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In higher plants, the stearoyl-acyl carrier protein desaturase (SAD) catalyzes the first
desaturation step leading to oleic acid, which can be further desaturated to linoleic
and α-linolenic acids. Therefore, SAD plays an essential role in determining the overall
content of unsaturated fatty acids (UFA). We have investigated how SAD genes
expression and UFA composition are regulated in olive (Olea europaea) mesocarp
tissue from Picual and Arbequina cultivars in response to different abiotic stresses. The
results showed that olive SAD genes are transcriptionally regulated by temperature,
darkness and wounding. The increase in SAD genes expression levels observed in
Picual mesocarp exposed to low temperature brought about a modification in the
UFA content of microsomal membrane lipids. In addition, darkness caused the down-
regulation of SAD genes transcripts, together with a decrease in the UFA content of
chloroplast lipids. The differential role of olive SAD genes in the wounding response
was also demonstrated. These data point out that different environmental stresses can
modify the UFA composition of olive mesocarp through the transcriptional regulation of
SAD genes, affecting olive oil quality.

Keywords: Olea europaea, olive, abiotic stress, gene expression, unsaturated fatty acids, stearoyl-ACP
desaturase

INTRODUCTION

Unsaturated fatty acids not only serve as a major source of reserve energy in the form of
triacylglycerols, but also constitute complex lipids that are essential components of cellular
membranes. In plants, an increasing number of studies has also proposed UFA and their
derivatives as signaling molecules, which are involved in the response to biotic and abiotic stresses
(Kachroo and Kachroo, 2009).

Abbreviations: DGDG, digalactosyldiacylglycerol; FAD2, microsomal oleate desaturase; FAD3, microsomal linoleate
desaturase; FAD6, plastidial oleate desaturase; FAD7/8, plastidial linoleate desaturase; MGDG, monogalactosyldiacylglycerol;
SAD, stearoyl-acyl carrier protein desaturase; UFA, unsaturated fatty acids; WAF, weeks after flowering.
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In higher plants, de novo fatty acid biosynthesis starts in the
plastid by successive addition of two carbon atoms from acetyl-
CoA, mainly leading to the synthesis of palmitoyl-acyl carrier
protein (palmitoyl-ACP) and stearoyl-ACP (Harwood, 2005).
These products, which can be desaturated in different cellular
compartments, are the source of most of the fatty acids present in
plant lipids. The first desaturation takes place in the plastid by the
action of the 19 stearoyl-ACP desaturase (SAD), which produces
oleoyl-ACP, using ferredoxin as electron donor. The oleoyl-ACP
is then cleaved by specific thioesterases to free fatty acids, which
are then incorporated into glycerolipids, where can be further
desaturated to linoleic and α-linolenic acid by membrane-bound
fatty acid desaturases, that differ in their cellular localization, lipid
substrates, and electron donor system (Shanklin and Cahoon,
1998). The microsomal oleate desaturase (FAD2) and linoleate
desaturase (FAD3) are located in the endoplasmic reticulum, use
phospholipids as acyl substrates and NADH, NADH-cytochrome
b5 reductase and cytochrome b5 as electron donor system. On the
other hand, the plastidial oleate desaturase (FAD6) and linoleate
desaturase (FAD7/8) are located in the plastid, use glycolipids as
acyl carriers and NAD(P)H, ferredoxin-NAD(P) reductase and
ferredoxin as electron donor system (Supplementary Figure S1).

Plant fatty acid desaturases are regulated by different
environmental and physical stresses. Temperature is one of the
main environmental factors affecting fatty acid desaturases. The
plants ability to adjust membrane lipid fluidity in response
to temperature by changing the levels of UFA is allowed
by the regulated activity of fatty acid desaturases (Iba, 2002;
Upchurch, 2008). Several mechanisms have been described to
explain how temperature regulates fatty acids desaturation,
including transcriptional (Kargiotidou et al., 2008) and post-
transcriptional regulation (Matsuda et al., 2005), and through
the effect of temperature on oxygen availability (Rolletschek
et al., 2007). Light is a second environmental factor regulating
fatty acid desaturation. An increase in polyunsaturated fatty
acids have been reported in cucumber cotyledons (Murphy and
Stumpf, 1979), oat leaves (Ohnishi and Yamada, 1983), and
Arabidopsis callus cultures (Brockman et al., 1990) exposed
to light. Regarding the molecular mechanism by which light
regulates fatty acid desaturase, transcriptional (Kargiotidou et al.,
2008) and post-translational (Collados et al., 2006) regulation
have been reported. Plant fatty acid desaturases are also affected
by wounding or pathogen attack. In fact, plants have evolved
multiple mechanism to defend themselves against pathogens. It
has been widely described the key role of polyunsaturated fatty
acids in plants defense response, mainly as precursor of signal
molecules such as jasmonic acid (Farmer, 1994). Accordingly,
the transient induction of fatty acid desaturases in response to
wounding has been observed in several plants (Hamada et al.,
1996; Nishiuchi et al., 1997).

