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The arbuscular mycorrhizal (AM) symbiosis between terrestrial plants and AM fungi is
regulated by plant hormones. For most of these, a role has been clearly assigned in
this mutualistic interaction; however, there are still contradictory reports for cytokinin
(CK). Here, pea plants, the wild type (WT) cv. Sparkle and its mutant E151 (Pssym15),
were inoculated with the AM fungus Rhizophagus irregularis. E151 has previously
been characterized as possessing high CK levels in non-mycorrhizal (myc−) roots and
exhibiting high number of fungal structures in mycorrhizal (myc+) roots. Myc− and
myc+ plants were treated 7, 9, and 11 days after inoculation (DAI) with synthetic
compounds known to alter CK status. WT plants were treated with a synthetic CK
[6-benzylaminopurine (BAP)] or the CK degradation inhibitor INCYDE, whereas E151
plants were treated with the CK receptor antagonist PI-55. At 13 DAI, plant CK content
was analyzed by mass spectrometry. The effects of the synthetic compounds on AM
colonization were assessed at 28 (WT) or 35 (E151) DAI via a modified magnified
intersections method. The only noticeable difference seen between myc− and myc+

plants in terms of CK content was in the levels of nucleotides (NTs). Whereas WT plants
responded to fungi by lowering their NT levels, E151 plants did not. Since NTs are
thought to be converted into active CK forms, this result suggests that active CKs were
synthesized more effectively in WT than in E151. In general, myc+ and myc− WT plants
responded similarly to INCYDE by lowering significantly their NT levels and increasing
slightly their active CK levels; these responses were less obvious in BAP-treated WT
plants. In contrast, the response of E151 plants to PI-55 depended on the plant
mycorrhizal status. Whereas treated myc− plants exhibited high NT and low active CK
levels, treated myc+ plants displayed low levels of both NTs and active CKs. Moreover,
treated WT plants were more colonized than treated E151 plants. We concluded that
CKs have a stimulatory role in AM colonization because increased active CK levels were
paralleled with increased AM colonization while decreased CK levels corresponded to
reduced AM colonization.

Keywords: AM symbiosis, cytokinin, INCYDE, legume, PI-55, Pisum sativum L., plant hormone, Rhizophagus
irregularis
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INTRODUCTION

The biological association between land plants and AM fungi is
one of the most ancient, widespread, and functionally important
symbioses on Earth. Its development can be dissected into several
steps reflecting the progression of the fungus during colonization
of the host roots (Smith and Read, 2008). In the pre-contact
step, the hyphae growing from a propagule (i.e., spores, vesicles,
colonized roots) often start branching to increase the number
of potential entry points into the roots (Akiyama et al., 2005).
Once in contact with the root surface, the hyphae differentiate
into hyphopodia to facilitate fungal penetration into the plant
epidermis. In the Arum-type of AM colonization, which is the
most studied type, the fungal hyphae proliferate intercellularly
within the root cortex and eventually invade cortical cells to
develop into arbuscules (Dickson et al., 2007), which are the main
interfaces in the bi-directional exchange of nutrients between the
two partners. While the fungus provides phosphorus, nitrogen,
and other mineral elements to the plant (Rausch et al., 2001;
Harrison et al., 2002; Guether et al., 2009; Gaude et al., 2012), the
plant delivers sugars and lipids to the fungus (Helber et al., 2011;
Bravo et al., 2017). Newly acquired carbon is translocated through
the hyphae mostly in lipid forms, which are either used in fungal
metabolism or stored in spores and other fungal structures, such
as vesicles and auxiliary cells depending on the genus.

The development of AM symbiosis involves a complex
molecular dialogue between partners and is partially regulated
by the host plant through the highly specific action of several
hormones. Regulatory aspects of most of the hormones in this
process have been discussed in several reviews (Foo et al., 2013;
Bucher et al., 2014; Fusconi, 2014; Gutjahr, 2014; Pozo et al., 2015;
Lace and Ott, 2018; Liao et al., 2018; Das and Gutjahr, 2019),
wherein the role of CKs appears noticeably obscure.

CKs can exist in various forms that differ in their structure and
activity, and their homeostasis is fine-tuned through biosynthesis
and degradation (Figure 1; Spíchal, 2012). They are perceived
by receptors which consist of an extracellular CHASE domain
and an intracellular portion made up of a His kinase domain
and two receiver domains (Kieber and Schaller, 2010). Upon CK
perception, a signal is transduced and decrypted, and a biological
response ensues (Figure 1). It still remains controversial whether
CKs have a role in the establishment and maintenance of AM

Abbreviations: 2MeSiP, 2-methylthio-isopentenyladenine; 2MeSiPR, 2-
methylthio-isopentenyladenosine; 2MeSZ, 2-methylthio-zeatin; 2MeSZR,
2-methylthio-zeatin riboside; AM, Arbuscular mycorrhiza; ANOVA, one-way
analysis of variance; BAP, 6-benzylaminopurine; BAPR, 6-benzylaminopurine
riboside; CK, cytokinin; DAI, day after inoculation; DHZ, dihydrozeatin;
DHZOG, dihydrozeatin-O-glucoside; DHZR, dihydrozeatin-riboside;
DHZRMP, dihydrozeatin riboside-5′-monophosphate; DHZROG, dihydrozeatin
riboside-O-glucoside; DMSO, dimethyl sulfoxide; FB, free base; HC,
hyphal compartment; HPLC-(+ESI)-MS/MS), high-performance liquid
chromatography-positive electrospray ionization tandem mass spectrometry;
INCYDE, 2-chloro-6-(3-methoxyphenyl)-aminopurine; iP, isopentenyladenine;
iP7G, isopentenyladenine-7-glucoside; iPR, isopentenyladenosine; iPRMP,
isopentenyladenosine-5′-monophosphate; MSR, Modified Strullu-Romand;
NT, nucleotide; PACK, putatively active cytokinin; PI-55, 6-(2-hydroxy-3-
methylbenzyl)-aminopurine; RB, riboside; TDZ, thidiazuron; WT, wild type;
Z, zeatin; Z9G, zeatin-9-glucoside; ZOG, zeatin O-glucoside; ZR, zeatin riboside;
ZRMP, zeatin riboside-5′-monophosphate; ZROG, zeatin riboside-O-glucoside.

colonization. A regulatory role for CKs is either considered not
well understood (Pozo et al., 2015; Liao et al., 2018), continues to
cast doubts (Foo et al., 2013; Lace and Ott, 2018; Das and Gutjahr,
2019), or is just overlooked (Bucher et al., 2014; Gutjahr, 2014),
possibly because of the contradictory conclusions documented
in the literature. For instance, mycorrhizal colonization did not
appear to alter gene expression in the CK signaling of the legume
species Medicago truncatula (Laffont et al., 2015). Yet, recent
studies employing powerful biochemical tools (Adolfsson et al.,
2017; Schmidt et al., 2017; Yurkov et al., 2017) confirmed what
earlier studies had documented (e.g., Allen et al., 1980; Shaul-
Keinan et al., 2002), i.e., that mycorrhizal (myc+) plants exhibit
altered CK levels compared to non-mycorrhizal (myc−) plants.
The intensity of these mycorrhizal effects on CK accumulation in
plants depends on the fungal species, P availability in soil, as well
as on plant tissue and development stage.

