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Accurate and high-throughput determination of plant morphological traits is essential
for phenotyping studies. Nowadays, there are many approaches to acquire high-
quality three-dimensional (3D) point clouds of plants. However, it is difficult to estimate
phenotyping parameters accurately of the whole growth stages of maize plants using
these 3D point clouds. In this paper, an accurate skeleton extraction approach was
proposed to bridge the gap between 3D point cloud and phenotyping traits estimation
of maize plants. The algorithm first uses point cloud clustering and color difference
denoising to reduce the noise of the input point clouds. Next, the Laplacian contraction
algorithm is applied to shrink the points. Then the key points representing the skeleton of
the plant are selected through adaptive sampling, and neighboring points are connected
to form a plant skeleton composed of semantic organs. Finally, deviation skeleton points
to the input point cloud are calibrated by building a step forward local coordinate
along the tangent direction of the original points. The proposed approach successfully
generates accurately extracted skeleton from 3D point cloud and helps to estimate
phenotyping parameters with high precision of maize plants. Experimental verification of
the skeleton extraction process, tested using three cultivars and different growth stages
maize, demonstrates that the extracted matches the input point cloud well. Compared
with 3D digitizing data-derived morphological parameters, the NRMSE of leaf length,
leaf inclination angle, leaf top length, leaf azimuthal angle, leaf growth height, and plant
height, estimated using the extracted plant skeleton, are 5.27, 8.37, 5.12, 4.42, 1.53,
and 0.83%, respectively, which could meet the needs of phenotyping analysis. The time
required to process a single maize plant is below 100 s. The proposed approach may
play an important role in further maize research and applications, such as genotype-to-
phenotype study, geometric reconstruction, functional structural maize modeling, and
dynamic growth animation.
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INTRODUCTION

Plant phenomics has gained more attention as a promising
intervention in recent years, because it still remains a bottleneck
that limits genetic gain in breeding programs (Araus et al.,
2018). Accurate and high throughput measurement of high-
dimensional plant morphology across plant development is
the essential component of plant phenotyping (Houle et al.,
2010). Traditional phenotyping technologies are usually time
consuming, low throughput, and labor intensive, which is far
behind the development of genomics, although efforts have been
made to improve phenotyping efficiency (Yang et al., 2013;
Zhang et al., 2017). Substantial changes and improvements in
phenotyping technologies for crops will be required for a long
term (Tester and Langridge, 2010).

Due to the complexity of plant morphometrics, many kinds
of sensors need to be involved to acquire the morphological
data of plants, including RGB cameras (Chaivivatrakul et al.,
2014), depth cameras (Hu et al., 2018), LiDAR (Jimenez-Berni
et al., 2018), and multispectral sensors (Potgieter et al., 2017),
and thousands of images and point clouds are generated. Thus
automatic data processing algorithms and software play an
important role to covert these huge amounts of raw data into clear
meaning phenotyping traits, and further into knowledge (Tardieu
et al., 2017). However, there is none uniform solution for all kinds
of plants, because plant morphology are diverse for different
species. Therefore, specialized plant phenotyping algorithms have
to be developed for architecture determined plants.

Maize is one of the most widely grown crops worldwide and
the structure is relatively simple with one stem and several leaves.
Its levels of phenotypic and genetic variation derived lots of
attention for phenotyping algorithm development as a model
plant (Yan et al., 2011). Recent developments in unmanned aerial
vehicle (UAV) have provided research opportunities in assessing
plot and field scale phenotyping traits (Zaman-Allah et al.,
2015; Yang et al., 2017). Though canopy scale traits, including
normalized difference vegetation index (NDVI), leaf area index
(LAI), nitrogen stress, and plant height, could be derived using
multispectral images and LiDAR, it is impossible to derive
more detailed phenotyping traits, due to the space resolution
of the raw data and occlusion of nearby plants (Pfeiffer et al.,
2018). To meet the needs of ideal plant type genotype breeding
(Zhang et al., 2017), more detailed traits at plant or organ scale
such as leaf length, leaf area, and leaf curvature have to be
obtained. Thus, high throughput phenotyping platforms (Yang
et al., 2014; Cabrera-Bosquet et al., 2016; Guo et al., 2016) in
controlled environment were set up to acquire the morphological
data of individual plants. Consequently, automatic data
processing algorithms have to be developed to deal
with these raw data.

Most of the morphological data of individual plants exist
in terms of two-dimensional (2D) images or three-dimensional
(3D) point clouds (Vazquez-Arellano et al., 2016). The first
process is to segment these data into independent organs with
semantics. Then ideal methods are to 3D reconstruct each
organ into fine organ meshes (Pound et al., 2014; Yin et al.,
2016; Gibbs et al., 2017; Thapa et al., 2018) and then all the

morphological phenotyping traits could be derived, such as
leaf length, leaf width, and accurate leaf area. However, it is
hard to obtain complete morphology of an individual plant
for most cases. Therefore, an alternative way to parse these
organ traits is curve skeleton extraction from 3D point clouds
(Cornea et al., 2007).

Skeleton extraction from 2D images is relatively easier using
image thinning algorithms. However, phenotyping traits, such
as leaf length and leaf azimuth, have to be calibrated owing to
one-dimensional data missing (Klukas et al., 2014; Brichet et al.,
2017; Zhang et al., 2017). It is much more sophisticated of 3D
skeleton extraction of branched structure plants, because another
information has to be considered to determine the skeleton
curve. The most notable curve skeleton extraction algorithms are
rotational symmetry axis (ROSA)-based (Tagliasacchi et al., 2009)
and L1-medial skeleton of point clouds (Huang et al., 2013) for
most incomplete point clouds. These methods are feasible for
cylindrical structure point clouds while not suitable for narrow
and long plant leaves, because there are deviations between
extracted curve and leaf veins. The point cloud of trees without
leaves are featured as cylindrical branched structure, which are
suitable for skeleton extraction (Livny et al., 2010; Delagrange
et al., 2014; Wang et al., 2014). Laplacian skeleton extraction
(Au et al., 2008) from point clouds is another widely used
method, which has been successfully used in performing skeleton
extraction without the need for mesh reconstruction (Su et al.,
2011). Extracted curves from point clouds of long and narrow
leaves using these methods directly are unsatisfactory, and could
not meet the needs of accurate phenotyping traits analysis (Zhang
et al., 2017). Meanwhile, there is an increasing maize plant
morphological data acquisition equipment (Chaudhury et al.,
2017; Gibbs et al., 2018), methods (Hui et al., 2018), and platforms
(Cabrera-Bosquet et al., 2016), obtaining huge amount of high-
quality point clouds. Therefore, developing automatic skeleton
extraction from point clouds for maize leaves and plants is urgent
for phenomic study.

In this study, we applied and improved Laplacian skeleton
extraction method on point clouds of maize plants to achieve
the following three goals: (1) extract the skeleton curve of maize
leaves with less deviation of the stem and veins; (2) improve the
accuracy of phenotyping traits of maize plants, such as leaf length
and leaf azimuth, which needs to be calibrated in image based
methods; and (3) the proposed method is able to solve the point
clouds of the all growth periods of maize plants.

