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Plants are immobile organisms that require roots to efficiently and cost-effectively
exploit their habitat for water and nutrients. Plant root systems are dynamic structures
capable of altering root branching, root angle, and root growth rates determining overall
architecture. This plasticity involves belowground plant-root mediated synergies coupled
through a continuum of environmental interactions and endogenous developmental
processes facilitating plants to adapt to favorable or adverse soil conditions. Plant root
branching is paramount to ensure adequate access to soil water and nutrients. Although
substantial resources have been devoted toward this goal, significant knowledge gaps
exist. In well-studied systems such as rice and maize, it has become evident that root
branching plays a significant role in the acquisition of nutrients and other soil-based
resources. In these crop species, specific root branching traits that confer enhanced
nutrient acquisition are well-characterized and are already being incorporated into
breeding populations. In contrast, the understanding of root branching in root and
tuber crop productivity has lagged behind. In this review article, we highlight what is
known about root branching in root and tuber crops (RTCs) and mark new research
directions, such as the use novel phenotyping methods, examining the changes in
root morphology and anatomy under nutrient stress, and germplasm screening with
enhanced root architecture for more efficient nutrient capture. These directions will
permit a better understanding of the interaction between root branching and nutrient
acquisition in these globally important crop species.

Keywords: root system architecture (RSA), root and tuber crops, nutrient efficiency, sweetpotato, potato,
yam, cassava

INTRODUCTION

A plant’s ability to explore the soil and to compete for soil resources is largely dependent on
the architecture of its root system (Lynch, 1995). Root system architecture (RSA) is determined
by the pattern of root branching and by the rate and trajectory of growth of individual roots
(Zhang et al., 1999). There is scientific consensus that root branching is subject to genetic control
and influenced by biotic and abiotic factors. Therefore, manipulating RSA has emerged as a
fundamental strategy to enhance nutrient acquisition especially in low input agricultural systems.
For example, Gamuyao et al. (2012) documented the presence of a Pup1-specific protein kinase
gene, the phosphorus-starvation tolerance 1 (PSTOL1) derived from the traditional aus-type rice
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variety Kasalath. This protein kinase was shown to enhance early
root growth, thereby enabling plants to acquire more phosphorus
and other nutrients under phosphorus-deficient soils. Gamuyao
et al. (2012) suggested that introduction of this quantitative trait
locus into locally adapted rice cultivars in Asia and Africa could
enhance productivity under low nutrient conditions. Follow-up
work by Neelam et al. (2017) documents novel alleles of
PSTOL1 in Oryza rufipogon, the Asian wild rice, and work is
already ongoing to introduce these alleles in elite rice cultivars.
This and other similar examples underscore the importance
of gaining a comprehensive understanding of root architecture
adaptations that could contribute to productivity under marginal
or low-input growing conditions. Low soil fertility in developing
countries is a primary constraint to food security and economic
development (Rao et al., 2016). In Africa in particular, depletion
of soil fertility is a major biophysical cause of low per capita
food production, contributing to food insecurity in the region
(Sanchez, 2002). Increasing the capacity of plants to acquire soil
resources is a key approach to improve crop yields and reduce
farmer’s dependence on fertilizers (Bishopp and Lynch, 2015).
The cereal species wheat and rice provide more than 50% of the
calories consumed by humans (Rich and Watt, 2013). However,
root and tuber crops (RTCs) are second in importance to cereals
as a global source of carbohydrates, and grown in regions not
suitable for cereal production1. In this work, we focus mainly
on cassava (Manihot esculenta), potato (Solanum tuberosum),
sweetpotato (Ipomoea batatas) and yams (Dioscorea sp), which
the Food and Agriculture Organization defines as among the
primary root and tuber crops of global importance2.

ROOT ARCHITECTURE AND NUTRIENT
EFFICIENCY IN ROOT AND TUBER
CROPS: THE CURRENT STATE OF
KNOWLEDGE

Two comprehensive reviews of literature regarding root
architecture in RTCs were conducted in 2014 and 2016
(Villordon et al., 2014; Khan et al., 2016). Curiously enough, in a
comprehensive review of the subject matter, it was determined
that between 2004 and 2014, there was only one published work
on the subject of root morphological description for each of
the RTCs compared to 12 for maize (Villordon et al., 2014).
In the current work, we surveyed articles published within the
past 10 years that specifically address the relationship of root
architecture in response to heterogenous nutrient environments
in RTCs (Table 1).