Several hypotheses have been proposed to explain the AM-
mediated changes in CK content of the host plants. First, the AM
fungus may produce and deliver CKs to the host roots (Allen
et al., 1980; Shaul-Keinan et al., 2002). Second, the AM fungus
may stimulate host plant CK biosynthesis (Drüge and Schönbeck,
1992). Third, either a plant or a fungal compound may inhibit CK
degradation (Allen et al., 1980; Shaul-Keinan et al., 2002). Finally,
the AM-mediated increase in P uptake may indirectly affect
the plant CK homeostasis (Drüge and Schönbeck, 1992; Shaul-
Keinan et al., 2002). Regardless of the mechanism, considering
the strong impact of CKs on plant development (e.g., Werner and
Schmülling, 2009), it is likely that alteration of CK levels in the
host plant affects AM symbiosis. Yet, the effects that CKs have on
AM development appear inconsistent in the few existing reports.
For example, the exogenous application of synthetic CK to myc+
plants suggests an inhibitory effect of CKs on AM development
(Gryndler et al., 1998; Bompadre et al., 2015; Schmidt et al., 2017),
whereas both endogenous CK deficiency (Cosme and Wurst,
2013) and elevated CK levels (Jones et al., 2015) in the host plant
hint at a stimulatory role. Some of these inconsistencies might
be explained by the fact that CKs, depending on their location
(shoots or roots), may have distinct roles in the AM symbiosis
(Cosme et al., 2016).

Here, we investigated (1) whether the presence of an AM
fungus (Rhizophagus irregularis) affects the CK levels in the
shoots and roots of a legume host plant and (2) whether
altering the CK homeostasis of this legume influences AM
development. To tackle these two objectives, we used pea (Pisum
sativum L.) cv. Sparkle (WT) and its pleiotropic mutant E151
(Pssym15) as host plants. This mutant was characterized as
sparsely forming nodules when grown in the presence of rhizobia
(Kneen et al., 1994). Early in its development, i.e., 6 days
after planting, E151 is known to accumulate a larger amount
of CKs than its WT. Furthermore, later in life, E151 exhibits
enhanced mycorrhizal colonization under the control of its shoot
as determined by grafting experiments (Jones et al., 2015). In
this work, we studied AM development in both these plant
lines along several time points and analyzed the CK content of
myc+ and myc− plants 13 DAI, when pea is known to have
entered its vegetative phase (Knott, 1987). To manipulate CK
homeostasis, we undertook pharmacological treatments using
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FIGURE 1 | Schematic representation of CK homeostasis in a plant cell. CK nucleotides are the precursors of the CK ribosides and CK free bases (e.g., BAP). Both
types of CKs are substrates of the enzyme CK oxidase (CKX) and they will be degraded upon enzymatic activity. When active free bases are perceived by CK
receptors, a signal is transduced to the nucleus triggering the expression of response regulators, which ultimately will lead to a biological response. INCYDE, an
inhibitor of CK degradation, and PI-55, a competitive inhibitor of CK action, are capable of regulating CK homeostasis.

synthetic compounds modifying the CK status of the plant.
Finally, we used bi-compartmented in vitro root organ cultures
to test if these CK status-modifying compounds have direct
effects on the AM fungus development. Overall, our results
suggest that fluctuations in CK homeostasis affect significantly
AM development in pea. At an early stage of the interaction, a
decrease in plant CK NTs, reflecting a fast turnover rate of these
precursor molecules into active CKs, facilitated the fungal entry
into the roots, while at a later stage high levels of active CKs in
the shoot stimulated intraradicular fungal progression.

MATERIALS AND METHODS

Fungal and Plant Growth Conditions
The AM fungal strain used in this study was R. irregularis
[(Blaszk, Wubet, Renker, and Buscot) C. Walker and Schuessler
2010 as (“irregulare”)] DAOM 197918 originally obtained from
the Agriculture and Agri-Food Canada Glomeromycota in vitro
collection (AAFC, Ottawa, ON, Canada) and propagated in
our lab using leek (Allium ampeloprasum) as a host. The leek
plant cultures with the AM fungus were grown in peat and

Turface R© [1:1, v:v; ASB Greenworld Ltd. (Mount Elgin, ON,
Canada) and Plant Products Company Ltd. (Brampton, ON,
Canada), respectively]. They were kept in a growth chamber
(16/8 h, 23/18◦C, light/dark cycle) and watered weekly. Every
3 weeks, they received a low phosphorus Long-Ashton nutrient
solution (Audet and Charest, 2010) instead of water. Roots
of leek plants containing hyphae, vesicles and spores of the
AM fungus were cut in small fragments. These fragments were
mixed with the soil in which the leeks had been grown and
together were used as an inoculum source for the growth-room
experiments described below. For the in vitro experiment, spores
and mycelium of R. irregularis MUCL 41833 as well as the Ri
T-DNA transformed carrot (Daucus carota) roots were obtained
from the Glomeromycota in vitro collection (GINCO1), where
starting inocula are maintained and distributed, under in vitro
conditions, in modified Strullu-Romand (MSR) medium.

Seeds of P. sativum L. cv. Sparkle and of its mutant E151
were surface-sterilized with 8% bleach, and left imbibing in
water overnight in the dark. They were then sown in black
Cone-tainersTM (600 mL, Stuewe and Sons, Inc., Tangent, OR,

1http://www.mycorrhiza.be/ginco-bel
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United States) filled with a substrate mixture [1:1:1, v:v:v] of
peat: Turface R©: vermiculite (Therm-O-Rock East Inc., New Eagle,
PA, United States). The substrate mixture was autoclaved to
eliminate any potential microbial contaminants. For the myc+
plants, the fungal inoculum was added at a ratio of 1:5 (v:v) to the
sterile substrate mixture before planting. All plants were kept in
a growth room (16/8 h, 23/18◦C, light/dark regime). For the first
10 days, seedlings were watered when needed. Once established,
except when noted otherwise, all plants were subjected to a cycle
of water, water, and low phosphorus Hoagland nutrient solution
(Resendes et al., 2001), until they were harvested. Harvest time
was variable depending on the experiments. Plants used for
CK analysis were harvested 13 DAI while plants in the AM
development study were harvested 5, 10, 15, 20, and 25 DAI.
An initial delay of fungal entry was observed into E151 roots
compared to the WT roots (see below section E151 Delays
Fungal Entry but Accelerates Intraradical Fungal Development);
therefore, WT and E151 myc+ plants treated with the synthetic
CK status-modifying compounds were harvested at 28 and 35
DAI, respectively. This was considered acceptable because the
size of the root systems of 35 day-old E151 plants was similar
to that of 28 day-old WT plants. Both treated myc+ plant lines
were analyzed in comparison to either their respective myc−
controls or their respective non-treated myc+ controls. For a
better visualization of the chronology of events, the timeline
of the CK and AM experiments is included as Supplementary
Figures 1A,B, respectively.

Assessment of AM Colonization in Plants
To evaluate the colonization of roots by the AM fungi, root
systems were cleaned at harvest, and lateral roots from each plant
were randomly selected. They were then cut into 3 cm-segments,
and stained for AM structures with Indian ink (Vierheilig et al.,
1998). Root segments were mounted onto microscope slides
using 60% aqueous glycerol. The magnified intersections method
(McGonigle et al., 1990) modified by MacColl (2017) was used to
assess AM colonization, yielding estimates of the percentage of
root length colonized by hyphae, arbuscules, and vesicles. Briefly,
the modification consisted of assessing 105 intersections per slide
(15 passes were made over seven roots). Each time an arbuscule
or a vesicle was scored, a hypha was scored as well. Root sections
were observed under a Zeiss Axiovision light microscope at a
200×magnification (20× objective; 10× ocular).