MATERIALS

The experiment was conducted in the farm of Beijing Academy
of Agricultural and Forestry Sciences (39.94 N, 116.28 E)
and maize plants were planted in the field with the density
of 6 plants/m2 (the row distance is 60 cm). Three cultivar
plants, including ZhengDan958 (ZD958), JingKe968 (JK968),
and XiangYu335 (XY335), were selected randomly from jointing
to silking stages. Two sample plants of each three cultivars
were selected. The plants were excavated with 20 cm roots and
soil into pots and moved indoor without any morphological
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damage to avoid generating noise by wind and other external
factors. Many approaches are available for 3D point cloud data
acquisition of maize plants, including multi-view stereo (MVS)
3D reconstruction, 3D scanning, and 3D synthesis by 2D LiDAR.
A terrestrial laser scanner Faro Focus3D X130 was used here
to acquire the point clouds of selected plants indoor. The
scan resolution was 0.035◦ horizontally and vertically with a
maximum distance of 130 m (Johnson and Liscio, 2015; Seidel
et al., 2015). There is integrated camera of the scanner, so the
color information was also acquired simultaneously with the
point clouds. To increase the scanning efficiency, six plants
were placed in two rows and three plants per row and were
scanned together each time, as shown in Figure 1. To promise the
point cloud completeness of each plant, four scanning stations
were arranged sequentially around the target area (Figure 1B).
Four stacks of scanned data at the mentioned position above of
different azimuths were obtained. We registered the four stacks
under the same coordinate system and merged them into a
complete group of point cloud using the supporting software
SCENE provided by FARO. Outlier points, including room walls
and floors, were removed also by SCENE. Each station scanning
takes 5 min. The point cloud contains 3D coordinate and color
information of all the vertices.

METHODS

The pipeline presented here involved five steps, namely, (1)
point cloud denoising; (2) point cloud contraction using
Laplacian; (3) adaptive sampling, (4) skeleton point connection,
and (5) skeleton curve correction. The overall workflow is
described in Figure 2.

Point Cloud Denoising
In the 3D scanning process, even slight wind like human moving
around the plants may lead to overlaps and offsets in the resultant
point clouds. In addition, the point cloud of pots, used to load
and hold the maize plant, also needs to be detected and deleted.
Therefore, we have to pre-process the point cloud before further
operation. The obtained point clouds were dense and the number
of points describing a grown up maize plant could reach up to
50 thousand points. In order to improve the efficiency of the
following algorithm, a uniform simplification algorithm (Han
et al., 2015) was applied to reduce the density of the dense point
clouds. Empirical results showed that when the density of the
point cloud of each maize plant was reduced to about 10 thousand
points, the accuracy of the algorithm would not be affected too
much and also be satisfactory.

FIGURE 1 | Maize plant point cloud scanning scene and point cloud visualization. (A) Faro Focus3D X130 3D scanner. (B) 3D scanning arrangement: A1∼A6 are
maize plants, B1∼B4 are the positions where the scanner placed, and C1∼C5 are the scanning positioning balls used for software registration placed in different
heights. Adjacent plants are generally arranged with the distance of 0.8–1 m, and the scanner positions were 1 m away from the nearest plant. (C) Photograph of
scanning plant arrangement. (D) Raw 3D point cloud visualization corresponding to (C). White lines were observed in (C,D).

FIGURE 2 | Workflow of skeleton extraction from point clouds of maize plants. (A) Input point cloud. (B) Point cloud after denoising. (C) Key points contraction of
the skeleton using Laplacian. (D) Skeleton point resampling and connection. (E) Stem and leaf point recognition. (F) Skeleton points calibration. (G) Final skeleton
extraction result. (H) Matching visualization of the input point cloud and the extracted skeleton.
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Pot Points Detection
The pots were usually used in many maize plant phenotyping
platforms, such as potting plants in greenhouse and transplanting
in field cases, they play an important role in holding the plant
stable. To detect and delete the points of the pots, a color
difference denoising method (Dun et al., 2011) was used to filter
the noise of the pots. First, the RGB color values of the pot,
manually picked originally under stable light conditions of data
acquisition site, are sampled to form a noise color list. Then, the
color difference D between each point of the noise color list point
and the point cloud P is calculated using the equation set (1)
and (2). If the color difference value D is less than a threshold
(here it is 0.1), it indicates that the point is a noise point and is
thus removed.

D(pi, pj) = 2
∣∣∣∣max(ηi, ηj)

min(ηi, ηj)
− 1

∣∣∣∣ θ (1)

θ = arccos
( −→pi−→pj∣∣−→pi ∣∣ ∣∣−→pj ∣∣

)
255
π/2

(2)

where pi(ri, gi, bi) and pj(rj, gj, bj) are two points, r, g, and
b are the color components of each point, with −→pi and −→pj
as the corresponding vectors, and η = (r + g + b)/3, and−→p =
(r − µ, g − µ, b− µ) Figure 3 illustrates the point clouds
of detected pots.

Plant Denoising
A near propagation clustering algorithm was proposed to filter
the scanning noise of plants, inspired by the K nearest neighbor
clustering algorithm (Connor and Kumar, 2010). There are five
steps of this algorithm (Figure 4).

(1) Randomly select any point p in the point cloud, and
identify the nearest NP neighboring points within a
distance parameter r around the point p. Then mark
the point p and its Np neighbors as the access state.

Here r = 0.012l, where l is the longest diagonal of the point
cloud bounding box.

(2) Store the point p and its Np neighbors into a cluster list T,
and store the Np neighbors into a search list M.

(3) Traverse through the list M. For each point m in M, find its
nearest neighboring points also within the range of r. Then
for each point pm in m’s neighborhood, if the point pm has
not been visited, save it to the cluster list T as well as the
search list M. Once visited, delete it from the search list M.
The process continues till the linked list M is empty and an
empty index (the index is −1 in cluster list T in Figure 4)
is inserted to segment the cluster list T.

(4) The nearest neighbor clustering operations described
above are iteratively applied until the states of all the points
in the cloud are marked.

(5) The clustering point cloud is sorted according to
the number of points in the cloud, and the clusters
with number of points less than the threshold
are considered as the noisy point clouds and are
deleted. In practice, the threshold is calculated by:
n = 0.5

∑num
i=0 density(pi, r)/num, where density(p, r) is

the density of the point cloud (Wu et al., 2017). In order
to improve the efficiency, the parameter num was set 10,
determined through many numerical experiments, and
these num points are randomly selected in the point cloud.
Figure 3 shows the point clouds after plant denoising and
the corresponding noises.

Laplacian Point Cloud Contraction
The point cloud of a maize plant is iteratively contracted using
the classical restricted Laplace operator (Cao et al., 2010). It is
represented as follows:

[
Wt

LL
t

Wt
H

]
Pt+1
=

[
0
Wt

HP
t

]
(3)

FIGURE 3 | Illustration of the denoising process; the 3D scanned data are separated into three parts: pot noise, plant noise, and point cloud of individual plants.
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FIGURE 4 | Flowchart of the clustering algorithm.