Crops frequently alter both their aboveground as well as their
belowground structures morphologically and physiologically in
response to heterogeneous nutrient environments (Drew, 1975;
Fransen et al., 1999; Hodge, 2004), in which yield and nutrient
uptake capabilities surpass those in nutrient-homogeneous
environments. Of these soil mineral nutrients, nitrogen (N),
phosphorus (P) and potassium (K) are considered the most

1http://www.fao.org/docrep/x5415e/x5415e01.htm
2http://www.fao.org/docrep/005/y9422e/y9422e0d.htm

TABLE 1 | Survey of articles published within the past 10 years that address root
architecture and NPK acquisition in rice, cassava, sweetpotato, potato, and yams.

Nutrient Crop species Reference

Nitrogen Rice Obara et al., 2010; Ji et al., 2012; Ogawa
et al., 2014; Ju et al., 2015; Kim et al.,
2015; Selvaraj et al., 2017

Sweetpotato Villordon et al., 2013, 2014

Phosphorus Rice Shimizu et al., 2008; Fang et al., 2009; Li
et al., 2009; Dai et al., 2012; Gamuyao
et al., 2012; Shen et al., 2013; Takehisa
et al., 2013; Topp et al., 2013; Vejchasarn
et al., 2016

Potato Balemi and Schenk, 2009; Wang et al.,
2015; Krell et al., 2018; White et al., 2018

Sweetpotato Villordon et al., 2018

Potassium Rice Jia et al., 2008; Ma et al., 2012

important for crop growth, development and subsequent yield.
However, phytoavailability of NPK often limits low-input
agriculture (Mueller et al., 2012; White et al., 2013). For
comparison, we included references available for the relationship
between root architecture manipulation and NPK uptake in
rice. The survey reveals a disturbing trend: the number of
publications on rice exceeds the combined scientific output of the
RTCs. Relative to the rice knowledge base, there is a substantial
knowledge gap in RTCs about the role of RSA in the exploration
and acquisition of nutrients in low-input environments. The
survey reveals that rice RSA research has focused on N and
P. This is consistent with current understanding that N and P
availability are the primary global constraints and particularly
severe in low-input agriculture characteristic of many developing
nations (Lynch, 2007). N compounds are mobile and prone to
leaching into deeper soils. In contrast, P accumulates mainly in
the topsoil in part due to its low mobility. Among the RTCs,
potato leads in terms of research output, primarily focusing
on P. This is in part due to the large P requirement in the
crop, about two-fold higher compared to that of cereal crops
such as wheat and barley and 1/3 higher compared to most
vegetable crops (White et al., 2018). The published studies on
potato RSA and P, although relatively fewer compared to rice,
has led to direct applications in terms of identifying desirable
root traits for improved P acquisition and the identification
of cultivars and genotypes with improved P efficiency in low
nutrient conditions (White et al., 2005, 2018; Wang et al., 2015;
Krell et al., 2018).

In sweetpotato, the published reports on N and P represent
translational research of key findings from model systems (i.e.,
Arabidopsis, maize and rice). First, Villordon et al. (2013)
demonstrated that lateral root branching jointly measured
as lateral root length, number of lateral roots and lateral
root density in sweetpotato cv. Beauregard was altered in
response to variation in overall available N. The variation
in RSA in response to different available N was consistent
with prior work in Arabidopsis where external N presence
had stimulatory effect on lateral root elongation, whereas
high N concentrations inhibited lateral root meristem activity
(Zhang et al., 2007). The data regarding relationship between
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spatial N availability and RSA modifications were similar
to findings in Arabidopsis model systems that localized N
availability is critical for lateral root signaling and development
(Zhang and Forde, 2000; Zhang et al., 2007; Lima et al.,
2010). Second, Villordon et al. (2018) reported that storage
root length in sweetpotato cvs. Bayou Belle and Beauregard
varied in response to experimental P deficiency. These findings
corroborate available experimental evidence in Arabidopsis
model systems that support the hypothesis that the root
tip is the site of P sensing and that optimal or low
P is involved in the growth or arrest of primary root
growth (Svistoonoff et al., 2007; Kellermeier et al., 2014;
Medici et al., 2015; Abel, 2017).