Treatment of Plants With Synthetic
Compounds Modifying CK Status
To alter plant endogenous CK status, 7, 9, and 11 DAI,
myc+ and myc− seedlings received several synthetic compounds
(Supplementary Table 1). Because 6-day-old WT plants had
reduced CK levels compared to the E151 mutant (Jones
et al., 2015), the WT plants were treated with 0.1 µM
6-benzylaminopurine (BAP) or with 1 µM 2-chloro-6-(3-
methoxyphenyl)-aminopurine (INCYDE; Zatloukal et al., 2008)
to increase their CK levels. As well, E151 plants were treated
with 10 µM 6-(2-hydroxy-3-methylbenzyl)-aminopurine (PI-55;
Spíchal et al., 2009) to reduce their endogenous CK sensing and

mimic the effect of CK deficiency. In addition, to confirm the
role of PI-55 as a competitor for plant CK receptors, the E151
mutant was treated with either 1 µM BAP or with a mixture of
PI-55 (5 mL of 10 µM) and BAP (5 mL of 1 µM). On each day of
treatment, plants received at their crown 10 mL of the chemical
aqueous solution [with a minimal concentration of the solvent
DMSO for INCYDE and PI-55 (0.002 and 0.1%, respectively)].

CK Extraction, Purification, and
Quantification by HPLC-(+ESI)-MS/MS
To assess whether the CK levels were altered by the synthetic
compounds modifying the plant CK status, both myc− and
myc+ plants were harvested 13 DAI. Throughout their life,
these plants were provided only with water, i.e., they were
never exposed to mineral nutrient fertilization. The roots were
immediately separated from the shoots and carefully cleaned.
For the aboveground plant tissue sampling, the entire leaf
positioned on the fourth node was collected from each plant and
approximately 0.1 g of fresh leaf tissue was freeze-dried. For the
belowground plant tissue sampling, a total fresh weight of 0.2 g
of root tissue per plant was sampled. For this, the fourth lateral
root was detached and weighed; in the case when more root tissue
was required, the lateral root positioned just below (in terms of
vascular pole positioning) was also sampled.

Freeze-dried samples were homogenized in cold (−20◦C)
modified Bieleski No. 2 extraction buffer [CH3OH : H2O :
HCO2H (15:4:1, v:v:v)] using a ball mill grinder and
ZnO2 beads (25 Hz, 2 min, 4◦C, Retsch MM300, Haan,
Germany). Internal standards were added to each sample to
enable endogenous hormone quantification through isotope
dilution. The following standards were added (10 ng of
each): [2H7]BAP, [2H7]BAPR, [2H5]ZOG, [2H7]DHZOG,
[2H5]ZROG, [2H7]DHZROG, [2H6]iP7G, [2H5]Z9G,
[2H5]2MeSZ, [2H6]2MeSiP, [2H5]2MeSZR, [2H6]2MeSiPR,
[2H6]iPR, [2H5]ZR, [2H3]DHZR, [2H6]iP, [2H3]DHZ, [2H5]Z,
[2H6]iPRMP, [2H6]ZRMP, [2H3]DHZRMP (OlChemIm Ltd.,
Olomouc, Czechia). CK extraction and purification were
carried out as described in Quesnelle and Emery (2007) and
modified by Farrow and Emery (2012).

High-performance liquid chromatography-positive
electrospray ionization tandem mass spectrometry [HPLC-
(+ESI)-MS/MS] was conducted according to Farrow and Emery
(2012). Briefly, samples were analyzed using a Shimadzu LC
(Kyoto, Japan) connected to a 5500 QTrap triple quadrupole
mass spectrometer (Sciex Applied Biosystem, Concord, ON,
Canada) with a turbo V-spray ionization source. A 20 µL sample
was injected onto a reverse phase C18 column (Kinetex 2.6u C18
100 A, 2.1× 50 mm; Phenomenex, Torrance, CA, United States).
The samples were analyzed in a positive-ion mode. All hormone
fractions were eluted with component A: H2O with 0.08%
CH3CO2H and component B: CH3CN with 0.08% CH3CO2H, at
a flow rate of 0.4 mL min−1. The CK fractions were eluted with
a multistep gradient. Starting conditions were 5% B increasing
linearly to 10% B over 2 min followed by an increase to 95%
B over 6.5 min; 95% B was held constant for 1.5 min before
returning to starting conditions for 5 min.
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All data were analyzed with Analyst 1.5.1 software (AB SCIEX,
Concord, ON, Canada). CK types were identified based on their
multiple reaction monitoring channels and retention times. CK
levels were determined according to isotope dilution analysis via
direct comparison of the endogenous analyte peak area to that
of the recovered internal standard. The analysis of cisZ types was
done relative to both the recovery of labeled transZ types and the
retention time of unlabeled cisZ CKs (Farrow and Emery, 2012).

Treatment of the AM Fungus With
Synthetic CK-Related Compounds Using
in vitro Root Organ Culture
To understand whether the synthetic CK status-modifying
compounds can have direct effects on the growth of the
AM fungus, we used in vitro bi-compartmented Petri plates
containing root organ cultures in one of the compartments
(referred to hereafter as the root compartment). The root
compartment was filled with MSR medium (Declerck et al., 1998;
using PhytagelTM instead of BactoTM agar as gelling agent). The
opposite compartment (hereafter referred to as the HC) was filled
with a modified MSR medium, which did not contain sucrose
and vitamins (the absence of sucrose and vitamins minimizes
potential invasion of HC by roots). Fresh fragments of host
roots, i.e., transformed carrot roots, were placed into each root
compartment, and inoculated with approximately 400 spores
accompanied by hyphal fragments of R. irregularis MUCL 41833.
All plates were incubated in the dark at 27◦C. The plates were
checked regularly, and any root tips attempting to cross the
compartment barrier were trimmed and removed. In contrast,
the AM fungus was allowed to migrate and grow into the HC.
Because of the variability between plates of the initial time at
which hyphae would invade the HC, the fungus was first left to
proliferate in this compartment. Then, the medium in the HC
of each plate was removed with a sterile spatula, and the HC
was re-filled with the modified MSR medium, this time enriched
with 10 µM of either INCYDE, PI-55, or BAP in DMSO solution
(0.1%), or with a DMSO solution as a negative control. Each
solution had been previously sterilized through a syringe filter
(0.2 µm). Afterward, the AM fungus was allowed to regrow into
the HC in the presence of the synthetic CK status-modifying
compounds or DMSO. We focused on the fungal regrowth to
assure that the hyphae in the HC had a similar starting point
between plates, and importantly, were exposed to the different
synthetic compounds for a similar period. After 35 days of fungal
regrowth, the hyphal length density in the HC was determined
using the grid-line intersect method (Giovannetti and Mosse,
1980) adapted to determine hyphal length.

Statistical Analysis
Mean values and standard errors were generated for all data
sets and were subjected to different statistical tests depending
on the data. Student’s t-test (or Mann-Whitney U-test in the
event of non-normally distributed data) was used to compare:
(1) the fungal colonization of WT and E151 roots at different
developmental stages; and (2) the CK levels of myc+ and myc−
pea lines treated with the same synthetic CK status-modifying

compound. A one-way analysis of variance (ANOVA) test was
used to compare: (a) the in vitro hyphal length density treated
or not with CK status-modifying compounds; (b) the CK levels
measured in both WT and E151 plants with a similar mycorrhizal
status; and (c) E151 plants treated or not with CK status-
modifying compounds. Each ANOVA was followed by Duncan’s
post hoc test for (a and b), and a Tukey’s HSD post hoc test for
(c). To compare the fungal colonization of WT plants treated
or not with CK status-modifying compounds, a Kruskal–Wallis
test was used followed by a multiple comparison test. Finally, a
linear regression was performed to determine whether the levels
of putatively active CKs (PACKs; equaled to the sum of the RB
and FB levels) is a significant predictor of fungal colonization. All
tests were conducted using R Studio (R Core Team, 2017).

