranes

Zhao et al., 2007

Triticum aestivum Salt stress Higher endogenous GB levels, improved leaf water and osmotic potential,
reduced Na+ and increased K+ and Ca2+, improved growth, enhanced
activities of SOD, CAT, and POD

Raza et al., 2007

Triticum aestivum Salt stress Alleviated inhibition of photosynthesis Rajasekaran et al., 1997

Vigna unguiculata Salt stress Increased total soluble sugar concentration and antioxidative enzymes
(POD and PAL), increment of proline

Manaf, 2016

Zea mays Cold stress Prevention of chlorosis and reduced lipid peroxidation of the cell
membranes

Chen et al., 2000

Zea mays Drought stress Increased height, leaf area and total dry weight Reddy et al., 2013
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FIGURE 2 | Glycine betaine mechanisms and protective roles via the ROS scavenging system.

22574d. The latter was unable to grow on citrulline, proline, or
GABA as the sole nitrogen source; however, when complemented
with the LeProT1 protein, it was able to transport proline
and GABA with a low affinity and GB with a high affinity.
Breitkreuz et al. (1999) also found that the Arabidopsis GABA
transporter ProT2 was strongly inhibited by GB, with a high
affinity to the osmolytes. ProTs could therefore be considered
general carriers, which allow the transport of compatible solutes,
including GB, with stress protecting functions (Breitkreuz et al.,
1999). However, Waditee et al. (2002) showed that in the betaine-
accumulating mangrove, Avicennia marina under salinity

LeProT1 mRNA accumulated only in pollen; while in other
tissues there was an increase of mRNA for GB/proline A. marina
transporters 1, 2, and 3 (AmT1, -2, and -3). AmT1 and -2 were
able to complement salt-sensitive GB and a proline-deficient
E. coli mutant. Moreover, the main accumulation of AmT1 under
salinity was correlated to a major role for the transport of GB
under osmotic stress. Subsequently, a gene homologous to AmT1,
BvBet/ProT1, was isolated in Beta vulgaris by Yamada et al. (2009).
A fusion protein GFP-BvBet/ProT1 was used to show the plasma
membrane localization of the protein. In addition, both under
control and salt-stress conditions, higher levels of CMO and
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BvBet/ProT1 mRNA were found in older leaves than in young
leaves, further demonstrating that GB is mainly synthesized
in older tissues and then translocated to young expanding
ones (Yamada et al., 2009). In situ hybridization experiments
demonstrated that BvBet/ProT1 was localized in phloem and
xylem parenchyma cells (Yamada et al., 2011). A comparison
between Bet/ProTs from non-accumulating (A. thaliana Col-
O) and GB accumulating (B. vulgaris, Amaranthus tricolor, and
Atriplex gmelinii) plants expressed in a yeast mutant deficient
for uptake of proline and GB, showed that all the transporters
had lower Km and therefore a higher affinity for GB than
proline. The uptake of both osmolytes was pH-dependent, with
GB uptake at a higher rate by BvBet/ProT1 when the pH
decreased to 4.5 and underwent an inhibition by the proton
uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP).
The same transporters exhibited a higher affinity for choline
uptake rather than GB, particularly at higher pH (6.5), and were
less dependent on the inhibitor CCCP, suggesting that Pro/BetTs
enacts a symport mechanism for GB/H+ and choline/H+ with a
different mechanism of proton binding (Yamada et al., 2011).

Tsutsumi et al. (2015), which localized CMO exclusively
in mature leaves of A. gmelinii, found that in the same
plants the BetT gene was expressed in bladder and stalk cells,
in meso-phyll cells of young leaf laminae and in vascular
tissues. This finding is in agreement with the translocation
experiments of 14C-labeled GB in H. vulgare (Ladyman et al.,
1980), Brassica rapa ssp. oleifera, Glycine max, Pisum sativum,
Lycopersicon esculentum, and T. aestivum (Mäkelä et al., 1996)
which suggested a long-distance translocation of GB, together
with photosynthetic assimilates, via phloem, and the phloem
localization of BvBet/ProT1 found by Yamada et al. (2011).
Moreover, Park et al. (2006) demonstrated that when GB was
applied to single mature leaves of tomato and accumulated
in them, soon after, a large part of it was translocated to
meristematic tissues, such as flower buds and shoot apices.
In Arabidopsis (Sulpice et al., 2003) and tomato (Park et al.,
2007) GB-accumulating transgenic plants also translocated GB,
via phloem, actively accumulating it in growing flower buds
and shoot apices.