With regards to K, Liu et al. (2017) showed differences
in root morphology under controlled K and deficient K
treatments in two representative sweetpotato cultivars, Ningzishu
1 (sensitive to K deficiency) and Xushu 32 (tolerant to K
deficiency). Under K deficiency, root length, surface area, root
volume and average root diameter was reduced in Ningzishu
1 compared to Xushu 32. Interestingly, the proportion of fine
roots (Ø < 0.5 mm) and thick root (Ø > 1.0 mm) of Xushu 32
seedlings increased significantly under condition of K deficiency.
These results indicate potential genotypic differences in RSA
and K absorption ability under K deficiency. Similarly, Wang
et al. (2017) under field conditions, indicated that increased K
application increased total root length, average root diameter
and significantly increased the differentiation from adventitious
roots to fibrous roots and tuberous roots. This root traits
coupled with added K is beneficial to the early formation of
storage roots and number of storage roots per plant, overall root
biomass and yield.

However, limited work on the relationship between RSA and
NPK can be found for cassava and yams, the most important
RTC species in sub-Saharan Africa3. In cassava, Izumi et al.
(1999) provided evidence that well-developed branching pattern
(i.e., number and length of axile roots and lateral roots)
and total root length was associated with water and nutrient
absorption and essential for storage root bulking. There has
been some follow-up work on the role of cassava RSA and
drought tolerance but none for nutrient acquisition (Pardales
and Esquibel, 1996; Subere et al., 2009). Adu et al. (2018)
corroborated earlier findings and documented root genotypic
variation in relative root growth rate, root length, number of
nodal roots, root diameter and root branching density in a
panel of cassava cultivars bred for high carotenoid content and
resistance to cassava mosaic disease (CMD), recommending
further studies regarding manipulating cassava RSA for nutrient
use efficiency and yield.

Charles-Dominique et al. (2009) conducted an analysis of
the tuber monocot, white yam (Dioscorea cayennensis subsp.
rotundata Poir., Dioscoreaceae) root system derived from both
sexually and vegetatively propagated yams and demonstrated
that both seedlings and plants derived from tubers have two
distinct root systems that are highly organized. The first type of
root system (seminal) is considered transitory (i.e., short-lived)

3www.fao.org/docrep/x5415e/x5415e01.htm

consisting of two root axis categories. The second type of root
system (adventitious) is considered permanent and is larger in
weight and volume compared to the transitory root system. This
adventitious root system is made up of three root axis categories
and this is the site for initial tuber formation. Charles-Dominique
et al. (2009) concluded the importance of studying the yam root
system architecture as a whole and simultaneously in order to
understand its growth, development and tuber formation. In a
similar study, Hgaza et al. (2012) documented the response of the
RSA of water yam (Dioscorea alata) and white yam (Dioscorea
cayennensis subsp. rotundata) to mineral fertilizer application
under field conditions. Researchers used sequential root coring to
assess horizontal and vertical root distribution. Results revealed
three root types (seminal, adventitious and tuber roots) and
differences in root length density, root mass density and specific
root length correlated directly with higher temperature and not
with fertilizer application when compared to controls. Hgaza
et al. (2012) concluded that tuber formation was independent
from seminal and adventitious root development and mineral
nutrition did not affect final tuber yield.