RESULTS

E151 Delays Fungal Entry but
Accelerates Intraradical Fungal
Development
There were obvious qualitative (Figure 2) and quantitative
(Figure 3) differences between the two pea lines throughout
the development of the AM association. Five DAI, there were
no clear signs of fungal presence on the roots of either pea
line. The earliest visible interaction between R. irregularis and
the pea plants occurred 10 DAI (Figures 2A,B). At this time,
extraradical hyphae ran along the root surface, but did not appear
to penetrate the roots. Quantitatively, only half of the sampled
WT roots were colonized at 10 DAI, and each colonization unit
[i.e., infection unit as per Franson and Bethlenfalvay (1989)]
had on average two hyphopodia. There were neither visible
hyphopodia nor colonization units on the roots of the E151
mutant line at that time. At 15 DAI, hyphopodia had formed
on both pea lines (Figures 2C,D); there were 3.6 ± 0.83
and 2.88 ± 0.73 hyphopodia per colonization unit on the
WT and E151 plants, respectively. Although this difference in
hyphopodia numbers between lines was not significant, it was
associated with a significant increase (Student’s t-test; P ≤ 0.05)
in the percentage of root length colonized by the AM fungus
in the WT plants, compared with that of the E151 plants
(Figures 3A,C,E). At 20 DAI and later, an obvious shift in
AM fungal colonization was observed, with the root cortex
of E151 plants being more colonized than that of WT plants
(Figures 2E–H). This qualitative increase in fungal colonization
of the root cortex at 20 DAI in E151, compared with that of
its WT, was quantitatively significant (Student’s t-test; P ≤ 0.05)
for all measured fungal structures (Figures 3B,D,F). In a later
stage of fungal colonization, i.e., at 25 DAI, mycorrhizal levels
tended to be higher in E151 than in WT, but the difference
was not significant (data not shown). Overall, fungal entry into
the roots appeared to be delayed in E151. However, once the
fungus was established in the cortex of E151, its intraradical
proliferation was accelerated in terms of hyphal growth as well
as of fungal differentiation into arbuscules and vesicles, when
compared with that of the WT.
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FIGURE 2 | Development of arbuscular mycorrhizae resulting from the association formed between Rhizophagus irregularis and pea plants. WT (A,C,E,G) and the
mutant E151 (B,D,F,H) were compared at different time points. At 10 DAI (A,B), extra-radicular hyphae (asterisks) were seen on the root surface of both pea lines.
Root entry and subsequent internal colonization of the fungus were first observed at 15 DAI (C,D), at which point fungal colonization in WT appears to be more
extensive than in E151. At 15 DAI, arbuscules (arrowheads) and vesicles (arrows) were already formed. At 20 DAI (E,F) and 25 DAI (G,H), E151 roots exhibited many
more fungal structures than WT roots. Bars = 250 µm.

Mycorrhizal WT Plants Exhibit Reduced
Endogenous CK Nucleotide Levels at 13
DAI While E151 Plants Do Not
To understand how the AM fungus affected the CK profiles
of WT and E151 pea plants, we measured the CK levels
in shoots and roots of both myc− and myc+ plants at 13
DAI. The mycorrhizal status (myc− and myc+) of the plants
was confirmed at harvest by assessing fungal colonization
(absence/presence, respectively).

Although no obvious differences were detectable in the total
CK levels between myc− WT and myc− E151 plants in either
shoots or roots (Table 1), the response of E151 differed markedly
from its WT counterpart in terms of the fluctuations observed in
the NT levels following AM colonization (Figure 4). Whereas the
levels of the NT fraction in WT plants were reduced significantly
(Student’s t-test; P ≤ 0.05) in both shoots (Figure 4A) and roots
(Figure 4B) in response to the AM fungus, the levels of the NT
fraction in both shoots and roots of E151 plants remained mostly
unaltered. Among all NT compounds detected, i.e., transZNT,

cisZNT and iPNT, the most abundant form in the shoots of
WT and E151 plants was iPNT (Table 2). In WT shoots, iPNT
levels were significantly reduced (Student’s t-test; P ≤ 0.05)
following AM colonization, while the levels of transZNT and
cisZNT were moderately reduced (Table 2). In contrast, in
the roots of WT and E151, the levels of iPNT were below
the detection limit, while the most abundant NT compound
was cisZNT (Table 3). After colonization, the levels of cisZNT
were significantly reduced (Student’s t-test; P ≤ 0.05) in WT
roots, while the levels of transZNT remained almost unaltered
(Table 3). The levels of NT in roots of E151 decreased slightly
following colonization; however, the observed changes were
not significant.

The AM fungus did not significantly affect the other CK
fractions in either the WT or the E151 mutant (Tables 2,
3), except for the O-glucosides in the roots of E151. Among
the O-glucosides measured in the roots (Table 3), the levels
of transZROG were below detection limit, while those of
cisZROG were detected in low amounts and revealed a significant
reduction (Student’s t-test; P ≤ 0.05) in myc+ E151 roots,
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FIGURE 3 | Percent of WT (empty bars) and E151 (solid bars) roots colonized by R. irregularis, as determined by assessing percentages of intraradicular hyphae
(A,B), arbuscules (C,D), and vesicles (E,F) observed at 15 (A,C,E) and 20 (B,D,F) DAI. These data (mean ± SE; n = 5 or 6) are the result of one replicate and are
the best representative of three replicates; they were subjected to Student’s t-test to determine significant differences between pea lines. An asterisk indicates
significance at a 95% confidence level.

compared with that of myc− E151 roots. Overall, the colonization
by the AM fungus most evidently reduced the endogenous levels
of NTs, an inactive form of CKs, in WT plants but did not affect
those of E151 plants.

CK Promotes the Intraradical Growth of
R. irregularis but Not the Extraradical
Growth
Levels of Endogenous CK Can Be Manipulated
Pharmacologically in Pea
The effect of the synthetic CK status-modifying compounds on
the total CK content of pea plants depended on the organ and
the mycorrhizal status of the plant (Table 1). Whereas BAP
and INCYDE did not have a significant effect on the total CK
levels of the shoots of either myc− or myc+ WT plants, the
INCYDE treatment significantly reduced (Duncan’s post hoc test;
P ≤ 0.05) the total CK levels of the roots of myc− WT plants.
PI-55 treatment tended to decrease CK levels independently of

plant organ or fungal presence. This compound had the strongest
impact on the total CK content of myc+ E151 shoots (Table 1)
as it significantly reduced their levels (Duncan’s post hoc test;
P ≤ 0.05). To better understand how these compounds affected
the plant CK homeostasis, we compared below the changes
observed in different CK fractions (NT, RB, and FB).

In the shoots and roots of myc− WT plants, NT levels
(Tables 2, 3, respectively; Figure 5A) decreased in plants treated
with either BAP or INCYDE; specifically, the cisZNT levels were
reduced by half or more in the two organs, but the decrease was
significant only in the roots (Duncan’s post hoc test; P ≤ 0.05).
Moreover, while the levels of the RBs and FBs tended to increase
in the shoots (Table 2 and Figure 5B), they were not affected in
the roots of myc− WT plants (Table 3). The NT and RB levels
in the shoots of myc+ WT plants were affected by the INCYDE
treatment in a manner similar to those of shoots in the myc−
WT plants (Figures 5A,B and Table 2), but the effect caused by
BAP on the myc+ plants was not as clear-cut as that of INCYDE
(Figure 5). As for the myc+ roots of INCYDE- or BAP-treated
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TABLE 1 | Levels [pmol g−1 of fresh weight (FW)] of total CK isolated from shoots and roots of non-mycorrhizal (myc−) and mycorrhizal (myc+) pea plants.