FIGURE 5 | Schematic diagram of contraction iteration process. (A) Point cloud after denoising also as the input of the Laplacian contraction. (B–E) One to four
times iterations. (F) Contraction result matching the point cloud after denoising. Note: the green points are skeleton points and black dots represent the point cloud.
The same expressions are used in the rest of this paper.

Here P is the processing point cloud. L is the weighted cotangent
matrix which is constructed using the Delaunay neighborhood
points; WL and WH are the diagonal matrices, where WL
controls the intensity of contraction, and WH controls the
intensity of the original position. This ensures that the point
cloud of the contraction equation moves along the estimated
normal direction.

The iterative shrinkage process can be described as follows:
Eq. 3 is used to solve and Pt+1 is derived. Then WL and
WH are updated using Eq. 4. Here Stiand S0

i are the current
and the initial neighborhood length of the contraction point
pi, respectively. This allows us to obtain the new point cloud
Pt+1. Next, reconstruct the Laplacian matrix Lt+1 using the new
point cloud Pt+1.The termination condition of the iteration is
Wt+1

L /Wt
L < 0.01 or the count of iteration is greater than 20.

Generally, after a finite number of iterations, the point cloud P
shrinks to the shape of the skeleton. As shown in Figure 5, the
maize plant point cloud has shrunk to a better skeleton shape after
four iterations of contraction.

Wt+1
L = SLWt

L ,Wt+1
H,i =W0

H,iS
0
i /S

t
i (4)

Adaptive Sampling
Point clouds of maize plants shrunk into skeleton shape
using the above Laplacian shrinkage. However, the number
of points remains the same even though the shape changes.

It is necessary to adaptively sample and identify the key points
of the skeleton in the point cloud. In order to maintain the
geometric characteristics of the branches, different spherical
radius sampling technology was used at the intersections and the
branches (leaves and stems). Radius of the sampling sphere is
smaller at the intersections than in the branches. To determine
whether a point v is located at the intersections, the directionality
degree l(v) of point v is introduced to describe the linear trend at
the current point (Su et al., 2011). This directionality degree l(v)
is obtained using the 3 × 3 covariance matrix C of the sampled
sphere (Eq. 5) as expressed as follows:

C =

 v1 −
−
v

...

vk −
−
v


T  v1 −

−
v

...

vk −
−
v

 (5)

C · Vl = λl · Vl, l ∈ {0, 1, 2} (6)

l(v) =
λ2

λ0 + λ1 + λ2
(7)

where v1, ...vk are local k-neighborhood of p; v is the centroid of
the neighbors of p, namely, v = 1

k
∑

i∈k vi. Vl is the eigenvector
of matrix C, and is the eigenvalue of matrix C. It λlis assumed
that λ0 ≤ λ1 ≤ λ2. The closer l(v) is to 1, the smaller λ0 and λ1
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FIGURE 6 | Adaptive sampling of skeleton points. (A) Leaf points sampling.
(B) Branching point sampling. (C) Sampling result. (D) Matching effect of
sampling point and original point cloud.

are compared to λ2; and hence, the more points around v are
aligned along a branch.

Experiments show that l(v) is greater than 0.9 at the
intersections and whereas otherwise. After the adaptive
sampling processing, the shrinkage point cloud is reduced
to the skeleton key points, and the resultant skeleton has
a sparse number of points. As shown in Figure 6, the
sampling accuracy obtained is better after the adaptive
sampling results and the obtained results match the
original point cloud.

Skeleton Point Connection
To estimate the phenotyping traits of maize plant using the
extracted skeleton curve, semantic connection key points have
to be determined. Every key point in the extracted skeleton has
a maximum of three neighboring points since maize plant has a
single branch structure. Therefore, if three nearest neighboring
points are connected, the skeleton will end up as an undirected
digraph. However, as shown in Figures 7A, 8A, two types of
closed connection loop errors might appear: (1) triangle closed
connection loop (Figure 7B) or (2) polygon closed connection
loop. The skeleton of the maize plant has the characteristics that
nearby points are approximately coplanar and show convergence
in the direction of the growth. Therefore, we construct the
constraint model of the morphological structure of the maize

FIGURE 8 | Key point connection and extraction result of stem and leaf. (A) K
(k = 3) nearest neighbor connection. (B) Closed loop removal. (C)
Segmentation and recognition of stem and leaves in different colors.

plant and apply the connected weight equation to break the
closed loops:

W = [Ws/ max(Wsi)] + [Wc/ max(Wci)] (8)

ax+ by+ cz + d = 0 (9)

e =
n∑

i=1

d2
i → min (10)

Ws = di + di+1 (11)

Wc = αi + αi+1 (12)

Here Ws and Wc are the approximate coplanar weight and
the growth weight of the edge, respectively. For the approximate
coplanar weight (shown in Figure 7C), the least squares
algorithm (Zeng et al., 2012) is used to fit the closed loop nodes.
And the minimum distance from each point to the plane (Eq. 10)
is used as the constraint condition for solving for the fitting
plane, and a, b, c, and d are the parameters of the plane equation
(Eq. 9). The coplanar weights of the edges are the sum of the
distances from the two fixed points to the fitted planes (Eq. 11).
To determine the growth weights (shown in Figure 7D), the angle
between the edge and its two adjacent edges in the direction of the
growth is calculated (Eq. 12). In order to ensure the equality while

FIGURE 7 | Schematic diagram of skeleton connection and closed loop breaking, “⊗” represents disconnection. (A) Three nearest neighbor skeleton connection.
(B) Triangle closed loop. (C) Approximately coplanar. (D) Growth direction convergence.
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FIGURE 9 | Offset illustration of contracted skeleton point. (A) Stem skeleton
curving. (B) Vein points deviation. (C) Tip nodes short missing.

comparing the weights, we rescale and normalize the weights
(Eq. 8). Subsequently, to obtain the weight of each connecting
edge, we disconnect the edge from the edge with the maximum
weight (shown in Figure 7D).

After the closed loop searching and processing as explained
above, the skeleton of a maize plant connected as a tree structure
is obtained, as shown in Figure 8B. And the plant skeleton is
easily segmented into leaves and stem skeleton nodes by the
three connected points in the skeleton. The segmented result is
visualized as Figure 8C.

Skeleton Point Calibration
The extracted skeleton of a maize plant using the above procedure
contains many curving sections, especially the sections near the
stem, where the skeletons ought to be linear straight. This severely
affects the further estimation of phenotyping traits. Existing
problems of the skeleton (Tagliasacchi et al., 2009; Cao et al.,
2010) that must be corrected here could be summarized as two
categories: (1) stem curving, as shown in Figure 9A, (2) too much

deviation from the vein (as shown in Figure 9B), and tip missing
at the end of the leaves (as shown in Figure 9C). Therefore,
resampling strategy is adopted to calibrate the skeletons.