The significant resources devoted to the investigation of RSA
in cereal crops has led to advances in breeding and selecting
RSA for improved NPK acquisition in low-input production
environments. Table 2 summarizes the root traits necessary
for adaptation to low NPK conditions in rice, maize, and the
common bean (Phaseolus vulgaris L.) (Lynch and Brown, 1998;
Kong et al., 2014). In maize, it has been determined that
deeper roots are associated with increased acquisition of N
that may leach to lower soil layers (Lynch and Wojciechowski,
2015). In rice, there is evidence that DEEPER ROOTING 1,
a quantitative trait locus for root growth angle, increased N
uptake in N-deficient conditions (Arai-Sanoh et al., 2014).
This knowledge has led breeding programs to screen rice and
maize genotypes for this desirable trait but also to invest in
management practices like nutrient amendments that could
improve root growth in rice (Abiven et al., 2015; Ju et al., 2015;
Qiao et al., 2018).

TABLE 2 | Summary of relevant root traits related to N and P deficiency in rice,
maize, and beans.

Species Nutrient
deficiency

Root traits Reference

Rice N Deeper roots Ogawa et al., 2014; Ju
et al., 2015

Maize N Low lateral root (LR)
branching density, longer
LRs

Postma et al., 2014; Yu
et al., 2015a; Zhan and
Lynch, 2015

Deeper roots Lynch and Wojciechowski,
2015; Yu et al., 2015b

Low crown root number Saengwilai et al., 2014

Rice P Early root growth Gamuyao et al., 2012

Maize P High LR branching density,
shorter LRs

Postma et al., 2014

Bean P Decreased root metabolic
cost, higher root hair length
and density

Strock et al., 2018
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MANIPULATING ROOT SYSTEM
ARCHITECTURE FOR INCREASED
NUTRIENT EFFICIENCY: WAY FORWARD
FOR ROOT AND TUBER CROPS

Advances in manipulating RSA in cereal crops like rice and
maize can serve as a model for RTCs. Meaningful advances
in rice and maize RSA were made possible by first achieving
fundamental understanding of the intrinsic and environmental
factors that control RSA. Some of these findings have already
been translated into some RTCs, underscoring the importance
of translating findings from model crop systems, such as, rice,
maize and bean into non-model species, such as, sweetpotato,
potato, and yams. Concomitant with the understanding of the
biology of RSA, significant investments were made toward the
development of minimally intrusive, non-destructive whole-root
phenotyping systems (Chen et al., 2011; Kuijken et al., 2015).
The development of these phenotyping platforms in turn enabled
functional genomics and crop improvement applications (Yang
et al., 2013). These phenotyping tools and approaches can be
adapted for use in RTCs.

Recent and past advances in understanding RSA have come
from the studies on the model plant Arabidopsis thaliana and
the description of the cellular structure laid the foundation for
developmental and genetic work in cereals and other well-studied
crops (Dolan et al., 1993; Smith and De Smet, 2012). Similar
to RTCs, the Arabidopsis root system undergoes secondary
thickening under appropriate growth conditions (Dolan and
Roberts, 1995; Chaffey et al., 2002). In these and other root crops,
root secondary growth followed by starch deposition and increase
in root biomass determine the harvestable agronomic yield. This
particular area of research has not been extensively studied in
RTC under nutrient deficiencies and merits research.

Reduced metabolic cost of soil exploration is important for P
capture because continued soil probing is required to increase
beyond the depletion of available P in the rhizosphere (Lynch,
2015). For example, the formation of root cortical aerenchyma
(RCA) in different crop species is one of the latest advances
in our understanding of the impact of nutrient deficiencies in
root architecture. RCA is defined as tissue with large intercellular
spaces in root cortex normally produced in plant species under
hypoxia (Esau, 1977; Drew et al., 1979). However, RCA can be
also formed in response to drought and edaphic stresses such
as N and S deficiencies (Drew et al., 1989; Bouranis et al., 2003;
Fan et al., 2003, Zhu et al., 2010). In maize, genotypes with
greater RCA had greater topsoil foraging, P acquisition, growth
and yield under low P environments (Galindo-Castañeda et al.,
2018). Currently, there are no published studies on the formation
of RCA in RTCs.