Total CK level (pmol g−1FW)

Treatment Shoots Roots

myc− myc+ myc− myc+

WT control 1028.31 ± 244.18a 915.61 ± 81.29a 24.40 ± 3.30a∗ 8.74 ± 1.00a∗

WT + BAP 1074.14 ± 59.72a 932.95 ± 37.15a 14.59 ± 3.53ab 13.08 ± 2.60a

WT + INCYDE 1204.05 ± 232.30a 1208.59 ± 61.30a 11.34 ± 2.98b 11.06 ± 3.24a

E151 control 847.79 ± 50.05ab 1019.19 ± 190.30a 14.93 ± 3.20ab 11.26 ± 1.62a

E151 + PI-55 492.15 ± 52.22b 522.12 ± 97.58b 11.40 ± 2.23b 8.89 ± 0.80a

CK content was measured in wild type (WT) plants, in WT plants treated with BAP and INCYDE, in the pea mutant E151, and in E151 plants treated with PI-55. Values
are means ± SE (n = 3). Different letters indicate a significant difference between treatments (one-way ANOVA followed by a Duncan’s post hoc test, 95% confidence
level). An asterisk indicates a significant difference between the same treatments of differing mycorrhizal status (Student’s t-test, 95% confidence level).

WT plants, no significant differences were seen when compared
to non-treated WT plants, and no obvious trends were seen in the
specific CK fractions (Table 3).

Treatment of myc− E151 plants with PI-55 resulted in a
noticeable, though non-significant, increase of the shoot NT
levels (Figure 5A) and a clear, yet non-significant, decrease of

FIGURE 4 | Levels [pmol g−1 of fresh weight (FW)] of nucleotides (NT;
transZNT, cisZNT, and iPNT) in the shoots (A) and the roots (B) of WT (white
bars) and E151 (black bars) plants. Plants inoculated with R. irregularis (bars
with hatched lines) or non-inoculated (solid bars) were harvested 13 days after
planting. Data (mean ± SE; n = 3) were subjected to a Student’s t-test to
determine significant differences between myc− and myc+ plants. An asterisk
indicates significance at a 95% confidence level.

the levels of RBs (Figure 5B) and FBs (Table 2). In the roots of
treated myc− E151 plants, the results of all CK fractions tended
to decrease (Table 3). Myc+ E151 plants responded to the PI-55
treatment differently from myc− E151 plants. In the presence of
PI-55, NT levels (Figure 5A) tended to decrease in the shoots
of myc+ E151 plants compared to those of untreated plants.
Moreover, the RB levels (Figure 5B) were significantly reduced
(Duncan’s post hoc test; P ≤ 0.05), likely because of a significant
reduction in the iPR fraction (Table 2). As well, the FB levels
tended to decrease in the shoots of myc+ E151 plants treated
with PI-55 (Table 2). The levels of all CK fractions either did
not change or tended to slightly decrease in the myc+ roots of
PI-55-treated E151 plants (Table 3).

In the shoots of both myc− pea lines, the levels of the
O-glucoside and methyl-thiol CK fractions, especially their RB
conjugates, followed patterns similar to those seen in the RB
and FB fractions (Table 2), i.e., they tended to increase in
BAP- or INCYDE-treated WT plants and to decrease in PI-55-
treated E151 plants. Overall, whereas the effects of BAP and
INCYDE treatments on the WT plants were not strongly altered
by the presence of the fungus, the effect of PI-55 on the mutant
was exacerbated because E151-treated myc+ plants exhibited a
significant reduction in shoot NT levels compared to the myc−
plants (Student’s t-test, P ≤ 0.05).

Endogenous CKs Affect Mycorrhizal Colonization of
Plants
Altering the endogenous CK levels of the host plants via
pharmacological treatments had a significant effect on the
intraradicular growth of the AM fungus. When RB and FB levels
tended to increase in the WT at 13 DAI, e.g., with INCYDE
(Figure 5B), the percentages of root cortex length colonized by
hyphae, arbuscules, and vesicles were significantly increased at
28 DAI (multiple comparison test; P ≤ 0.05; Figures 6A–C).
Moreover, decreasing the RB levels of the mutant E151 by
interfering with CK perception via PI-55 treatment (Figure 5B)
led to significant reductions (Tukey’s post hoc test; P ≤ 0.05)
in AM fungal colonization of the roots (Figures 6D–F). When
the E151 plants were treated with a mixture of BAP and PI-
55, the percentages of root length colonized by the AM fungus
were intermediate between those obtained with the application of
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TABLE 2 | Levels [pmol g−1 of FW] of CK isolated from shoots of non-mycorrhizal (myc−) and mycorrhizal (myc+) pea plants.

Pea line + Cytokinin level [pmol g−1FW]

Treatment

Free bases (FB) Ribosides (RB) Nucleotides (NT)

iP DHZR transZR cisZR iPR transZNT cisZNT iPNT

myc−

WT control 5.30 ± 0.78ab 2.81 ± 0.42ab 0.70 ± 0.29a 172.16 ± 54.38ab 211.55 ± 44.14ab 1.01 ± 0.05 42.93 ± 13.67 298.47 ± 45.58a∗

WT+BAP 9.44 ± 0.21b 3.10 ± 0.04ab 1.91 ± 0.16b 178.64 ± 12.08ab 303.89 ± 22.34b 0.82 ± 0.07 16.75 ± 1.13∗ 165.00 ± 18.31ab

WT+INCYDE 8.07 ± 1.03b 3.39 ± 0.33a 1.58 ± 0.14bc 215.74 ± 10.03a 317.62 ± 28.39b 0.80 ± 0.01 13.79 ± 3.90 129.42 ± 44.34b

E151 control 5.89 ± 1.94ab 2.27 ± 0.59ab 1.18 ± 0.18abc 122.41 ± 38.39ab 201.35 ± 77.09ab 1.43 ± 0.38 26.91 ± 8.84 170.14 ± 38.88ab

E151+PI-55 1.68 ± 0.33a 1.72 ± 0.01b 1.09 ± 0.07ac 60.09 ± 9.62b 54.70 ± 15.28a 1.22 ± 0.15 45.29 ± 11.89 241.53 ± 23.21ab∗

myc+

WT control 7.05 ± 1.31ab 2.64 ± 0.10 1.37 ± 0.12ab 149.63 ± 19.27ab 269.24 ± 25.47b 0.89 ± 0.24 8.24 ± 0.32 60.04 ± 9.34b∗

WT+BAP 7.62 ± 1.96ab 2.51 ± 0.30 1.32 ± 0.31ab 147.36 ± 33.61ab 238.83 ± 35.37b 0.72 ± 0.06 8.43 ± 0.92∗ 136.77 ± 27.12ab

WT+INCYDE 9.71 ± 0.37a 2.06 ± 0.61 1.97 ± 0.31a 176.79 ± 16.25a 340.07 ± 9.29b 0.70 ± 0.19 5.09 ± 1.00 45.66 ± 8.82b

E151 control 6.24 ± 1.40ab 2.16 ± 0.19 1.33 ± 0.18ab 148.92 ± 15.16ab 265.36 ± 32.44b 1.01 ± 0.15 16.03 ± 5.64 198.65 ± 42.32a

E151+PI-55 3.20 ± 0.80b 1.46 ± 0.12 0.97 ± 0.25b 80.21 ± 8.19b 117.90 ± 24.79a 1.27 ± 0.07 13.34 ± 2.65 129.62 ± 10.63ab∗

Cytokinin level [pmol g−1FW]