Stem Skeleton Calibration
The bent points of extracted stem skeleton are generated because
the attraction of the adjacent leaves while executing the Laplacian
contraction algorithm. However, this only affects the nearby
points, and the stem nodes which are away from the leaves are
not affected. Therefore, the stem skeleton is calibrated using the
unaffected points of the stems. According to the segmentation
and recognition of stem and leaves in Section “Stem Skeleton
Calibration,” leaf growth point is defined as the interaction points
of leaf with adjacent stem. The leaf growth points segment the
entire stem into several sections. For each stem section, the
extracted stem points in previous processes, barring the leaf
growth points at both ends of the considered stem section, are
used to fit a straight line segment based on least square distance.
Finally, all the extracted skeleton points on the current stem
section are projected on the new fitted line segment and are thus
calibrated, as shown in Figure 10A.

Leaf Skeleton Calibration
To calibrate the skeleton points along the vein deviation (shown
in Figure 10B), especially for the curved arc that usually located
between the highest position on the blade and its base, we sample
and calibrate all the deviated points of the skeleton starting
from the blade base toward the tangential direction. First, the
tangent line −→p = p1p2 is constructed through the adjacent vein
skeleton points p1 and p2. Then a cutting plane α (Figure 10C)
perpendicular to −→p through p2 interacts with the original point
cloud of the leaf as the intersection set (Figure 10D). The central
point of the set is the calibrated point of p2 and located on/near
the vein curve. The excessive contraction problem of leaf tip
is solved in the same way. Whereas the cutting plane here is
constructed at a certain length interval, and the most suitable

FIGURE 10 | Skeleton calibration process. (A) Calibrated stem skeleton. (B) Vein curve error. (C) Cutting plane perpendicular to the tangent direction of the vein
curve. (D) Cutting points of vein curve. (E) Calibrated vein curve.
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point on this plane is identified as the leaf tip. As shown in
Figure 10E, we continue to move forward of the cutting plane
until the entire cutting point cloud is empty, and the vein
skeleton is calibrated.

RESULTS

The algorithm was implemented using OpenGL graphics library
and Point Cloud Library (PCL; Rusu and Cousins, 2011)

FIGURE 11 | Skeleton extraction procedure visualization of different cultivars and growth stages. From top to down, we have ZD958 of jointing stage, ZD958 of flare
opening stage, JK968 of silking stage, XY335 of silking stage, and ZD958 of silking stage. (A) Input point cloud. (B) Plant point cloud after denoising. (C) Extracted
skeleton using Laplacian and key point connection. (D) Final extracted skeleton after calibration. (E) Matching result of extracted skeleton and input point cloud
without pot.
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FIGURE 12 | Matching visualization of extracted skeletons and original point
clouds in different angle of views. The top row is ZD958 of jointing stage
(corresponding to the first row in Figure 11), and the bottom row is JK968 of
silking stage (corresponding to the third row in Figure 11).

in VC++ 2010 development platform. The algorithm was
integrated into the software PlantCAD_Maize, which is one
of our serious plant modeling software PlantCAD (Lu et al.,
2014). The algorithm runs on a desktop workstation with the
configuration of core i5 processor and 4 GB memory.

Visualization Results
Maize plants of different cultivars and growth stages were selected
to evaluate the performance of the algorithm. Figure 11 shows
five visualization results processed by the approach, including
three growth stage plus three different cultivars of maize plants.
Figure 12 shows two corresponding matching visualization in
different angle of views. The matching results of extracted
skeleton and the original point cloud demonstrate that the
proposed algorithm has a good performance and adaptability,
and the approach is feasible for different plant size and different
plant type plants.

Accuracy Analysis of Phenotypic Traits
Using the Extracted Skeleton
The extracted skeleton of maize plant contains segmentation
of organs and semantic meaning of each organ, which allows

rapid estimation of phenotyping parameters, including plant
height and volume in plant scale, and leaf length, leaf inclination
angle, leaf azimuth, and more traits in organ scale. Detailed
morphological parameters are explained in Figure 13 (Zhang
et al., 2017). Particularly, the leaf azimuthal angles are calculated
through comparing the difference between the target leaf and
the lowest leaf, where the azimuth of the lowest leaf is
assumed to be 0.

To verify the accuracy of the skeleton extraction algorithm,
3D digitization data of corresponding maize plants were acquired
using a 3D digitizer (Wen et al., 2017). The equipment used
here is FastRak (Polhemuns, United States; Everhart et al., 2009).
The acquired data do not need any further processing due to
the semantic characteristics of each obtained point (Sinoquet
et al., 1998). Therefore, the skeleton data obtained using the 3D
digitizer could be considered as the real skeleton if we ignore the
influence of any human error. So we used these 3D digitizing
data as the ground truth for evaluating the algorithm. Figure 14
shows six estimated phenotyping parameter (leaf length, leaf
inclination angle, leaf top length, leaf azimuthal angle, height of
leaf position, and plant height) comparison between the extracted
skeleton from point cloud and 3D digitizing data of the same
six plants used in our experiment. The average normalized root-
mean-square error (NRMSE) of plant height is the smallest,
which is 0.83%, and the NRMSE of leaf inclination angle is the
largest, which is 8.37%. The R2 of all phenotypic parameters
are above 0.93, indicating that there is a high consistency of
estimated phenotyping traits between the extracted skeleton and
the measured data. In particular, the plant height can be derived
by calculating directly from the point cloud for most of the
plants. However, some of the plants were declining and the plant
height calculation was not so accurate for these plants. Thus,
plant skeletonization steps, containing the calibration of stem
orientations, would promise a more satisfactory result of plant
height estimation.

We also compare the proposed algorithm with the previous
constrained Laplacian smoothing (CLS) point cloud contraction
algorithm (Su et al., 2011). Plants of three cultivars were
segmented into up and down layers by the ear-leaf, and five
phenotyping parameters were estimated of the two layers. Table 1
gives the average of the five phenotyping parameters estimated
using these two methods. It shows that calculation error derived

FIGURE 13 | Measurement principle of phenotypic parameters. (A) Leaf length: the sum of the distance between the key points of the skeleton from the base point
to the tip of the leaf. (B) Leaf inclination angle: the angle between the tangent of the leaf base and the axis of the stem. (C) Leaf top length: the length from the base
of the leaf to the highest point of the leaf. (D) Leaf growth height: the vertical distance from the base of the leaf to the base of the stem. (E) Leaf azimuthal angle: the
angle between the leaf and the base leaf (counter clockwise). (F) Plant height: the vertical distance from the highest point of the plant skeleton to the base point of
the plant.
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FIGURE 14 | Comparison of six phenotyping traits derived using the extracted skeleton from point clouds and measured 3D digitizing data of six same maize plants.
There are 71 leaves in total of the six plants.

TABLE 1 | NRMSE (%) comparison of five phenotyping traits derived using the extracted skeleton between our and CLS method.