Olive (Olea europaea L.) is one of the first plants to be
cultivated for oil production, and olive oil is the one with most
impact in the Mediterranean region either at the economic,
social and cultural levels (Baldoni et al., 2009). Virgin olive
oil is a natural fruit juice, highly enriched in oleic acid (55–
83%), while linoleic acid accounts for 3.5–21%, and linolenic
acid for less than 1%. The relative contents of these UFA

depends mainly on the olive cultivar, but also on pedoclimatic
and culture conditions (Beltrán et al., 2004), affecting the
nutritional (Perona et al., 2005) and technological properties
(Aparicio et al., 1999) of the oil, and, therefore, the olive oil
quality. In olive, three genes encoding SAD have been reported
(Haralampidis et al., 1998; Parvini et al., 2016). SAD2 was
highly expressed in mesocarp and seed, whereas the transcript
of SAD3 was mainly detected in young drupes and leaves. In
contrast, SAD1 expression levels remained low in all tissues
studied. In addition, SAD2 gene has been suggested as the main
contributor to oleic acid synthesis in olive mesocarp (Parvini
et al., 2016). Regarding membrane desaturases, two genes
encoding microsomal (Hernández et al., 2005) and one plastidial
(Banilas et al., 2005; Hernández et al., 2011) oleate desaturases
have been described, identifying FAD2-2 as the main gene
responsible for the linoleic acid accumulation in olive mesocarp
(Hernández et al., 2009). Finally, four genes encoding linoleate
desaturases have been reported, two microsomal (Banilas et al.,
2007; Hernández et al., 2016) and two plastidial (Poghosyan et al.,
1999; Hernández et al., 2016), with FAD7-1 and FAD7-2 genes
being suggested to contribute mostly to the linolenic acid present
in the olive mesocarp (Hernández et al., 2016).

Early studies using olive callus cultures revealed that FAD2
is regulated by temperature and light intensity, while FAD7 is
affected by high temperature (Hernández et al., 2008). More
recently, transcriptional analysis conducted on olive mesocarp
exposed to low and high temperatures demonstrated the role
of FAD2, FAD6, and FAD7 genes in regulating UFA levels
in order to maintain the fluidity of the biological membranes
(Hernández et al., 2011; Matteucci et al., 2011; D’Angeli et al.,
2013). In the same way, RNAseq analysis has shown that FAD2-2
gene increased its expression in olive leaves in response to cold
(Leyva-Pérez et al., 2015). Furthermore, Hernández et al. (2011)
observed a decrease in oleate desaturase genes expression levels
when the olive fruit were incubated under darkness conditions.
On the other hand, a transient induction of oleate desaturases,
together with a slight increase in linoleic acid and the appearance
of palmitolinoleic acid, have been reported in olive mesocarp
subjected to wounding (Hernández et al., 2011) (Supplementary
Figure S1). In addition, Padilla et al. (2012, 2014) described
the transient induction of 13- and 9-lipoxygenases, and 13-
hydroperoxide lyase in mechanically damaged olive mesocarp.
These results showed the involvement of olive oleate desaturases
in plant defense response providing the substrates to the different
lipoxygenases pathways, including that of jasmonic acid synthesis
(Weber, 2002). Not only that, a transcriptomic approach has also
been performed to study the molecular interaction between the
olive fruit fly (Bactrocera oleae) and tolerant and susceptible olive
cultivars (Corrado et al., 2012; Grasso et al., 2017).

However, with the exception of a recent study on the effect
of irrigation in desaturase gene expression of olive mesocarp
(Hernández et al., 2018), there is still scarce information about
the regulation of SAD genes in response to environmental stresses
in plant tissues and, even more, in the case of the mesocarp
of oil fruits. This tissue possesses the remarkable characteristic
of having a high proportion of active chloroplasts together
with a high amount of oil (Sánchez, 1994). In addition, SAD
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is of particular interest because is a key determinant of the
overall level of fatty acid desaturation (Shanklin and Somerville,
1991), since this enzyme carries out the first desaturation step
leading to oleic acid, which can be further desaturated to
linoleic acid and α-linolenic acid. Therefore, it has a significant
effect on the fluidity and rigidity of membrane system and
the relationship of this to the adaption of plants to various
environmental conditions.

For these reasons, we have studied in this work the
transcriptional regulation of SAD genes in olive fruit remaining
in branches incubated under different abiotic stresses, together
with its impact at the metabolite level on the UFA content
in different lipid classes of mesocarp tissue from Picual and
Arbequina cultivars.

MATERIALS AND METHODS

Plant Material and Stress Treatments
Olive (Olea europaea L. cv. Picual and Arbequina) trees were
grown in the experimental orchard of Instituto de la Grasa, Seville
(Spain), with drip irrigation and fertirrigation from the time of
complete flowering to fruit ripening.

Four olive branches carrying 100 olive fruit at 28 WAF
(turning stage) each one, were collected from different olive
trees located in the same field, and transferred to growth
chamber where they were incubated at 25◦C with a 12 h
light/12 h dark cycle, with a light intensity of 300 µmol
m−2 s−1. These incubation parameters attempted to simulate
physiological conditions of the tree, and were considered the
standard conditions. No significant alterations in the fatty acid
composition or SAD genes expression levels were observed in the
mesocarp tissue when olive fruits were incubated under the above
mentioned standard conditions (Supplementary Figure S2). For
stress treatments, a new set of four olive branches with the same
characteristics as previously mentioned were collected from the
different olive trees and transferred to growth chamber, where the
described standard conditions were altered to achieve the stress
conditions to be studied. To examine the effect of temperature,
the olive branches containing the fruits were incubated at
15◦C for the low temperature experiment and 35◦C for the
high temperature one, at the same standard light intensity. For
darkness treatment, light was turned off maintaining the same
standard temperature. To study the effect of wounding, the whole
surface of the olive fruit was mechanically damaged at zero
time exerting pressure using tweezers with serrated tips, so that
mesocarp tissue was affected. Each experiment corresponding to
a different treatment was carried out at a different day of the same
week, to ensure that the olive fruits of the different experiments
were in the same stage (28 WAF). Zero time was designated
2 h after the beginning of the light period in every experiment,
in order to maintain the natural photoperiod day/night of the
olive fruit. At the indicated times, 10 olive fruits were taken from
each olive branch, then 1–2 g of olive mesocarp was collected
from 5 different olive fruits for RNA isolation, and 1.5 g was
collected from the other 5 different olive fruits for lipid analysis.
Therefore, in each experiment we used approximately 60 olive

fruits from three olive branches, one branch for each biological
replicate. In all experiments we incubated four branches, so that
in case that we had a problem with a branch, to ensure we
had another branch with olives and we could continue with
the experiment. Olive mesocarp samples were frozen in liquid
nitrogen and stored at −80◦C.