Another important change in root architecture as a result of
nutrient deficiency is the presence or absence of root secondary
growth. It has been hypothesized that a decrease in root
secondary growth could lessen the carbon cost of producing
and sustaining root length to improve the balance between
soil exploration use and depletion of growth limiting nutrients
(Lynch, 1995). This may be an adaptive strategy to improve the

metabolic efficiency of soil foraging under sub-optimal P, where
roots will favor primary growth (elongation) over secondary
growth (radial swelling) to reach greater probing of soil areas that
still hold available P (Lynch, 2007, 2011; Lynch and Brown, 2008;
De la Riva, 2010). In bean, secondary root growth under low P
is inhibited, but genotypes with higher inhibition of secondary
root growth presented reduced root costs, greater P capture, and
greater growth under low P environments (Strock et al., 2018).
Contrary to the reduced bean secondary root growth model,
sweetpotato storage and lateral root growth were not reduced
under sub-optimal P levels (Duque and Lynch, 2018).

New evidence in sweetpotato RSA under low P environments
both in greenhouse and field settings suggests a reduction
in metabolic costs of soil exploration with the formation
of RCA after root secondary growth in basal cross sections
of storage roots but not in lateral roots (Figure 1). These
preliminary results suggest a translocation of carbon resources
from the storage root to the lateral roots to enhance further
soil exploration and/or increase of lateral root branching (Duque
and Lynch, 2018). Based on these primary results, RCA merits
research on how it can potentially affect final root yield.
However, this phenomenon could have profound effects on
storage root size, shape and yield, thus future research should
focus on the assessment of early versus late bulking genotypes,
root genotypic variability and tolerance of sweetpotato under
P deficiency, focusing breeding and management efforts for
degraded, low input agricultural systems found in Sub-Saharan
Africa where sweetpotato as well as other RTCs are staple
and subsistence crops.

Indeed, for RTCs in general, species-specific RSA knowledge
appears to be at the level of classical morphology and with
scant information on the genetic, hormonal, and molecular

FIGURE 1 | Root cortical aerenchyma-like structure formed after secondary
root growth under low phosphorus in sweetpotato storage root and fibrous
root at 30 DAP. (Basal meaning root segment farthest from the attachment to
the stem node). Root transversal cut sections were performed using laser
ablation tomography. Ablation and picture were taken by Peter Ilhardt at Penn
State University.
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control of RSA. For root crops in particular, there is a general
disconnect between RSA and storage root formation under
nutrient deficiencies or water stress, either at the genetic,
hormonal and/or molecular level. There has been crop-specific
progress on the relationship between RSA and storage root
formation in sweetpotato. In particular, it has been shown
that lateral root development is a prerequisite to secondary
cambium development in the adjacent main root tissue
(Villordon et al., 2012). Previously, a cytokinin-regulated
I. batatas MADS-box 1 (IbMADS1) showed evidence of
selective gene expression in meristematic tissue in the stele
and in lateral root primordia and it has been proposed
that this gene is an integrator at the onset of storage root
formation in a network that involves hormones such as
jasmonic acid and cytokinin as trigger factors (Ku et al.,
2008). IbMADS1 belongs to the same family as Arabidopsis
nitrate regulated (ANR1), a gene previously shown to be
associated with Arabidopsis lateral root development in
response to nitrate (Zhang and Forde, 1998). In potato, it
has been determined that RSA traits such as specific root
length of basal roots and total root weight for various root
classes are related to final tuber yield (Wishart et al., 2013).
Basal roots are important for water uptake and anchorage,
whereas stolon roots are connected with nutrient acquisition
and tuber formation (Wishart et al., 2013). An earlier
work by Sattelmacher et al. (1990) provided evidence that
root length and surface area was important for nitrogen
acquisition and that a large root system was associated with
higher N acquisition.