Leaf inclination Leaf top Leaf azimuthal Height of

Cultivar Layer Leaf length angle length angle leaf position

Our CLS Our CLS Our CLS Our CLS Our CLS

JK968 Up 5.28 11.20 6.70 13.00 6.64 13.64 5.36 8.60 1.03 1.47

Down 4.14 7.09 8.85 16.94 5.28 8.16 3.27 6.25 2.96 4.95

ZD958 Up 5.84 10.45 12.19 25.78 5.13 7.26 2.91 4.90 1.79 4.94

Down 5.28 7.92 7.19 12.78 6.15 12.49 5.44 9.07 4.43 7.73

XY335 Up 5.12 10.71 12.64 23.21 5.68 14.22 5.07 7.84 0.85 1.75

Down 3.12 5.15 8.10 12.72 4.53 6.79 4.69 7.40 1.73 2.94

Average 5.27 9.89 8.37 15.83 5.12 9.60 4.42 6.91 1.53 2.77

using the proposed approach is almost half of the CLS algorithm,
and the errors are relatively lower for different cultivars of maize
plant phenotyping traits.

Efficiency
Depending on the high accuracy of the 3D scanner used, high
density point clouds of maize plants are obtained. Taking a
silking stage maize plant as example, its point cloud contains
140 thousand points, as shown in Figure 15. According to the
proposed approach, the skeleton could be extracted with different
sampling point number as the input. In Figure 15B–M, it could
be observed that the shape and structure of the skeleton still
keeps a good approximate effect when the number of sample
points is kept at about 10 thousand points. Therefore, we select
10 thousand points as the optimal sampling number for a maize
plant of the approach.

In practice, the longest time consumed by the algorithm is
K nearest neighborhood calculation of the input point cloud.
Therefore, the computational efficiency of the algorithm can
be improved reducing the number of point clouds as much

as possible. However, as mentioned above, the optimal input
point cloud number is 10 thousand. The total time taken for the
extraction of the skeleton of a maize plant with about 10 thousand
points is about 60 s excluding device scanning time. Figure 16
illustrates the time consumed of the algorithm increases with the
point cloud size increases, while the RMSE of leaf length, leaf
inclination angle, and leaf azimuth angle becomes smaller. And
the approach of this paper does not significantly increase the time
consumption compared to the CLS algorithm (Su et al., 2011).
The calculation will become faster if the approach runs on high
configuration computers. This is much faster than traditional
manual skeleton data acquisition using 3D digitizers.

DISCUSSION

The processing approach reported here can accurately extract
skeleton from 3D point cloud of maize plant, it can approximate
the geometric centric of plant organs, such as the vein of
the leaves and the central axis of the stem. On the basis of
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FIGURE 15 | Skeleton contraction effect of different number of input points, (A) and (N) are point clouds of maize plants with points 142,579 and 2,615,
respectively. (B) Num = 142,579. (C) Num = 100,213. (D) Num = 68,789. (E) Num = 39,857. (F) Num = 25,110. (G) Num = 15,820. (H) Num = 11,047.
(I) Num = 8725. (J) Num = 6805. (K) Num = 5044. (L) Num = 3826. (M) Num = 2615.

FIGURE 16 | Comparison of calculation efficiency and RMSE dynamic of three phenotyping traits for different sampling point number of maize plants.

which, phenotyping traits could be calculated accurately, which
provides useful information for genomic studies and/or breeding
programs (Fiorani and Schurr, 2013; Fahlgren et al., 2015;
Yang et al., 2015). At present, most phenotyping platforms
using image-based skeleton extraction algorithms (Cabrera-
Bosquet et al., 2016; Zhang et al., 2017) for calculating
phenotyping traits, which is difficult to extract morphological
parameters in the other dimensional, such as leaf width and leaf
azimuthal angle. The proposed approach provides an effective
solution of the above issue using 3D point cloud data as its
input. At present, there are many routines to obtain high
accuracy and high-quality point clouds of plants, including data

acquisition using 3D scanners (Yin et al., 2016), MVS-based
3D reconstruction (Gibbs et al., 2018), 3D synthesis by 2D
LiDAR combined with plant rotation (Thapa et al., 2018). Using
these 3D point clouds of plants, this algorithm will play an
important role in further maize phenotyping data processing and
analysis (Zhang et al., 2017).

Besides estimating phenotyping parameters for genotype-to-
phenotype study, plant skeleton also plays an important role
in many virtual agricultural applications, such as geometric
modeling, animation, shape deformation, and growth simulation
(Wade and Parent, 2002; Yan et al., 2008). Combined with delicate
leaf meshes which present detailed morphological differences
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of diverse maize cultivars (Wen et al., 2017), it is possible to
design and reconstruct various 3D maize plant models using
the extracted skeleton, using skeleton driving mesh deformation
technologies (Yan et al., 2008). High-quality reconstructed
plants and canopy may promote the development of functional
structural plant models (FSPMs; Vos et al., 2010) to a more
accurate level. For example, accurate reconstructed 3D canopy
model provides a precise basis for light distribution simulation
and verification (Chelle and Andrieu, 1998; Cieslak et al., 2008),
as well as further photosynthesis modeling (Evers et al., 2010).

We also note three limitations of the proposed approach.
First, due to the 3D resolution of point cloud differs to most
of the plant organs, the extracted skeleton of tassel and female
ears are not satisfactory. Some of the tassels are extracted as
only one truck, missing the other branches. And the female ears
are always integrated into the ear leaf skeleton. This may be
resolved when the point cloud density and accuracy of tassel
and female ear improve. Second, the upper leaves of the maize
plant are usually compact or incompletely unfolded, which makes
it difficult to completely separate the leaf point cloud from the
stem, and the compact structure shows that the leaves and stalks
block each other, resulting in a loss of points, which brings
higher error rate of upper than lower leaves (see Table 1).
At present, some of the 3D maize phenotyping approaches
successfully solved the 3D skeleton extraction and reconstruction
of early growth stage maize plants, but plants after silking stage
remain a problem due to the occlusion of upper parts of the
plants (Garrido et al., 2015; Thapa et al., 2018). In practical
applications of our approach, these deviations can be corrected
through simple human interaction, and we provide interactively
modified functional modules in the algorithm integrated software
PlantCAD (Lu et al., 2014). At last, this approach is not applicable
for outdoor and in situ data acquisition when the wind speed
is greater than 2 m/s. The presence of wind would create
noises which seriously affect the quality of the obtained data
decreasing the accuracy of the extracted skeleton, especially at
the intersection of the blade and the stem. In the event of no
winds and stable radiations in field conditions, the target plants
must be sparse enough for scanning to avoid intersection and
occlusions of adjacent plants, which would decrease the noise and
deficiency of points. In this case, the 3D point cloud acquired
would be satisfactory for this approach and same skeleton would

be extracted as indoors. Therefore, our future work will improve
this approach that could be more robust and effective for rough
point clouds of maize plants.

CONCLUSION

This paper presents a skeleton extraction approach of a maize
plants from 3D point clouds. Five process including point
cloud denoising, point cloud contraction using Laplacian,
adaptive sampling, skeleton point connection, and skeleton
curve correction are sequentially applied on input point cloud
of maize. Consequently, a semantic and accurate maize plant
skeleton will be derived. Phenotyping parameters of plant and
organ scale could be calculated on the basis of the extracted
skeleton. Experiments performed using the proposed approach
on different cultivars and growth stages of maize plants show
that the extracted skeleton was highly consistent with the original
point cloud. The complete processing of the algorithm takes less
than 100 s of a maize plant. The process is therefore robust,
accurate, and efficient. Therefore, this algorithm can provide
technical support for the development of automatic tools for
maize phenotyping data processing and analysis.