Total RNA Extraction and cDNA
Synthesis
Total RNA isolation was carried out according to Hernández
et al. (2005) using 1–2 g of frozen olive fruit mesocarp tissue
collected from at least five different olive fruit per each of the
three biological replicates. Briefly, the frozen olive mesocarp
was ground in a pre-cooled mortar with liquid nitrogen and
homogenized with the extraction buffer, containing Tris-HCl,
NaCl, Na2EDTA and SDS, and 2-mercaptoethanol. Afterward,
nucleic acids were extracted with phenol/chloroform twice, and
precipitated with NaAc and ethanol. The nucleic acid pellet
was resuspended in DEPC treated water and LiCl was added
to precipitate the RNA. The pellet was washed twice with 70%
ethanol and resuspended in 25 µl DEPC-water. RNA quality
verification, removal of contaminating DNA and cDNA synthesis
were performed as described by Hernández et al. (2009), using the
TURBO DNA-free kit (Ambion, United States) and SuperScript
III First-Strand Synthesis System (Invitrogen, Carlsbad, CA,
United States) with oligo (dT)20.

Quantitative Real Time-PCR (qRT-PCR)
Gene expression analysis was performed by quantitative real time
PCR (qRT-PCR) using a CFX Connect real-time PCR System
and iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules,
CA, United States). Primers for gene-specific amplification
were described by Parvini et al. (2016) and are shown in
Supplementary Table S1. Reaction mix (10 µL per well)
contained 1X iTaq-QPCR Master Mix, 100 nM forward and
reverse primers, and 2 µL of cDNA of appropriate dilution, which
was selected according to the primers amplification efficiency.
The thermal cycling conditions included an initial denaturation
step of 95◦C for 10 min, followed by 40 cycles of 95◦C for 30
s, 60◦C for 1 min, and 72◦C for 30 s. The melting reaction
from 55◦C through 95◦C, at 0.1◦C s−1, following the final step
of the PCR, was used to examine the specificity of the PCR
amplification and the presence of primer dimers. Additionally,
the purity of the PCR products were also checked by agarose
gel electrophoresis. PCR efficiencies (E) of all primers were
calculated using dilution curves with eight dilution points,
twofold dilution, and the equation E = [10(−1/slope)] – 1. For
normalization of the data, the olive ubiquitin2 gene (OeUBQ2,
AF429430) was used as an endogenous reference. The qRT-
PCR data were calibrated relative to the corresponding gene
expression level at zero time for each treatment and cultivar,
following the relative quantification by the 2−11Ct method
(Livak and Schmittgen, 2001). The data are presented as
means ± SD of the three biological replicates, each having two
technical replicates per 96 well plate.
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Lipid Extraction and Fatty Acid Analysis
For lipid analysis, 1.5 g of frozen olive mesocarp tissue collected
from at least five different olive fruits per each of the three
biological replicate, were used. Olive fruit mesocarp tissue was
firstly treated with isopropanol at 70◦C for 30 min to inactivate
endogenous lipase activity. Extraction of lipids was carried out
according to Hara and Radin (1978), followed by their separation
by thin layer chromatography as described by Hernández et al.
(2008). Acid-catalyzed transmethylation of the different lipid
preparations was performed to obtain the corresponding fatty
acid methyl esters (Garcés and Mancha, 1993), which were
analyzed by gas chromatography (Román et al., 2012). The
internal standard used to calculate the lipid and fatty acid content
in the samples was heptadecanoic acid. Results are expressed
in µg of the sum of UFA per mg of FW, and are presented as
means ± SD of three biological replicates.

RESULTS AND DISCUSSION

Olive SAD Genes Expression and
Unsaturated Fatty Acids Composition
Are Regulated by Temperature
To investigate how temperature regulates UFA synthesis in olive
mesocarp, olive branches from Picual and Arbequina cultivars
holding olive fruits at 28 WAF, which correspond to turning
stage, were incubated at low (15◦C) and high (35◦C) temperature
with a 12 h light/12 h dark cycle, for 24 h. Lipid and SAD genes
expression analysis were carried out using olive mesocarp at
different times after incubation at the aforementioned conditions.