O- Glucosides (OG) Methyl-thiols (MeS)

transZROG cisZROG MeSZ MeSZR

myc−

WT control 1.79 ± 0.26ab 16.83 ± 3.44bc 24.59 ± 7.92 250.15 ± 50.96ab

WT+BAP 2.09 ± 0.27ab 33.78 ± 1.23a∗ 25.89 ± 2.17 332.82 ± 12.54b

WT+INCYDE 2.28 ± 0.24a 32.16 ± 5.53ac 25.29 ± 1.78∗ 453.93 ± 50.42b

E151 control 1.51 ± 0.48ab 16.70 ± 5.76bc 24.19 ± 6.11 273.80 ± 106.16ab

E151+PI-55 0.88 ± 0.15b 5.39 ± 1.64b 13.29 ± 4.27 65.27 ± 8.96a

myc+

WT control 1.73 ± 0.18b 23.33 ± 1.82 24.31 ± 3.32b 367.13 ± 33.96b

WT+BAP 1.65 ± 0.17ab 22.12 ± 0.69∗ 24.78 ± 3.76b 340.84 ± 75.54b

WT+INCYDE 2.13 ± 0.23b 22.33 ± 3.04 39.88 ± 3.68a∗ 562.21 ± 2.96a

E151 control 1.82 ± 0.21b 21.11 ± 4.33 23.02 ± 3.65b 333.54 ± 39.67b

E151+PI-55 0.96 ± 0.13a 13.79 ± 3.29 11.88 ± 2.19b 147.51 ± 35.98c

CK content was measured in wild type (WT) plants and the pea mutant E151, in WT plants treated with BAP and INCYDE, and in E151 plants treated with PI-55. For
CK, Z, DHZ and iP designate zeatin, dihydrozeatin and isopentenyl adenine, respectively. Values are means ± SE (n = 3). Different letters indicate a significant difference
between treatments (one-way ANOVA followed by a Duncan’s post hoc test, 95% confidence level). An asterisk indicates a significant difference between the same
treatments of differing mycorrhizal status (Student’s t-test, 95% confidence level).

either BAP or PI-55 alone, i.e., those for the intraradical hyphae
and arbuscules were significantly lower than the percentages
in E151 plants treated only with BAP and significantly higher
(Tukey’s post hoc test; P ≤ 0.05) than the percentages in E151
plants treated only with PI-55 (Figures 6D–F).

Finally, we tested whether a correlation occurred between
AM colonization and PACK levels. We plotted in a single
graph the percentages of AM fungal colonization (dependent
variable) against PACK levels (independent variable) measured
in non-treated WT and E151 plants as well as WT and E151
plants exposed to INCYDE and PI-55, respectively, because
both of these treatments were the most effective in altering AM
colonization. We did not take into consideration the pea lines
or the different times of harvest but considered each treatment
identity as a single data-point (Figure 7); as such, we subjected

the data to a regression analysis. Although not significant, we
observed a positive relationship between the percentages of root
length colonized by AM fungal hyphae and the levels of PACK
(Figure 7; R2 = 0.82). Likewise, the percentage of root length
colonized by the arbuscules and vesicles had an apparent positive
relation with the levels of PACK, with R2 values of 0.80 and 0.66,
respectively (Figure 7).

Synthetic CK Status-Modifying Compounds Have No
Effect on the Extraradical Hyphal Growth
To determine whether the synthetic CK status-modifying
compounds could directly affect the development of AM fungus,
we applied BAP, INCYDE, PI-55, or a DMSO mock solution
to the HC of in vitro bi-compartmented Petri plates, in which
the extraradical hyphae of R. irregularis were allowed to grow
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for 35 days linked to, but separated from, the host roots.
A non-significant, minor increase in hyphal length density was
measured in the HC to which INCYDE or PI-55 had been
added, when compared to that observed in the control HC.
As for the hyphal length density in the HC supplemented
with BAP, it was similar to that observed in the control
HC. Thus, none of the treatments with the synthetic CK
status-modifying compounds was able to affect significantly the
extraradical fungal growth.

DISCUSSION

Most, and possibly all, plant hormones contribute to the
fine-tuning of the development of AM symbiosis in plant
roots, and as such they influence the fungal growth required
for the exchange of benefits between the symbiotic partners.
Amongst the many plant hormones, CKs have one of the
least understood roles during AM development (e.g., Pozo
et al., 2015; Bedini et al., 2018; Liao et al., 2018). Here,
we provide evidence toward a stimulatory role for CKs in
AM fungal colonization (Figure 8). On one hand, low levels
of NT facilitate fungal entry into the roots; on the other
hand, high levels of RBs and the most metabolically active
FBs stimulate fungal proliferation within the root cortex. Our
findings are strengthened by the use of a pharmacological
approach whereby CK homeostasis is altered in myc+ plants
using different synthetic compounds (Figure 8). Increasing
exogenous or endogenous CK levels leads to an increase in AM
colonization whereas mimicking CK deficiency results in lower
AM colonization.

Plant Endogenous CK Levels Are
Affected by the Presence of the AM
Fungi
It is a well-known fact that CK homeostasis is altered in response
to AM fungal colonization (e.g., Allen et al., 1980; Baas and
Kuiper, 1989; Danneberg et al., 1992; Drüge and Schönbeck,
1992; Goicoechea et al., 1995; van Rhijn et al., 1997; Shaul-Keinan
et al., 2002). Among the many studies performed, two are of
interest as the CK content was measured at different stages of
AM development. While van Rhijn et al. (1997) measured CK
in myc+ alfalfa plants at 14, 16, and 18 DAI, Yurkov et al.
(2017) determined CK content in Medicago lupulina at 1, 14,
21, 35, and 50 DAI. In both studies, CK levels were estimated
by immunoassay, and thus their results are difficult to compare
to ours. It is only recently that researchers have been using
the HPLC-ESI MS/MS technique for a precise quantification of
CKs and identification of their different forms in myc+ plants.
Schmidt et al. (2017) working on Miscanthus × giganteus and
Adolfsson et al. (2017) studying M. truncatula used plants older
than those used in our study (70 DAI and 28 DAI, respectively),
and measured the leaf CK content of plants inoculated with
R. irregularis. In both works, increases in PACK and glucosides
(the latter representing CK storage forms) were reported in plants
that were well colonized.
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FIGURE 5 | Effects of chemical and mycorrhizal treatments on the levels (pmol g−1 of fresh weight) of (A) nucleotides (NT; transZNT, cisZNT, and iPNT) and (B)
ribosides (RB; DHZR, transZR, cisZR, and iPR) in the shoots of WT (white bars) and E151 (black bars) plants, the crown of which had been treated with synthetic CK
status-modifying compounds. These plants were myc− (solid bars; on the left) or myc+ (hatched bars; on the right). Data (mean ± SE; n = 3) were subjected to a
one-way ANOVA followed by a Duncan’s post hoc test (95% confidence level). Different letters indicate significant differences between different chemical treatments
of a similar mycorrhizal status. Additionally, Student’s t-tests (95% confidence level) were conducted to determine any significant differences, indicated by asterisks,
between similar treatments of differing mycorrhizal status within a pea line.

To our knowledge, no study has ever reported a decrease
in the NT fraction of myc+ plants. This is not necessarily
surprising since a high disparity exists among the performed
studies. Differences in plants species and developmental stages,
in fungal species, in growth conditions and in techniques
are obvious. For example, in the two most recent studies
(Adolfsson et al., 2017; Schmidt et al., 2017), the analytical
methods used could not detect NT levels. Another explanation
for the NT levels not being reported may be that the NT
fraction is not metabolically active; however, any fluctuation
in NT levels may indicate, albeit indirectly, changes occurring
in the other CK fractions. Thus, high NT levels likely reflect
a low turnover into active FBs or RBs, whereas low NT
levels could suggest a high conversion into more metabolically
active CK fractions (Figure 1).