Tsutsumi et al. (2015) suggested that one possible explanation
for why GB is firstly synthetized in expanded tissues and then
transported to young expanding ones, is that for its synthesis it
is necessary to reduce ferredoxin, which is primarily produced
by mature leaves.

GLYCINE BETAINE ROLE IN ABIOTIC
STRESS TOLERANCE IN PLANTS

Glycine betaine is one of the main compatible compounds
present in Poaceae and Chenopodiaceae under salinity, and
which is also involved in many other protective mechanisms
against stress-related plant disorders (Ashraf and Foolad, 2007;
Chen and Murata, 2008; Banu et al., 2010; Carillo et al., 2011;
Khan et al., 2012). GB is an amphoteric metabolite highly
soluble in water, and electrically neutral over a vast range of
pH values (D’Amelia et al., 2018). The cellular concentration

of GB, proline, or both, contribute to the osmotic pressure
as a whole in many halophyte plants (Flowers et al., 1977).
In glycophytes, GB is present at much lower levels than in
halophytes. However, since it is compartmentalized solely to the
cytosol and hyaloplasmic organelles, which account for about
20% of the volume of the cell or less, it is able to significantly
contribute to the increase of osmotic pressure and can balance
the vacuolar osmotic potential (Ashraf and Foolad, 2007; Cuin
et al., 2009; Carillo et al., 2019). GB does not only act as an
osmolyte for osmotic adjustment, but, as a zwitterion, it can
interact with both hydrophilic and hydrophobic domains of
protein complexes and membranes: this contributes to stabilizing
and maintaining the structural and functional integrity of
these molecules, protecting them from the detrimental effects
of highly reactive oxygen species (ROS) (Sharma and Dietz,
2006; Ashraf and Foolad, 2007; Chen and Murata, 2008; Islam
et al., 2009; Banu et al., 2010; Gupta and Huang, 2014). GB
can reduce the salt-induced potassium efflux by regulating ion
channels (Wei et al., 2017), and enhancing the enzymatic activity
of plasma membrane H+-ATPase, increasing the phosphate
uptake and regulating the phosphate homeostasis (Li et al.,
2019). Furthermore, it is able to preserve the thermodynamic
stability of macromolecules, reversing protein misfolding and/or
aggregation without compromising their native functional
activities (Khan et al., 2010). When GB is present at high levels,
together with proline, it is so efficient in protecting plants by
oxidative stress that antioxidant metabolites and enzymes play a
minor role in ROS protection under salinity (Carillo et al., 2011;
Annunziata et al., 2017; Woodrow et al., 2017).

Several beneficial effects of GB are summarized in Figure 2
and Table 2.

It has been proven that the synthesis of GB is ontogenetically
controlled in several plant species (Table 3). However, in bread
wheat and durum wheat, it is asynchronous compared to that
of proline and independent of nitrogen nutrition (Colmer et al.,
1995; Carillo et al., 2008, 2011). In fact, GB is synthetized and
accumulated in young leaf tissues during prolonged stress, and,
as a quaternary nitrogen compound, its synthesis is independent
of nitrate nutrition. Whereas, proline is accumulated more
rapidly at the onset of stress and primarily in older leaves
dependent on high nitrate (Carillo et al., 2008) (Figure 3).
The lack of nitrogen nutrition influence on GB synthesis and
accumulation, implies that nitrogen reserves within the plant
can be employed to fulfill the metabolic demands of osmolytes,
resulting from salt stress (Carillo, 2018). Therefore, GB and
soluble sugars, like sucrose, but not proline, can play a major
role in a plants adaptation to salinity under low nitrogen
treatments; while proline is promptly synthetized, also in young
tissues, under high nitrogen supply (Annunziata et al., 2017).
However, GB and proline levels are highly correlated under
salinity conditions, and their sum is equal in young expanding
tissues of both high- and low-nitrogen grown plants. The
presence of interchangeable levels of both compounds in young
tissues, independent of nitrogen nutrition, would imply that
resources are allocated in growing tissues in order to support
and protect young growing tissues (Carillo et al., 2008). The
fact that the presence of one of these metabolites limits that
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TABLE 2 | Effect of endogenous glycine betaine under abiotic stress conditions.