The effect of low temperature (15◦C) on the UFA content and
SAD transcript levels was different in the two cultivars studied.
Low temperatures reduced the UFA content at the beginning of
incubation in both cultivars, and then recovered practically to the
initial levels at 6 h of incubation. These levels were maintained in
Arbequina mesocarp until the end of the experiment. However,
in Picual mesocarp the UFA levels increased during the 24 h
period, reaching about 20% more than at the beginning of the
treatment (Figure 1A). These results correlated well with the
expression levels of SAD genes in mesocarp tissue exposed to
the cold treatment. In this way, while Arbequina SAD transcripts
remained practically constant throughout the treatment, in
Picual mesocarp the expression levels of the three SAD genes
showed a transient and significant increase during the first 3 h
of incubation, with SAD1 undergoing a 10-fold increase in gene
expression compared to SAD2 and SAD3 with 6- and 3-fold
increase, respectively (Figure 1B). The effect of incubation at
15◦C observed in Picual mesocarp is the general response to low
temperature changes for desaturases, since there are numerous
reports describing that low temperature causes an increase in the
UFA content (Los and Murata, 1998). With only two exceptions
in lima bean (Zhang et al., 2011) and avocado (García-Rojas
et al., 2012), an induction of SAD genes by cold stress has been
reported in different plant species. For instance, Wang et al.
(2013) described that in Ginkgo biloba leaves, SAD mRNA levels
increased transiently, reaching a maximum at 6 h after incubation

FIGURE 1 | Effect of low temperature on the unsaturated fatty acids content
(A) and the relative expression levels of olive SAD1, SAD2, and SAD3 genes
(B) in the mesocarp tissue from cultivars Picual and Arbequina. Branches with
about 100 olive fruit (28 WAF) were incubated using standard conditions
except that the temperature was 15◦C. At the indicated times, fatty acid
composition was analyzed by gas chromatography, and relative expressions
levels were determined by qRT-PCR using the expression level of the
corresponding gene at zero time as calibrator. Data are presented as
means ± SD of three biological replicates. ∗ Indicates significantly different to
time 0 h (p < 0.05) by two-way ANOVA with a Bonferroni post-test.

at 4 or 15◦C, and then decreased after 24 h, analogous to what
we observed in the Picual olive mesocarp. Similarly, a transient
induction of SAD gene was observed in tea leaves incubated at 4
or −5◦C for 24 h (Ding et al., 2016). In a like manner, an increase
in SAD transcript in response to low temperature has been
described in avocado fruit (Madi et al., 2003), potato leaves (Vega
et al., 2004; De Palma et al., 2008), rape hypocotyl (Tasseva et al.,
2004), and soybean seed (Byfield and Upchurch, 2007), which
was also accompanied by an increment in the UFA content. The
role of SAD gene in plant cold stress has also been demonstrated
in transplastomic tobacco plants expressing a wild potato SAD
gene, that exhibited increased UFA content and improved cold
tolerance (Craig et al., 2008). Furthermore, the rice cold inducible
transcription factor Osmyb4, which is involved in the cold stress
response, has been shown to transactivate the wild potato SAD
gene promoter (Vannini et al., 2004).
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To gain further insight about the cold stress response observed
in olive mesocarp from Picual cultivar, we decided to analyze
the UFA content in the different lipids classes from this tissue
incubated at 15◦C for 24 h, to investigate whether the detected
increase in SAD genes expression leads to an increase in the
UFA content in membrane lipids. We observed that the UFA
content in triacylglycerol decreased throughout the incubation at
15◦C, while UFA levels increased significantly in the membrane
phospholipids (Table 1). In addition, we observed an increase
in all of the UFA, being oleic acid the one that increases the
most (Supplementary Table S2). These data suggested that low
temperature incubation induced a mobilization of UFA from
storage lipids into microsomal membrane lipids.

We have previously reported an induction of FAD2 genes
in mesocarp tissue incubated at 15◦C for 24 h, although non-
significant differences were detected in the linoleic acid content
of microsomal and plastidial membranes (Hernández et al.,
2011). In that study, we suggested that the timescale could be
too short to observe effects, although the existence of post-
transcriptional regulatory mechanism could not be discarded.
In this work (Supplementary Table S2), we noticed that the
increase in oleic acid in membrane phospholipids took place
from the beginning of the cold treatment (1 h after incubation),
whereas a very slight increase of linoleic acid was detected
in phosphatidic acid, phosphatidylserine, phosphatidylcholine,
and phosphatidylethanolamine at longer times (6–24 h after
incubation), suggesting that low temperature induced the
synthesis of oleic acid in the short–term, while the increase of
linoleic acid occurs at longer incubations periods. These results
indicate that the observed changes in the transcript levels of
SAD genes caused by low temperature are accompanied by the
adjustment of UFA content of microsomal membrane lipids and
modulation of membrane fluidity in olive mesocarp cv. Picual.

The fact that low temperatures did not increase either SAD
expression levels or the UFA levels in Arbequina mesocarp could
be related with a lower cold tolerance of this cultivar with respect
to Picual. In this sense, Vega et al. (2004) reported that the
expression of SAD gene increased during cold acclimation only in

Solanum commersonii, a species capable of cold acclimation, and
not in the cultivated non-cold acclimating Solanum tuberosum
species, although the latter had a greater amount of constitutive
SAD gene expression, indicating that the changes in transcript
accumulation observed in S. commersonii may be related to
its capacity to cold acclimate. However, these data contrast
slightly with those found by De Palma et al. (2008), which
provided evidence that the freezing tolerant S. commersonii
plants have a higher constitutive transcript levels of SAD gene.
Nevertheless, these results altogether suggest that SAD transcript
accumulation plays a key role in cold tolerance. This assumption
was further confirmed by Li et al. (2015), who reported that
SAD overexpression caused an increase in membrane linoleic
acid content, which improved the cold acclimation capacity of
transgenic potato plants.