Despite these efforts, the link between storage root/tuber
yield and the carbon partitioning to other root types as
well as the regulatory networks involved in RTCs has yet to
be established (Khan et al., 2016). However, the cumulative
evidence supporting the link between RSA and storage
root in sweetpotato and between RSA and tuber yield in
potato paves the way forward for more in depth work in
sweetpotato and potato as well as similar studies in other
RTCs. Root systems are inherently difficult to study and
frequently overlooked in research. Due in large part to
the RSA work in cereals and other model systems, novel
tools and approaches have been developed to non-invasively
measure root development in laboratory, greenhouse and field
settings. Traditional methods for studying root systems include
rhizotrons (Nagel et al., 2012), rhizoboxes (Lemming et al.,
2016), and excavation (Bucksch et al., 2014). Image-based
systems have been developed to overcome the phenotyping
bottleneck, including X-ray computed tomography (Mairhofer
et al., 2012), magnetic resonance imaging (Metzner et al.,
2015; van Dusschoten et al., 2016), and ground penetrating
radar (Guo et al., 2013), among others. However, wide
scale adoption of some of these methods continued to be
hampered by prohibitive costs and lack of accessibility. In
RTCs, some of the non-destructive methods that have been
used in the field with limited samples include rhizotrons or
rhizotron-like methods in cassava (Tscherning et al., 1995),
potato (Parker et al., 1991) and sweetpotato (Villordon et al.,
2011). The use of viewing devices like minirhizotrons have

actually been shown to interfere with storage root formation
(Villordon et al., 2011), further limiting the options to study
the relationship between RSA and storage root formation in
root crops. Taken together, it appears that critical barriers
to progress in understanding crop-specific RSA attributes in
RTCs include the lack of a model system for interpreting the
relationship between RSA and storage root and tuber yield and
the current prohibitive costs of non-destructive, high-throughput
image-based phenotyping tools.

One way forward to overcome these barriers is to use
the sweetpotato (dicot, storage root), cassava (dicot, storage
root), potato (dicot, tuber) and yam (monocot, tuber) as
primary model systems for understanding the connection
between RSA and agronomic yield in RTCs, respectively. These
RTCs are considered the most important calorie-producing
staple crops for smallholder subsistence farmers combined with
low input agriculture on marginal lands typically located in
underdeveloped countries.

Strategic translational research using data on RSA and NPK
uptake from Arabidopsis and cereal model systems should
continue using key RTC cultivars, as a means to rapidly validate
key findings. Once validated, information on key RSA traits
should be immediately forwarded to breeding programs for
further studies and validation in breeding populations. These
breeding programs should take advantage of available resources
for adapting phenotyping methods for integrating root traits into
existing breeding objectives. Finally, international agricultural
research centers, as well as national institutions that have
mandates in RTCs, should continue to intensify RSA research
investments into their current and future research priorities,
especially under the threat of climate change, vulnerable
agro-ecological landscapes and poverty. During the first Green
Revolution, improved rice and wheat varieties were rapidly
adopted in tropical and subtropical regions that had good
irrigation systems or reliable rainfall (Evenson and Gollin, 2003).
The spread of these improved varieties was associated with the
activity of international agricultural research centers (Evenson
and Gollin, 2003). It has been suggested that a second Green
Revolution, one that incorporates RSA traits, is vital to improve
the yield of crops grown in infertile soils by farmers with
little or no access to fertilizers (Lynch, 2007). Just like the
first Green Revolution, such research centers will likely have
an important role in ushering in the second Green Revolution
(Zeigler and Mohanty, 2010).

CONCLUSION

The agronomic significance of understanding the regulation
of RSA development is now widely accepted because of its
role in soil resource acquisition under edaphic stress. In
well-studied “model” crop species like rice, maize, and soybeans,
the knowledge of RSA has already led to measurable gains in the
ability of these crops to exploit soil resources under low-input
conditions. For example, Zhao et al. (2004) reviewed by Li
et al. (2016), showed that an applied core collection of soybeans
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with shallow root architecture presented improved spatial root
aggregations enhancing P explorations resulting in higher P
efficiency and yield. In maize, Liu et al. (2018) showed a positive
and significant correlation between grain yield and both total root
number and total root length. The tools and approaches that have
been used in cereals can be applied to RTCs, potentially reducing
the costs of research and development, however, these novel
tools and approaches have to be sufficiently modified to account
for real-time tuber and storage root development and growth
as no single phenotyping platform nor specialized analytical
software exists at the moment for RTCs. Unraveling the role of
RSA in RTC nutrient uptake will improve global food security,
especially in regions with marginal soil fertility and low-input
agricultural conditions.
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