In most of the previous works, CK levels were shown to
be higher in myc+ plants than in myc− plants, and the RB
fraction appeared to be the most sensitive to the fungal presence.
This fraction was higher in roots (e.g., flax in Drüge and
Schönbeck, 1992; tobacco in Ginzberg et al., 1998) and shoots
(M. lupulina in Yurkov et al., 2017) of myc+ plants. Furthermore,
the changes observed depended on the infection rate (Drüge
and Schönbeck, 1992) and the P levels to which the plants
were exposed (Plantago major in Baas and Kuiper, 1989; leek
in Torelli et al., 2000). RBs are considered the main form by
which CKs are transported between roots and shoots (Ko et al.,

2014; Zhang et al., 2014). In our study, we did not see any
differences in the RB levels between myc− and myc+ plants and
this may be because the CK profiles were analyzed early in the
AM symbiosis, i.e., 13 DAI. This result is consistent with that of
Dixon et al. (1988), who found that AM development increased
RB transport from root to shoot in Citrus jambhiri, and that this
effect was much weaker early in development (15-day-old) than
later, with the strongest effect occurring in 90-day-old plants.
It would be logical that RBs are transported in much higher
quantities when nutrient exchange is well underway between the
two partners of the symbiosis. An increase in CK translocation
from the roots to the shoot could be part of the positive feedback
thought to take place between AM functioning and shoot CKs
(Cosme et al., 2016).

Pharmacological Treatments of Pea
Crowns With Synthetic CK
Status-Modifying Compounds Are
Effective in Altering Plant CK
Homeostasis
In myc− WT plants subjected to either BAP or INCYDE,
levels of the NT fraction tended to decrease and those of
the PACK fraction to increase (Figures 8A,D). These changes
were expected (Aremu et al., 2015) and likely reflect the
perception by the treated plants of higher levels of CKs caused
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FIGURE 6 | Effect of synthetic CK status-modifying compounds on hyphal colonization (A,D), arbuscular colonization (B,E), and vesicular colonization (C,F) in the
roots of WT (A–C) and E151 (D–F) plants inoculated with R. irregularis. Whereas WT plants were treated with BAP (0.1 µM) and INCYDE (1 µM), E151 plants were
treated with PI-55 (10 µM), BAP (1 µM), and a combination of PI-55 and BAP. WT and E151 plants were harvested 28 and 35 days after inoculation (DAI),
respectively. WT data (mean ± SE; n = 13, three technical replicates) and E151 data (mean ± SE; n = 15; three technical replicates) were either subjected to a
one-way ANOVA followed by a Tukey’s HSD post hoc test, or a Kruskal–Wallis followed by a multiple comparisons test; significance (95% confidence level) is
indicated by different letters.

by either the exogenous application of BAP or the inhibition of
cytokinin dehydrogenases (CKX). As a response to the increased
endogenous PACK levels, plants likely down-regulate their CK
biosynthesis, leading to a decrease of the CK precursor molecules,
i.e., the NT fraction. In myc− E151 plants subjected to PI-55,
a synthetic compound known to alter CK perception (Spíchal
et al., 2009), the NT fraction tended to increase, whereas RB and
FB fractions tended to decrease (Figure 8C). This suggests that,
when PI-55 competes with active CK molecules for a CK receptor,
a signal is conveyed to the mutant to down-regulate its CK
synthesis because it perceives an abundance of CK active forms.
Consequently, E151 would accumulate NTs that are not being

further transformed. Interestingly, when Eucomis autumnalis, a
species from the Asparagaceae family, was treated with 10 µM PI-
55, no change in the NT levels was observed; however, when it was
treated with 0.1 µM PI-55, a large increase in that fraction was
noticed (Aremu et al., 2015). These differential effects highlight
that responses may depend on the plant species and possibly
growth conditions.

We were expecting that INCYDE and BAP would cause a
similar outcome for the CK levels of the treated plants, namely
that both compounds would increase the endogenous CK levels
(Supplementary Table 1), yet there were differences. It is possible
that BAP is not as biologically active as the naturally produced,
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FIGURE 7 | Effect on fungal colonization (%) of the levels of putatively active CK (PACK; sum of riboside and free base fractions) measured in shoots of plants, the
crowns of which had been subjected to treatments with synthetic CK status-modifying compounds. Each data-point corresponds to the mean of the fungal
colonization assessed in the R. irregularis-inoculated plants. The symbols in purple represent the colonization seen in E151 roots treated with PI-55; those in orange
represent the colonization seen in non-treated E151 roots. The symbols in blue represent the colonization assessed in non-treated WT roots, and those in green the
colonization seen in WT roots treated with INCYDE. This graph is a composite graph created to decipher whether or not a relationship existed between AM fungal
colonization and shoot levels of PACK. Whereas the PACK analysis was performed at 13 DAI, the assessment of fungal colonization was done at 28 DAI for WT and
at 35 DAI for E151. A linear regression analysis was performed on the distribution of PACK and HC, AC, and VC; the resulting p-values and R2 values are shown in a
table, along with the linear equation for each fungal structure.

endogenous CKs, the levels of which increased with the INCYDE
treatment. Alternately, these differences may be explained by the
different fates that these two synthetic CK-related compounds
have inside the plant. Whereas INCYDE would directly increase
the endogenous CK pool because of the specific inhibition of its
target CKX, BAP may be diverted from its site of entry to its site
of action (Sakakibara, 2006) and be converted into inactive CK
forms such as glucosides along the way. The action may thus be
seen as “diluted” or off-target inside the plant (Sakakibara, 2006;
Skalický et al., 2018).

CKs Play a Role in the Development of
Mycorrhizae
High Levels of Active CKs, as Reflected by Low NT
Levels, Are Required for Fungal Entry
At 13 DAI, the levels of the NT fraction in myc+ WT plants,
in both shoot and root, were significantly lower than those
in myc− WT plants, and this drop occurred at a time of
fungal entry into the roots (Supplementary Figure 1). In E151

myc+ plants, there was no decrease in the NT fraction, and no
fungal penetration in the roots was visible. However, treating
the mutant with PI-55 led to reductions of both NT levels and
AM colonization (Figure 8C). Thus, we hypothesize that, for
the fungus to enter a root, it needs its host plant to have a
low ratio of non-active CKs to active CKs (hereafter referred
to as NT to PACK ratio). Inhibition of fungal entry in E151
is seen in the initial steps of the interaction, and also later in
development as shown by Jones et al. (2015) who documented
that the fungal hyphopodia were more numerous on E151 roots
than on WT roots. These hyphopodia were largely abnormal and
septate, which is an indication of retracted fungal cytoplasm and
senescence (Glenn et al., 1985), suggesting that these hyphopodia
were aborted.

If the plant accommodates fungal entry by lowering its
NT to PACK ratio, especially in its roots, then fungal entry
in E151 would have been impeded because that ratio did
not decrease enough. At 6 DAI, Jones et al. (2015) noted a
significant drop in the NT and PACK levels of E151 plants as
a response to the fungal presence; yet this apparently did not
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FIGURE 8 | Schematic diagram representing both the perception and the signal transduction pathway of CK in myc− and myc+ plants that were either untreated
(A), treated with the cytokinin BAP (B), the competitive inhibitor of CK action PI-55 (C), or the inhibitor of CK degradation INCYDE (D). Upon treatment with the
synthetic compounds, levels of NTs and of putatively active CKs (PACKs, comprised of both CK ribosides and CK free bases) are altered. An arrow oriented upward
corresponds to an increase in CK levels, whereas an arrow facing downward represents a decrease in CK levels. Higher PACK levels correspond to higher AM
colonization whereas lower PACK levels are related to lower AM colonization.

lead to fungal entry. We propose that E151 may have overshot
the levels optimal for fungal entry and take a longer time
than WT to adjust its CK homeostasis. This may reflect an
abnormal homeostatic control mechanism (Riefler et al., 2006)
during E151 seedling establishment. Later in E151 development,
when optimal CK levels are attained, i.e., when an optimal
NT to PACK ratio is reached, the fungus would be allowed
to enter. This adjustment in CK homeostasis may explain the
delay seen in E151.