With respect to high temperature, when we incubated the
olive branches with turning olive fruits at 35◦C for 24 h, we
observed a decreased in the UFA content 1 h after the incubation,
to subsequently recover to the initial values throughout the
incubation period in both cultivars, reaching even higher values
than the initial ones after 24 h of incubation (Figure 2A).
The changes observed in UFA content are mainly detected in
TAG for both cultivars (Supplementary Tables S3, S4). These
modifications in UFA levels did not correlate well with the SAD
genes expression pattern detected in mesocarp tissue exposed to
high temperature. We observed in Figure 2B that the expression
levels of the three SAD genes decreased during the incubation
at 35◦C, although SAD genes expression patterns were different
in both cultivars. Specifically, in cv. Picual, SAD1 and SAD2
transcripts slightly increased at 0.5 and 1 h of incubation, the
three genes expression levels were similar to initial values at
3 h, and then decreased considerably after 24 h of incubation.
However, in cv. Arbequina the three SAD transcripts decreased
from the beginning of the treatment. The downregulation of SAD
genes has been previously reported by Wang et al. (2013) in
leaves of ginkgo grown at 35 or 45◦C, and by Lu et al. (2013) in
Pinellia ternata leaves incubated at 35◦C for 24 h. In addition,
when soybean plants were incubated under warm conditions,

TABLE 1 | Effect of low temperature on the unsaturated fatty acids content of lipid classes from Picual mesocarp tissue.

Lipid class Unsaturated fatty acid content (µg/mg FW)

0 1 6 24

DAG 0.467 ± 0.064 0.481 ± 0.011 0.534 ± 0.065 0.562 ± 0.025

TAG 82.403 ± 1.165 68.520 ± 0.131∗ 66.309 ± 3.813∗ 56.945 ± 8.220∗

PI 0.010 ± 0.002 0.012 ± 0.002 0.014 ± 0.001 0. 024 ± 0.001

PS 0.004 ± 0.001 0.005 ± 0.001 0.011 ± 0.000 0. 011 ± 0.003

PC 0.049 ± 0.002 0.045 ± 0.004 0.070 ± 0.003 0. 068 ± 0.004

PE 0.005 ± 0.002 0.018 ± 0.000 0.021 ± 0.005 0. 021 ± 0.005

PA 0.027 ± 0.002 0.044 ± 0.002 0.052 ± 0.003 0. 046 ± 0.002

MGDG 0.045 ± 0.001 0.053 ± 0.002 0.037 ± 0.004 0.046 ± 0.003

DGDG 0.025 ± 0.002 0.049 ± 0.001 0.030 ± 0.002 0.040 ± 0.005

DAG, diacylglycerol; TAG, triacylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidate;
MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol. Data are mean ± SD from three biological replicates. ∗ Indicates significantly different to time 0 h
(p < 0.05) by two-way ANOVA with a Bonferroni post-test.
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FIGURE 2 | Effect of high temperature on the unsaturated fatty acids content
(A) and the relative expression levels of olive SAD1, SAD2, and SAD3 genes
(B) in the mesocarp tissue from cultivars Picual and Arbequina. Branches with
about 100 olive fruit (28 WAF) were incubated using standard conditions
except that the temperature was 35◦C. At the indicated times, fatty acid
composition was analyzed by gas chromatography, and relative expressions
levels were determined by qRT-PCR using the expression level of the
corresponding gene at zero time as calibrator. Data are presented as
means ± SD of three biological replicates. ∗ Indicates significantly different to
time 0 h (p < 0.05) by two-way ANOVA with a Bonferroni post-test.

the SAD-A and SAD-B genes expression levels decreased in the
seeds, but with negligible effect on the seed stearate content
(Byfield and Upchurch, 2007). The lack of correlation between
the effect of high temperature on SAD genes expression levels
and the UFA content could be explained by several factors. In
particular, the high temperature regulation of oleic acid synthesis
may be mediated by post-transcriptional mechanism. Several
cases of temperature-related post-transcriptional mechanisms
have been reported for the oleate desaturases. In sunflower
seeds, it has been described that changes in temperature bring
about shifts in the very low endogenous oxygen concentration,
which affect FAD2 activity reversibly, without having an effect on
gene transcription (Rolletschek et al., 2007). Besides, Tang et al.
(2005) identified two domains that appear to be important in
mediating the temperature-dependent instability of the soybean
FAD2-1A isoform when expressed in yeast. However, to date, no
mechanism of post-transcriptional regulation by temperature has
been described for SAD enzymes.

Regulation of Olive SAD Transcript
Levels and Unsaturated Fatty Acids
Content by Darkness
To test whether darkness alters the UFA content and SAD
transcript levels in olive mesocarp, olive branches from Picual
and Arbequina cultivars holding olive fruits at 28 WAF (turning
stage) were incubated at 25◦C in the darkness, for 24 h. Although
we did not observe any significant difference in the total UFA
content during the incubation period, a decrease in the three SAD
genes expression levels was detected in both cultivars (Figure 3).
SAD1 and SAD3 transcripts levels decreased considerably in both
cultivars from the beginning of the treatment, so that after 24 h
of incubation reached a reduction of 90-fold in comparison to
the initial levels. However, the decrease in SAD2 expression levels
was about 50-fold after 3 h of incubation, maintaining these levels
in Picual cultivar and recovering the initial values in the case of
Arbequina (Figure 3B).