AUTHOR CONTRIBUTIONS

SW proposed and developed the approach, and wrote methods
of this article. WW wrote other parts of the article and acquired
the 3D point clouds of plants. BX evaluated the accuracy of the
approach. XG designed the study. JD and CW improved the
approach in some details. YW acquired the 3D digitizing data.

FUNDING

This work was partially supported by China Postdoctoral
Science Foundation (2018M631380), Beijing Postdoctoral
Research Foundation, the National Natural Science Foundation
of China (31601215), Beijing Municipal Natural Science
Foundation (4162028), and Scientific and Technological
Innovation Team of Beijing Academy of Agriculture and Forestry
Sciences (JNKYT201604).

REFERENCES
Araus, J. L., Kefauver, S. C., Zaman-Allah, M., Olsen, M. S., and Cairns, J. E. (2018).

Translating high-throughput phenotyping into genetic gain. Trends Plant Sci.
23, 451–466. doi: 10.1016/j.tplants.2018.02.001

Au, O. K. C., Tai, C. L., Chu, H. K., Cohen-Or, D., and Lee, T. Y. (2008).
Skeleton extraction by mesh contraction. ACM Trans. Graph. 27:10. doi: 10.
1145/1360612.1360643

Brichet, N., Fournier, C., Turc, O., Strauss, O., Artzet, S., Pradal, C., et al. (2017).
A robot-assisted imaging pipeline for tracking the growths of maize ear and
silks in a high-throughput phenotyping platform. Plant Methods 13:12. doi:
10.1186/s13007-017-0246-7

Cabrera-Bosquet, L., Fournier, C., Brichet, N., Welcker, C., Suard, B., and
Tardieu, F. (2016). High-throughput estimation of incident light, light

interception and radiation-use efficiency of thousands of plants in a
phenotyping platform. New Phytol. 212, 269–281. doi: 10.1111/nph.14027

Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su, Z. (2010). “Point
cloud skeletons via laplacian based contraction,” in Proceedings of the 2010
Shape Modeling International Conference, (Aix-en-Provence: IEEE Computer
Society). doi: 10.1109/SMI.2010.25

Chaivivatrakul, S., Tang, L., Dailey, M. N., and Nakarmi, A. D. (2014). Automatic
morphological trait characterization for corn plants via 3d holographic
reconstruction. Comput. Electron. Agric. 109, 109–123. doi: 10.1016/j.compag.
2014.09.005

Chaudhury, A., Barron, J. L. Talasaz, A., Ivanov, A. G., Brophy, M., and
Grodsinski, B. (2017). “Machine vision system for 3d plant phenotyping,”
in Proceedings of the IEEE/ACM Transactions on Computational Biology and
Bioinformatics, (Shanghai: IEEE).

Frontiers in Plant Science | www.frontiersin.org 12 March 2019 | Volume 10 | Article 248

https://doi.org/10.1016/j.tplants.2018.02.001
https://doi.org/10.1145/1360612.1360643
https://doi.org/10.1145/1360612.1360643
https://doi.org/10.1186/s13007-017-0246-7
https://doi.org/10.1186/s13007-017-0246-7
https://doi.org/10.1111/nph.14027
https://doi.org/10.1109/SMI.2010.25
https://doi.org/10.1016/j.compag.2014.09.005
https://doi.org/10.1016/j.compag.2014.09.005
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00248 March 5, 2019 Time: 19:7 # 13

Wu et al. 3D Skeleton Extraction of Maize Plant

Chelle, M., and Andrieu, B. (1998). The nested radiosity model for the distribution
of light within plant canopies. Ecol. Model. 111, 75–91. doi: 10.1016/S0304-
3800(98)00100-8

Cieslak, M., Lemieux, C., Hanan, J., and Prusinkiewicz, P. (2008). Quasi-monte
carlo simulation of the light environment of plants. Funct. Plant Biol. 35,
837–849. doi: 10.1071/FP08082

Connor, M., and Kumar, P. (2010). Fast construction of k-nearest neighbor graphs
for point clouds. IEEE Trans. Vis. Comput. Graph. 16, 599–608. doi: 10.1109/
tvcg.2010.9

Cornea, N. D., Silver, D., and Min, P. (2007). Curve-skeleton properties,
applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13, 530–548.
doi: 10.1109/tvcg.2007.1002

Delagrange, S., Jauvin, C., and Rochon, P. (2014). Pypetree: a tool for
reconstructing tree perennial tissues from point clouds. Sensors 14, 4271–4289.
doi: 10.3390/s140304271

Dun, S. K., Wei, H. P., and Sun, M. Z. (2011). A new distance color difference
formula in rgb color space. Sci. Technol. Eng. 11, 1833–1836. doi: 10.3969/j.issn.
1671-1815.2011.08.041

Everhart, S. E., Scherm, H., Askew, A., Seymour, L., and Holb, I. J. (2009). Three-
dimensional spatial patterns of brown rot symptoms within sour cherry tree
canopies in hungary. Phytopathology 99, S33–S33.

Evers, J. B., Vos, J., Yin, X., Romero, P., van, der Putten PE, and Struik, P. C.
(2010). Simulation of wheat growth and development based on organ-level
photosynthesis and assimilate allocation. J. Exp. Bot. 61, 2203–2216. doi: 10.
1093/jxb/erq025

Fahlgren, N., Gehan, M. A., and Baxter, I. (2015). Lights, camera, action: high-
throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol.
24, 93–99. doi: 10.1016/j.pbi.2015.02.006

Fiorani, F., and Schurr, U. (2013). Future scenarios for plant phenotyping. Annu.
Rev. Plant Biol. 64, 267–291. doi: 10.1146/annurev-arplant-050312-120137

Garrido, M., Paraforos, D. S., Reiser, D., Vazquez Arellano, M., Griepentrog,
H. W., Valero, C. (2015). 3d maize plant reconstruction based on georeferenced
overlapping lidar point clouds. Remote Sens. 7, 17077–17096. doi: 10.3390/
rs71215870

Gibbs, J. A., Pound, M., French, A. P., Wells, D. M., Murchie, E., Tony, P. (2017).
Approaches to three-dimensional reconstruction of plant shoot topology and
geometry. Funct. Plant Biol. 44, 62–75. doi: 10.1071/FP16167

Gibbs, J. A., Pound, M., French, A. P., Wells, D. M., Murchie, E., and Pridmore, T.
(2018). Plant phenotyping: an active vision cell for three-dimensional plant
shoot reconstruction. Plant Physiol. 178, 524–534. doi: 10.1104/pp.18.00664

Guo, Q., Wu, F., Pang, S., Zhao, X., Chen, L., Liu, J., et al. (2016). Crop 3d: a
platform based on lidar for 3d high-throughput crop phenotyping. Sci. Sinica
46, 1210–1221. doi: 10.1360/N052016-00009