Crop Abiotic stress Effect of endogenous GB under abiotic stress
conditions

Reference

Amaranthus tricolor Salt stress Osmotic adaptation to salinity Wang and Nii, 2000

Beta vulgaris Salt stress Maintenance of the intra-cellular osmotic balance between
the cytoplasm and Na+ in the vacuole, protection of
cytosolic enzymes from Na+ toxicity

Subbarao et al., 2001

Beta vulgaris Water stress Osmotic adjustment Chołuj et al., 2008

Hordeum maritimum Salt stress Osmotic balance and protection of leaves from oxidative
stress during the first phases of salt stress

Ferchichi et al., 2018

Hordeum vulgare Cold stress Improved survival of leaf laminae Kishitani et al., 1994

Spinacia oleracea Salt stress Control of cellular osmotic potential Di Martino et al., 2003

Morus alba Salt stress Osmotic adjustment Agastian et al., 2000

Oryza sativa Drought stress Maintenance of RWC and GSH/GSSG ratio, lower
reduction of K+, Ca2+, and Mg2+ content

Basu et al., 2010

Prosopis alba Salt stress Osmotic adjustment Meloni et al., 2004

Spinacia oleracea Salt stress Protection of the oxygen-evolving Photosystem II complex Papageorgiou et al., 1991

Spinacia oleracea Salt stress Osmotic adjustment and maintenance of photosynthetic
capacity

Robinson and Jones, 1986

Triticum aestivum Cold stress Protection of plasma membrane Zhang et al., 2010

Triticum aestivum L. cv. Glenlea Freezing stress Increased freezing tolerance Allard et al., 1998

Triticum aestivum Salt stress Higher RWC and higher activity of antioxidant enzymes
such as SOD, GR, and CAT

Sairam et al., 2002

Triticum durum Salt stress Function as osmolyte to balance water potential within root
and shoot tissues

Carillo et al., 2005

Triticum durum Salt stress Protection of photosynthesis, increased nitrogen
metabolism enzyme activities and ROS scavenging in
young leaf tissues

Carillo et al., 2008, 2011

Triticum durum Salt stress Osmotic adjustment of root tissues of plants grown under
low nitrate and salinity

Annunziata et al., 2017

TABLE 3 | Spatial accumulation of endogenous glycine betaine.

Plant species and age Stress Glycine betaine (µmol g−1 FW) Reference

Old leaf tissues Young leaf tissues Roots

Amaranthus tricolor Control and NaCl 300 mM Higher Lower Low Wang and Nii, 2000

Beta vulgaris (1–1.5 m) Control 10 20 4.2 Yamada et al., 2009

NaCl 300 mM 40 120–125 16

Control and NaCl 300 mM Higher BvBet/ProT1 mRNA
levels

Gossypiumherbaceum MI8 NaCl 200 mM 23.2 8.2–16.9 Gorham, 1996

Hordeum vulgare (21–26 days) Control 0.3 0.3 Nakamura et al., 1996

NaCl 200 mM 2.5–5 7.4–9.5

Hordeum vulgare (21 days) NaCl 200 mM CMO expression level increased Mitsuya et al., 2013

Triticumaestivum L. cv. Chinese Spring
(CS) (18 days)

Control
NaCl 200 mM

0.9
4.4

6.6
17.5

Colmer et al., 1995

Triticumaestivum CS X L. elongatum
am. (18 days)

Control
NaCl 200 mM

2.6
10.2

6.0
35.3

Triticum durum (20 days) NaCl 100 mM + 0.1 mM
NO3

1.0 4.4 0.2 Carillo et al., 2008

10 mM NO3 1.2 11.6 0.7

NaCl 100 mM + 10 mM
NO3

4.0 5.9 0.6

Control 2.9 13.1 4.3

Zea mais L. ibrids GB accumulators
(4.5 week)

Control
NaCl 150 mM

0.01–0.03
0.02–0.14

0.01–0.7
0.02–4.1

0.01
0.01

Rhodes et al., 1989
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FIGURE 3 | Accumulation of GB at low (A) and high (B) N, and proline at low
(C) and high (D) N leaves of durum wheat plants after 10 days of hydroponic
culture (0 h) and after 4, 8, 24, 48 h, 5 and 10 days of salt treatment. NaCl
50 mM was added twice at 0 and 24 h. Bar colors show older/mature (dark
green) and younger (light green) tissues. Nitrate 0.1 (low N) or 10 mM (high N)
was added on day 5 of hydroponic culture. The values are mean ± SD (n = 4)
(data from Carillo et al., 2008, 2011).

of the other could also be due to the proposed GB-dependent
inhibition of proline accumulation (Gibon et al., 1997; Sulpice
et al., 1998). However, the data of Carillo et al. (2008) conflict
with this assumption since they showed that the synthesis
and accumulation of proline antedate those of GB, and that
the use of an inhibitor of proline synthesis, hydroxyl-proline,
decreases GB accumulation.