FIGURE 3 | Effect of darkness on the unsaturated fatty acids content (A) and
the relative expression levels of olive SAD1, SAD2, and SAD3 genes (B) in the
mesocarp tissue from cultivars Picual and Arbequina. Branches with about
100 olive fruit (28 WAF) were incubated at 25◦C under darkness conditions.
At the indicated times, fatty acid composition was analyzed by gas
chromatography, and relative expressions levels were determined by
qRT-PCR using the expression level of the corresponding gene at zero time as
calibrator. Data are presented as means ± SD of three biological replicates.
∗ Indicates significantly different to time 0 h (p < 0.05) by two-way ANOVA with
a Bonferroni post-test.
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FIGURE 4 | Effect of darkness on the galactolipids unsaturated fatty acid
content in the mesocarp tissue from cultivars Picual and Arbequina. Branches
with about 100 olive fruit (28 WAF) were incubated at 25◦C under darkness
conditions. At the indicated times, fatty acid composition of galactolipids were
analyzed by gas chromatography a Triangles, monogalactosyldiacylglycerol;
circles, digalactosyldiacylglycerol. Data are presented as means ± SD of three
biological replicates. ∗ Indicates significantly different to time 0 h (p < 0.05) by
two-way ANOVA with a Bonferroni post-test.

Several evidences indicate that light may play a regulatory
role for plant desaturases, although data are scarce in this area.
A light-dependent transcriptional regulation of oleate desaturase
genes has been described in olive mesocarp (Hernández et al.,
2011), similarly to that reported by Kargiotidou et al. (2008)
in cotton cotyledons, where FAD2 expression was reduced
after a 24 h incubation in the dark. In the same way, FAD7
and FAD8 are also transcriptionally regulated by light in
different plants (Nishiuchi et al., 1995; Horiguchi et al., 1996;

Collados et al., 2006). In general, it appears that increasing light
conditions are associated with an enhancement in desaturases
genes expression, with the converse also holding true in darkness
conditions. Although this is the first time that the effect of
darkness on SAD genes expression levels is reported in plants,
the regulatory role of light on 19 desaturase genes has been
studied before in other photosynthetic organism. Kis et al. (1998)
described that in the cyanobacteria Synechocystis PCC 6803
desaturases genes were strongly induced by light, except for the
19 desaturase, that was not significantly affected. On the other
hand, Ma et al. (2018) observed that the expression levels of
SAD gene from the green microalgae Haematococcus pluvialis
were significantly upregulated by light, which correlated well with
an increase in oleic acid. These results are in agreement with
the decrease in SAD genes expression levels observed in olive
mesocarp in darkness conditions, although we did not observe
a decrease in the total UFA content.

To further investigate the effect of darkness in oleic acid
synthesis, we decided to analyze the UFA content of the
different lipid classes in olive mesocarp subjected to darkness
conditions, in order to elucidate whether the decrease in the
expression levels of SAD genes affects the UFA content of a
specific lipid. Interestingly, we only observed a decrease in the
UFA content of the galactolipids, MGDG and DGDG, in both
cultivars (Figure 4), although with different behavior. While
in Picual mesocarp, the UFA content decreased considerably
during the 24 h of incubation under darkness conditions,
in Arbequina mesocarp, the UFA levels were reduced after
1 h of incubation, and then recovered, almost reaching the
levels detected at the beginning of the treatment. This effect
of the dark on the pattern of UFA content in galactolipids

TABLE 2 | Effect of darkness on the fatty acid composition of galactolipids from Picual and Arbequina mesocarp tissue.

Cultivar Lipid class Time (h) Fatty acid composition (µg/mg FW)

16:0 16:1 18:0 18:1 18:2 18:3

Picual MGDG 0 0.015 ± 0.002 0.002 ± 0.001 0.006 ± 0.000 0.054 ± 0.005 0.004 ± 0.000 0.000 ± 0.000

1 0.016 ± 0.002 0.002 ± 0.000 0.006 ± 0.001 0.065 ± 0.002∗ 0.005 ± 0.000 0.000 ± 0.000

6 0.014 ± 0.002∗ 0.001 ± 0.000 0.007 ± 0.001 0.044 ± 0.001∗ 0.003 ± 0.000 0.000 ± 0.000

24 0.010 ± 0.002 0.001 ± 0.000 0.008 ± 0.000 0.030 ± 0.002∗ 0.002 ± 0.000 0.000 ± 0.000

DGDG 0 0.027 ± 0.001 0.001 ± 0.000 0.010 ± 0.004 0.060 ± 0.010 0.003 ± 0.000 0.001 ± 0.000

1 0.021 ± 0.003 0.001 ± 0.000 0.007 ± 0.000 0.060 ± 0.004 0.003 ± 0.000 0.002 ± 0.000

6 0.014 ± 0.001∗ 0.001 ± 0.000 0.006 ± 0.000 0.029 ± 0.007∗ 0.002 ± 0.000 0.001 ± 0.000

24 0.016 ± 0.001∗ 0.001 ± 0.000 0.008 ± 0.001 0.025 ± 0.003∗ 0.001 ± 0.000 0.001 ± 0.000

Arbequina MGDG 0 0.007 ± 0.002 0.000 ± 0.000 0.018 ± 0.002 0.023 ± 0.003 0.003 ± 0.001 0.000 ± 0.000

1 0.008 ± 0.000 0.000 ± 0.000 0.012 ± 0.003 0.008 ± 0.002∗ 0.002 ± 0.001 0.000 ± 0.000

6 0.008 ± 0.000 0.000 ± 0.000 0.014 ± 0.001 0.014 ± 0.003∗ 0.004 ± 0.001 0.000 ± 0.000

24 0.010 ± 0.002 0.000 ± 0.000 0.012 ± 0.001 0.014 ± 0.006∗ 0.003 ± 0.002 0.000 ± 0.000