Han, H. Y., Han, X., Sun, F. S., and Huang, C. Y. (2015). Point cloud simplification
with preserved edge based on normal vector. Optik 126, 2157–2162. doi: 10.
1016/j.ijleo.2015.05.092

Houle, D., Govindaraju, D. R., and Omholt, S. (2010). Phenomics: the next
challenge. Nat. Rev. Genet. 11, 855–866. doi: 10.1038/nrg2897

Hu, Y., Wang, L., Xiang, L., Wu, Q., and Jiang, H. (2018). Automatic non-
destructive growth measurement of leafy vegetables based on kinect. Sensors
18:806. doi: 10.3390/s18030806

Huang, H., Wu, S. H., Cohen-Or, D., Gong, M. L., Zhang, H., Li, G., et al. (2013).
L-1-medial skeleton of point cloud. ACM Trans. Graph. 32:8. doi: 10.1145/
2461912.2461913

Hui, F., Zhu, J., Hu, P., Meng, L., Zhu, B., Guo, Y., et al. (2018). Image-based
dynamic quantification and high-accuracy 3d evaluation of canopy structure
of plant populations. Ann. Bot. 121, 1079–1088. doi: 10.1093/aob/mcy016

Jimenez-Berni, J. A., Deery, D. M., Rozas-Larraondo, P., Condon, A. T. G.,
Rebetzke, G. J., James, R. A., et al. (2018). High throughput determination of
plant height, ground cover, and above-ground biomass in wheat with lidar.
Front. Plant Sci. 9:18. doi: 10.3389/fpls.2018.00237

Johnson, M., and Liscio, E. (2015). Suspect height estimation using the faro
focus(3d) laser scanner. J. Foren. Sci. 60, 1582–1588. doi: 10.1111/1556-4029.
12829

Klukas, C., Chen, D. J., and Pape, J. M. (2014). Integrated analysis platform: an
open-source information system for high-throughput plant phenotyping. Plant
Physiol. 165, 506–518. doi: 10.1104/pp.113.233932

Livny, Y., Yan, F. L., Olson, M., Chen, B. Q., Zhang, H., El-Sana, J. (2010).
Automatic reconstruction of tree skeletal structures from point clouds. ACM
Trans. Graph. 29:8. doi: 10.1145/1866158.1866177

Lu, S., Guo, X., Wen, W., Xiao, B., Wang, C., Du, J., et al. (2014). “Plantcad:An
integrated graphic toolkit for modeling and analyzing plant structure,” in
Proceedings of the 2014 IEEE International Conference on Progress in Informatics
and Computing, (Shanghai: IEEE), 378–384. doi: 10.1109/PIC.2014.69
72361

Pfeiffer, S. A., Guevara, J., Cheein, F. A., and Sanz, R. (2018). Mechatronic terrestrial
lidar for canopy porosity and crown surface estimation. Comput. Electron.
Agric. 146, 104–113. doi: 10.1016/j.compag.2018.01.022

Potgieter, A. B., George-Jaeggli, B., Chapman, S. C., Laws, K., Suárez Cadavid,
L. A., Wixted, J., et al. (2017). Multi-spectral imaging from an unmanned
aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum
breeding lines. Front. Plant Sci. 8:11. doi: 10.3389/fpls.2017.01532

Pound, M. P., French, A. P., Murchie, E. H., and Pridmore, T. P. (2014). Automated
recovery of three-dimensional models of plant shoots from multiple color
images. Plant Physiol. 166, 1688–1801. doi: 10.1104/pp.114.248971

Rusu, R. B., and Cousins, S. (2011). “3d is here: Point cloud library (pcl),” in
Proceedings of the IEEE International Conference on Robotics and Automation,
(Shanghai: IEEE), 1–4. doi: 10.1109/ICRA.2011.5980567

Seidel, D., Ammer, C., and Puettmann, K. (2015). Describing forest canopy
gaps efficiently, accurately, and objectively: new prospects through the use
of terrestrial laser scanning. Agr. Forest Meteorol. 213, 23–32. doi: 10.1016/j.
agrformet.2015.06.006

Sinoquet, H., Thanisawanyangkura, S., Mabrouk, H., and Kasemsap, P. (1998).
Characterization of the light environment in canopies using 3d digitising and
image processing. Ann. Bot. 82, 203–212. doi: 10.1006/anbo.1998.0665

Su, Z. X., Zhao, Y. D., Zhao, C. J., Guo, X. Y., and Li, Z. Y. (2011). Skeleton
extraction for tree models. Math. Comput. Model. 54, 1115–1120. doi: 10.1016/
j.mcm.2010.11.043

Tagliasacchi, A., Zhang, H., and Cohen-Or, D. (2009). Curve skeleton extraction
from incomplete point cloud. ACM Trans. Graph. 28:9. doi: 10.1145/1531326.
1531377

Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., and Bennett, M. (2017). Plant
phenomics, from sensors to knowledge. Curr. Biol. 27, R770–R783. doi: 10.
1016/j.cub.2017.05.055

Tester, M., and Langridge, P. (2010). Breeding technologies to increase crop
production in a changing world. Science 327, 818–822. doi: 10.1126/science.
1183700

Thapa, S., Zhu, F., Walia, H., Yu, H., and Ge, Y. (2018). A novel lidar-based
instrument for high-throughput, 3d measurement of morphological traits in
maize and sorghum. Sensors 18:1187. doi: 10.3390/s18041187

Vazquez-Arellano, M., Griepentrog, H. W., Reiser, D., and Paraforos, D. S. (2016).
3-d imaging systems for agricultural applications-a review. Sensors 16:24. doi:
10.3390/s16050618

Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., and de, Visser
PH (2010). Functional-structural plant modelling: a new versatile tool in crop
science. J. Exp. Bot. 61, 2101–2115. doi: 10.1093/jxb/erp345

Wade, L., and Parent, R. E. (2002). Automated generation of control skeletons for
use in animation. Vis. Comput. 18, 97–110. doi: 10.1007/s003710100139

Wang, Z., Zhang, L. Q., Fang, T., Mathiopoulos, P. T., Qu, H. M., Chen, D., et al.
(2014). A structure-aware global optimization method for reconstructing 3-d
tree models from terrestrial laser scanning data. IEEE Trans. Geosci. Remote
Sensing 52, 5653–5669. doi: 10.1109/tgrs.2013.2291815

Wen, W., Guo, X., Wang, Y., Zhao, C., and Liao, W. (2017). Constructing a three-
dimensional resource database of plants using measured in situ morphological
data. Appl. Eng. Agric. 33, 747–756. doi: 10.13031/aea.12135

Wu, S., Zhao, C. J., Guo, X. Y., Wen, W. L., Xiao, B. X. (2017). Method of fruit tree
canopy leaf reconstruction based on point cloud. Trans. Chin. Soc. Agric. Eng.
33, 212–218. doi: 10.11975/j.issn.1002-6819.2017.z1.032