Rhodes and Hanson (1993) found that plants do not show a
significant GB breakdown. Therefore, the low levels of GB present
in older plant tissues depend on a dilution mechanism that occurs
via GB translocation from fully expanded to young growing
tissues, since the latter is more prone to stress, as reported in
oilseed rape, turnip rape, bread, and durum wheat (Maas and
Poss, 1989; Mäkelä et al., 1996; Carillo et al., 2008). Annunziata
et al. (2017) also found that the contribution of GB to osmotic
adjustment in younger tissues is much higher than that in older

tissues, independently of nitrogen nutrition. Even the expression
level of CMO (Mitsuya et al., 2013) and BADH (Hattori et al.,
2009) proteins was preferentially induced in younger leaves in
barley plants under salinity. Since GB is accumulated only during
prolonged stresses, and it cannot be metabolized, even if easily
and efficiently transported from older to younger plant tissues, it
has been supposed that it can play a pivotal role in protecting
against salt stress young leaf and root tissues (Carillo et al.,
2008, 2011). In view of this, Annunziata et al. (2017) ascribed
the arrest of growth and differentiation of root tips of durum
wheat under salinity to the delay in the synthesis of GB, which
did not allow for the prompt contrast of the cytotoxic effect
of the NaCl ions.

Carillo (2018) suggested that in young leaves of durum
wheat plants, under high salinity the salt induced stomata
closure restricts CO2 exchange and, consequently, reduces the
RUBISCO CO2-fixation activity, while increasing the over-
excitation of the photosynthetic apparatus and the production of
ROS. In this condition, GB synthesis is induced to increase the
protection of the photosynthetic apparatus (Chen and Murata,
2011; Kurepin et al., 2015).

Nevertheless, Carillo et al. (2011) showed that the relevance
of GBs synthesis in durum wheat, is almost completely inhibited
by high light (HL) even in the presence of high concentrations
of NaCl. Woodrow et al. (2017) proved that in these plants, in
which GB was not accumulated, the fine metabolic regulation
of few specific primary metabolites, such as GABA, amides,
minor amino acids and hexoses, could play a key role in the
plants response to simultaneous stresses. The positive effect
of GABA can be ascribed to its proton consuming synthesis
that allows for the control of pH, and its nature of zwitterion
which permits its accumulation in cytosol, where it acts as an
osmolyte and ROS scavenger, without toxic effects. However, a
possible more relevant effect is that its synthesis, operated by the
glutamate decarboxylase (GAD), releases CO2 that can be used
for RUBISCO and the simultaneous dissipation of excess energy
produced by photosynthesis under HL and salinity. This re-start
of the Calvin cycle reduces the pressure on the photosynthetic
electron chain and decreases ROS production and photodamage
(Carillo, 2018, and references therein).

CONCLUSION

Metabolic engineering approaches and exogenous applications,
aimed at increasing the synthesis and/or accumulation of GB
in plants tissues, have been associated with the improvement in
growth and survival of plants, ROS scavenging, osmoregulation
of the cytosolic compartments, membrane stabilization, buffering
of redox potential and induction of stress responsive genes
that counteract the metabolism dysfunctions caused by stress.
However, the efficacy of GB metabolism transformation for plant
crops, cultured in field, has not been fully demonstrated. This
might be because even if the GB concentration in transformed
plants is significantly increased, it is still lower than that of a
natural high accumulator species. Moreover, even if exogenous
applications of GB that is targeted to the older damaged
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tissues has been tested, GB is promptly re-translocated to
younger expanding tissues, where its protective functions are
likely most required.

However, what is certainly clear is that in addition to this
spatial discrepancy, that is the accumulation or re-allocation to
young tissues after exogenous application, the synthesis of GB is
also temporally delayed compared to other important osmolytes,
such as proline. This most likely happens because GB cannot
be metabolized. It is synthesized and accumulated only during
extended stress, particularly in young tissues, as well as at low
N nutrition. For this reason, it has been supposed that it plays
a pivotal role in protecting young expanding tissues.
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