DGDG 0 0.008 ± 0.001 0.000 ± 0.000 0.016 ± 0.002 0.022 ± 0.002 0.001 ± 0.000 0.000 ± 0.000

1 0.008 ± 0.000 0.000 ± 0.000 0.011 ± 0.001 0.009 ± 0.002∗ 0.001 ± 0.000 0.000 ± 0.000

6 0.009 ± 0.002 0.000 ± 0.000 0.013 ± 0.001 0.012 ± 0.002∗ 0.002 ± 0.000 0.000 ± 0.000

24 0.009 ± 0.001 0.000 ± 0.000 0.012 ± 0.001 0.014 ± 0.003∗ 0.002 ± 0.001 0.000 ± 0.000

Data are presented as means ± SD of three biological replicates. MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol. 16:0, palmitic acid;16:1,
palmitoleic acid; 18:0, stearic acid; 18:1 oleic acid; 18:2, linoleic acid; 18:3, linolenic acid. ∗ Indicates significantly different to time 0 h (p < 0.05) by two-way ANOVA with
a Bonferroni post-test.
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correlated quite well with that of SAD2 expression levels
in both cultivars and not with SAD1 and SAD3, which
suggests, that the reduction of SAD2 transcript due to the
dark incubation could be the responsible for the decrease in
UFA in galactolipids. In fact, we noticed that the decrease
detected in the UFA content of MGDG and DGDG during
the dark incubation of olive mesocarp is mainly due to a
reduction in oleic acid content (Table 2). Therefore, we can
conclude that the down-regulation of SAD2 gene during the
dark incubation is the responsible for the reduction in the
UFA content in the main chloroplast lipids, MGDG and
DGDG. Furthermore, this light-dependent regulation detected
in olive mesocarp is cultivar-dependent, since the restoration of
SAD2 gene expression levels and UFA content in galactolipids
after 24 h of incubation observed in Arbequina cultivar, was
not detected in Picual mesocarp. The fact that the effect of
darkness was noticeable on chloroplast-localized lipids is not
unexpected. Gemmrich (1982) observed in Ricinus communis
cultures, that the light-induced changes in lipid composition
were associated with thylakoid formation. Strong light induces
ultrastructural changes in chloroplasts, so that the area of
thylakoid system on chloroplast sections increases, there is an
accumulation of chloroplast-localized lipids, like MGDG, and
the unsaturation index of fatty acids is elevated, being the
relative content of linolenic acid the one that increases the most
(Kislyuk et al., 2013).

Differential Transcriptional Regulation of
Olive SAD Genes in Response to
Wounding
The involvement of a 19 stearate desaturase in defense
mechanisms was firstly demonstrated by Xing and Chin (2000),
who reported that the expression of a yeast 19 desaturase
in eggplant enhanced its resistance to Verticillium dahliae. To
investigate possible changes in the UFA composition and SAD
genes expression of olive mesocarp in response to wounding,
olive branches from Picual and Arbequina cultivars holding
olive fruits at 28 WAF (turning stage) were incubated using
standard conditions except that olive fruit were mechanically
damaged at zero time. A slight increase in the UFA content
was observed when lipid analysis was performed at different
times of incubation after wounding, although with some cultivar
differences. While in cv. Picual the increase in UFA content after
wounding was slow and progressive, in Arbequina mesocarp the
UFA content increases rapidly after 1 h of incubation, continues
rising until 6 h and then, the levels were maintained until the end
of the incubation (Figure 5A).

In contrast, except in the case of Picual SAD3 gene, olive
SAD genes transcript levels decreased after wounding in both
cultivars (Figure 5B). It has been demonstrated that a mutation
in the Arabidopsis gene ssi2/fab2, which encodes a SAD, resulted
in the reduction of oleic acid levels, causing the constitutive
defense response in the mutant plant (Kachroo and Kachroo,
2009; Xia et al., 2009). Analogous results were observed in
OsSSI2-knockdown plants in rice (Jiang et al., 2009), and in
GmSAD-silenced soybean (Kachroo et al., 2008). In addition,

FIGURE 5 | Effect of wounding on the unsaturated fatty acids content (A) and
the relative expression levels of olive SAD1, SAD2 and SAD3 genes (B) in the
mesocarp tissue from cultivars Picual and Arbequina. Branches with about
100 olive fruit (28 WAF) were incubated using standard conditions except that
the olive fruit were mechanically damaged at zero time. At the indicated times,
fatty acid composition was analyzed by gas chromatography, and relative
expressions levels were determined by qRT-PCR using the expression level of
the corresponding gene at zero time as calibrator. Data are presented as
means ± SD of three biological replicates. ∗ Indicates significantly different to
time 0 h (p < 0.05) by two-way ANOVA with a Bonferroni post-test.

overexpression of the TaSSI2 in ssi2 Arabidopsis mutant plants
resulted in restoration of oleic acid and, thereby, rescued
other ssi2-associated phenotypes (Song et al., 2013). Further
studies revealed that the reduced oleic acid levels triggered the
transcriptional up-regulation of pathogenesis-related genes, the
genes governing synthesis of salicylic acid, and nitric oxide
responsive nuclear genes, thus activating disease resistance
(Venugopal et al., 2009; Mandal et al., 2012). In this sense, we
also detected in olive mesocarp a discrete reduction of 1.24% in
Picual and 2.88% in Arbequina in oleic acid levels after wounding
(Table 3). Since olive SAD2 has been reported to be the main gene
contributing to the oleic acid content in olive mesocarp (Parvini
et al., 2016), the down-regulation of olive SAD1 and SAD2 genes
observed in response to wounding could be responsible for the
decrease in the oleic acid proportion and, consequently, trigger
the defense response.
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TABLE 3 | Effect of wounding on the fatty acid composition of Picual and Arbequina mesocarp tissue.