Yan, H. B., Hu, S. M., Martin, R. R., and Yang, Y. L. (2008). Shape deformation
using a skeleton to drive simplex transformations. IEEE Trans. Vis. Comput.
Graph. 14, 693–706. doi: 10.1109/tvcg.2008.28

Yan, J. B., Warburton, M., and Crouch, J. (2011). Association mapping for
enhancing maize (Zea mays L.) genetic improvement. Crop Sci. 51, 433–449.
doi: 10.2135/cropsci2010.04.0233

Frontiers in Plant Science | www.frontiersin.org 13 March 2019 | Volume 10 | Article 248

https://doi.org/10.1016/S0304-3800(98)00100-8
https://doi.org/10.1016/S0304-3800(98)00100-8
https://doi.org/10.1071/FP08082
https://doi.org/10.1109/tvcg.2010.9
https://doi.org/10.1109/tvcg.2010.9
https://doi.org/10.1109/tvcg.2007.1002
https://doi.org/10.3390/s140304271
https://doi.org/10.3969/j.issn.1671-1815.2011.08.041
https://doi.org/10.3969/j.issn.1671-1815.2011.08.041
https://doi.org/10.1093/jxb/erq025
https://doi.org/10.1093/jxb/erq025
https://doi.org/10.1016/j.pbi.2015.02.006
https://doi.org/10.1146/annurev-arplant-050312-120137
https://doi.org/10.3390/rs71215870
https://doi.org/10.3390/rs71215870
https://doi.org/10.1071/FP16167
https://doi.org/10.1104/pp.18.00664
https://doi.org/10.1360/N052016-00009
https://doi.org/10.1016/j.ijleo.2015.05.092
https://doi.org/10.1016/j.ijleo.2015.05.092
https://doi.org/10.1038/nrg2897
https://doi.org/10.3390/s18030806
https://doi.org/10.1145/2461912.2461913
https://doi.org/10.1145/2461912.2461913
https://doi.org/10.1093/aob/mcy016
https://doi.org/10.3389/fpls.2018.00237
https://doi.org/10.1111/1556-4029.12829
https://doi.org/10.1111/1556-4029.12829
https://doi.org/10.1104/pp.113.233932
https://doi.org/10.1145/1866158.1866177
https://doi.org/10.1109/PIC.2014.6972361
https://doi.org/10.1109/PIC.2014.6972361
https://doi.org/10.1016/j.compag.2018.01.022
https://doi.org/10.3389/fpls.2017.01532
https://doi.org/10.1104/pp.114.248971
https://doi.org/10.1109/ICRA.2011.5980567
https://doi.org/10.1016/j.agrformet.2015.06.006
https://doi.org/10.1016/j.agrformet.2015.06.006
https://doi.org/10.1006/anbo.1998.0665
https://doi.org/10.1016/j.mcm.2010.11.043
https://doi.org/10.1016/j.mcm.2010.11.043
https://doi.org/10.1145/1531326.1531377
https://doi.org/10.1145/1531326.1531377
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1016/j.cub.2017.05.055
https://doi.org/10.1126/science.1183700
https://doi.org/10.1126/science.1183700
https://doi.org/10.3390/s18041187
https://doi.org/10.3390/s16050618
https://doi.org/10.3390/s16050618
https://doi.org/10.1093/jxb/erp345
https://doi.org/10.1007/s003710100139
https://doi.org/10.1109/tgrs.2013.2291815
https://doi.org/10.13031/aea.12135
https://doi.org/10.11975/j.issn.1002-6819.2017.z1.032
https://doi.org/10.1109/tvcg.2008.28
https://doi.org/10.2135/cropsci2010.04.0233
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00248 March 5, 2019 Time: 19:7 # 14

Wu et al. 3D Skeleton Extraction of Maize Plant

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned aerial
vehicle remote sensing for field-based crop phenotyping: current status and
perspectives. Front. Plant Sci. 8:26. doi: 10.3389/fpls.2017.01111

Yang, W., Guo, Z., Huang, C., Duan, L., Chen, G., Jiang, N., et al. (2014).
Combining high-throughput phenotyping and genome-wide association
studies to reveal natural genetic variation in rice. Nat. Commun. 5:9. doi: 10.
1038/ncomms6087

Yang, W., Guo, Z., Huang, C., Wang, K., Jiang, N., Feng, H., et al. (2015). Genome-
wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput
leaf scorer. J. Exp. Bot. 66, 5605–5615. doi: 10.1093/jxb/erv100

Yang, W. N., Duan, L. F., Chen, G. X., Xiong, L. Z., and Liu, Q. (2013). Plant
phenomics and high-throughput phenotyping: accelerating rice functional
genomics using multidisciplinary technologies. Curr. Opin. Plant Biol. 16,
180–187. doi: 10.1016/j.pbi.2013.03.005

Yin, K. X., Huang, H., Long, P. X., Gaissinski, A., Gong, M. L., Sharf, A. (2016).
Full 3d plant reconstruction via intrusive acquisition. Compu. Graph. Forum
35, 272–284. doi: 10.1111/cgf.12724

Zaman-Allah, M., Vergara, O., Araus, J. L., Tarekegne, A., Magorokosho, C., Zarco-
Tejada, P. J., et al. (2015). Unmanned aerial platform-based multi-spectral

imaging for field phenotyping of maize. Plant Methods 11:10. doi: 10.1186/
s13007-015-0078-2

Zeng, L., Liu, Y. J., Chen, M., and Yuen, M. M. F. (2012). Least squares quasi-
developable mesh approximation. Comput. Aided Geom. Des. 29, 565–578.
doi: 10.1016/j.cagd.2012.03.009

Zhang, X., Huang, C., Wu, D., Qiao, F., Li, W., Duan, L., et al. (2017). High-
throughput phenotyping and qtl mapping reveals the genetic architecture of
maize plant growth. Plant Physiol. 173, 1554–1564. doi: 10.1104/pp.16.01516

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019Wu,Wen, Xiao, Guo, Du,Wang andWang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 14 March 2019 | Volume 10 | Article 248

https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.1038/ncomms6087
https://doi.org/10.1038/ncomms6087
https://doi.org/10.1093/jxb/erv100
https://doi.org/10.1016/j.pbi.2013.03.005
https://doi.org/10.1111/cgf.12724
https://doi.org/10.1186/s13007-015-0078-2
https://doi.org/10.1186/s13007-015-0078-2
https://doi.org/10.1016/j.cagd.2012.03.009
https://doi.org/10.1104/pp.16.01516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	An Accurate Skeleton Extraction Approach From 3D Point Clouds of Maize Plants
	Introduction
	Materials
	Methods
	Point Cloud Denoising
	Pot Points Detection
	Plant Denoising

	Laplacian Point Cloud Contraction
	Adaptive Sampling
	Skeleton Point Connection
	Skeleton Point Calibration
	Stem Skeleton Calibration
	Leaf Skeleton Calibration


	Results
	Visualization Results
	Accuracy Analysis of Phenotypic Traits Using the Extracted Skeleton
	Efficiency

	Discussion
	Conclusion
	Author Contributions
	Funding
	References