Active CKs Have a Stimulatory Effect on the
Intraradicular Growth of the Fungus
Altering CK homeostasis by treating myc+ pea plants with
synthetic CK status-modifying compounds had a significant
impact on the intraradicular growth of the fungus R. irregularis.
When RB and FB levels increased in the shoots and the
NT fraction decreased in the roots and shoots of myc+ WT
plants treated with INCYDE, the percentages of all fungal
structures assessed in the root cortex were significantly higher
(Figure 8D). The E151 response to PI-55 in terms of AM
colonization confirmed this stimulatory effect. In the myc+
mutant, interference with CK perception led to a decrease in
all CK fractions, and this translated into a severe reduction
of fungal growth within the root cortex (Figure 8C). When
E151 myc+ plants were treated with a mixture of BAP and
PI-55 treatment, intermediate AM colonization was scored,
demonstrating that PI-55 and BAP were competing for the CK

receptors, and further substantiating the stimulating role of CKs
in regulating AM development.

As the levels of PACKs increased (from the levels measured
in PI-55-treated mutant, to levels measured in both the non-
treated mutant and WT plants, to levels measured in INCYDE-
treated WT), there was a simultaneous increase in the percentage
of fungal colonization, and all three measured intraradicular
fungal structures tended to respond positively to the PACK
increase. Based on these data, we propose that active CKs have a
stimulatory effect on the intraradicular growth of the fungus, and
for higher growth rate of the fungus, the plant requires higher
levels of PACKs in its shoots. The plant likely mediates the effects
we observed on the intraradicular growth of the fungus because
the extraradical fungal growth was not affected in a similar way by
the synthetic CK status-modifying compounds. The promoting
influence of the shoot CKs on the AM symbiosis that we
uncovered fits the model of Cosme et al. (2016) which proposes
that shoot CKs have a positive effect on AM colonization. In this
model, CKs are thought to modulate carbon supply to the AM
fungus through their influence on the plant photosynthetic ability
(Cosme et al., 2016).

Our results seem also to agree with those obtained by Schmidt
et al. (2017) who performed a pharmacological study of the
effect of TDZ, a synthetic CK analog, on AM colonization in
the perennial grass Miscanthus × giganteus. The application of
TDZ was found to decrease root colonization by half. This CK
analog is thought to be strongly recognized by CK receptors
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and to prevent CK degradation. TDZ was found to increase
the levels of conjugated CKs, but not those of FBs. Upon
AM inoculation, the active CK forms were further decreased
whereas the conjugated forms were further increased (Schmidt
et al., 2017). The low levels of active CKs measured in the
Miscanthus × giganteus grass likely prevented the AM fungi to
proliferate intraradically.

An Active Role for CKs in the Establishment and
Growth of AM Symbiosis Is Confirmed by the Use of
the Competitive Inhibitor of CK Action PI-55
There are three known types of plant CK receptors (e.g.,
Spíchal, 2012; Lomin et al., 2018), represented by CRE1/AHK4,
AHK2, and AHK3 in Arabidopsis. Each receptor differs in
the CK forms it recognizes; thus, CRE1/AHK4 and AHK2
specifically bind FBs and their conjugates, while AHK3 was
reported to bind active bases as well as RBs and NTs in a
bacterial system (Spíchal et al., 2004). The three receptors likely
differ in their functions because their expression is spatially
distinct. Whereas CRE1/AHK4 is expressed predominantly
in the root, AHK3 is mostly expressed in the shoot, likely
sensing the RBs being translocated between roots and shoots
(Spíchal, 2012).

In Arabidopsis, the synthetic compound PI-55 acts as a
competitive inhibitor of CK action, blocking the binding of
active CKs to CRE1/AHK4; however, it also interferes with
AHK3 (Spíchal et al., 2009). These authors propose that the
conformational change of the receptor required for the CK signal
transduction pathway to be elicited cannot be triggered when PI-
55 binds to it, resulting in a reduced CK status (Spíchal et al.,
2009). In pea, PI-55 had been previously used to show CK-
antagonizing effect (Long et al., 2012). In the present study, we
further showed that PI-55 had a direct effect on CK homeostasis
because treating the pea mutant E151 with PI-55 resulted in an
increase in NT levels and a decrease in PACK levels, suggesting
that the mutant responded to the fully occupied CK receptors
by down-regulating its CK biosynthesis, and possibly triggering
a feedback loop.

CRE1/AHK4, i.e., the receptor the most sensitive to PI-55 in
Arabidopsis, and its orthologs are known to play a major role
in controlling nodulation in legumes as was demonstrated in
studies performed on the nodulation mutants of M. truncatula
(Mtcre1; Gonzalez-Rizzo et al., 2006; Plet et al., 2011; Ariel et al.,
2012), Lotus japonicus (Ljlhk1; Murray et al., 2007; Held et al.,
2014), and Lupinus albus (LaHK1; Coba de la Peña et al., 2008).
However, Laffont et al. (2015), who characterized the response of
Mtcre1 to the AM fungus Gigaspora margarita, concluded that
CRE1/AHK4 did not play a role in AM colonization. There was
no specific mycorrhizal phenotype ascribed to the mutant, and
no alterations were observed in the expression of genes related to
CK signaling and metabolism in response to the fungus (Laffont
et al., 2015). Our results with PI-55 appear to disagree with those
of Laffont et al. (2015). This may be related to the different plant
and fungal species studied, as well as to the different techniques
used to assess AM colonization. Alternatively, it may be because
AHK3 is the receptor playing the most important role in AM
symbiosis, with CRE1/AHK4 playing a secondary role. AHK3 has

a genuine affinity for RBs and for cisZ (Romanov et al., 2006). It
is likely to sense cisZNT, a CK form significantly reduced in roots
of WT and E151 upon AM colonization, because of a better cisZ
recognition by AHK3 than by AHK4 (Romanov et al., 2006). The
AHK3 receptor is also capable of recognizing PI-55 as a weak
agonist (Spíchal et al., 2009), and in contrast to CRE1/AHK4, it
recognizes free bases with side-chain modifications (Spíchal et al.,
2004). Furthermore, AHK3 is expressed moderately in roots and
highly in shoots (Higuchi et al., 2004). As we brought forward
evidence that shoot CK levels reflect plant mycorrhizal status,
the receptors expressed in the shoots could be actively involved
in AM regulation.

CONCLUSION

The data presented here lead us to propose a stimulatory role
for CKs in the development of the pea AM symbiosis and
confirm an effect of AM inoculation on plant CK homeostasis.
A low NT:PACK ratio was associated with fungal entry and
the stimulation of the intraradical development of AM fungi.
However, we still face an enigma: i.e., is it the observed decrease in
the NT:PACK ratio that allows the extraradical fungal hyphae to
enter or is it the intraradical growth of the fungus that is inducing
the decrease of the NT:PACK ratio? To answer this question will
require more work. Using tissue-specific transcriptome analysis,
like Jardinaud et al. (2016) who studied the different roles CKs
play in the epidermis and root cortex of nodulated roots, may
help solve this conundrum.
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