Cultivar Time(h) Fatty acid composition (%)

16:0 16:1 16:2 18:0 18:1 18:2 18:3

Picual 0 13.41 ± 0.04 1.27 ± 0.04 0.10 ± 0.01 2.24 ± 0.00 80.19 ± 0.03 2.17 ± 0.01 0.62 ± 0.01

1 13.71 ± 0.06 ∗ 1.62 ± 0.03∗ 0.09 ± 0.00 2.17 ± 0.10 79.47 ± 0.04 ∗ 2.36 ± 0.05 ∗ 0.58 ± 0.01

6 13.86 ± 0.03∗ 1.65 ± 0.00∗ 0.10 ± 0.01 2.37 ± 0.01 ∗ 78.87 ± 0.04 ∗ 2.54 ± 0.01 ∗ 0.61 ± 0.00

24 13.57 ± 0.06 ∗ 1.51 ± 0.01∗ 0.11 ± 0.00 2.19 ± 0.01 78.95 ± 0.09 ∗ 3.13 ± 0.01 ∗ 0.55 ± 0.00

Arbequina 0 17.48 ± 0.40 2.02 ± 0.06 0.26 ± 0.02 1.83 ± 0.04 66.14 ± 0.83 11.70 ± 0.36 0.57 ± 0.03

1 18.53 ± 0.10 ∗ 2.33 ± 0.02 0.33 ± 0.01 1.75 ± 0.01 62.62 ± 0.32 ∗ 13.81 ± 0.10 ∗ 0.63 ± 0.11

6 18.15 ± 0.06 ∗ 2.38 ± 0.01 0.27 ± 0.02 1.81 ± 0.01 65.01 ± 0.04 ∗ 11.78 ± 0.03 0.59 ± 0.11

24 18.24 ± 0.10 ∗ 2.19 ± 0.03 0.33 ± 0.02 1.78 ± 0.00 63.26 ± 0.19 ∗ 13.62 ± 0.13 ∗ 0.59 ± 0.07

Data are presented as means ± SD of three biological replicates. 16:0, palmitic acid; 16:1, palmitoleic acid; 16:2, palmitolinoleic acid; 18:0, stearic acid; 18:1, oleic acid;
18:2, linoleic acid; 18:3, α-linolenic acid. ∗ Indicates significantly different to time 0 h (p < 0.05) by two-way ANOVA with a Bonferroni post-test.

Unlike SAD1 and SAD2 genes, SAD3 increased its transcript
levels transiently after 1 h in cv. Picual, and returned to
initial values at 24 h of treatment (Figure 5B). Remarkably,
SAD3 gene has been previously shown to be induced in
olive leaves infected by Spilocaea oleagina (Benítez et al.,
2005), and Verticillium dahliae and Fusarium spp. (Trabelsi
et al., 2017). Similar results to olive SAD3 gene induction
were observed in yellow lupine, avocado and tea. Zaborowska
et al. (2002) reported an increase in SAD gene transcripts
in yellow lupine nodules from 12 days after infection with
Bradyrhizobium sp. (Lupinus). In the same way, SAD expression
levels increased in response to wounding in avocado fruit
(Madi et al., 2003) and tea leaves (Ding et al., 2016).
Interestingly, we observed that the reduction in the oleic
acid levels was accompanied by an increase in palmitolinoleic
and linoleic acids at 24 h after wounding in both cultivars
(Table 3). We have reported before this increase in dienoic
fatty acids induced by wounding, showing that FAD2 genes
are involved in the wounding response of olive fruit mesocarp,
and causing an increase in the content of palmitolinoleic and
linoleic acids in microsomal lipids (Hernández et al., 2011).
In the same study, we also suggested that the synthesis of
palmitolinoleic acid is a consequence of the simultaneous
induction of SAD and FAD2 genes in olive fruit mesocarp in
response to wounding. Since, in this work, we have observed
a specific induction of the SAD3 gene (Figure 5B), it is
tempting to speculate that the SAD3 isoform is the one
involved in this response mechanism. These dienoic fatty acids
probably serve as precursors of a different set of oxylipins
involved in plant defense, generated by the lipoxygenase
pathway (Weber, 2002).

CONCLUSION

In the present study, we have demonstrated that low temperature
transcriptionally regulates SAD genes from olive mesocarp
in a cultivar-dependent manner, leading to a modification
of the UFA content in Picual microsomal membrane lipids,
in order to maintain membrane fluidity in the mesocarp
tissue. On the contrary, in the case of high temperature

SAD genes expression levels did not correlate well with
the UFA content in olive mesocarp. Our results have also
shown that the decrease of SAD gene transcripts caused by
darkness in olive mesocarp was accompanied by a reduction
in the UFA content of chloroplast lipids. In addition, the
differential transcriptional regulation of SAD genes after
wounding seems to have a crucial role in the olive defense
response, not only by reducing oleic acid levels, which triggers
the transcriptional up-regulation of defense related genes,
but also by promoting the increase of dienoic fatty acids,
that serve as precursors of oxylipins. Taken together, the
data presented in this work point out that the different
environmental stresses can modify the content of oleic acid
and its polyunsaturated derivatives in the olive mesocarp
through the transcriptional regulation of SAD genes, affecting
olive oil quality.
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