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Convolutional neural network (CNN) models have the potential to improve plant disease

phenotyping where the standard approach is visual diagnostics requiring specialized

training. In scenarios where a CNN is deployed on mobile devices, models are presented

with new challenges due to lighting and orientation. It is essential for model assessment

to be conducted in real world conditions if such models are to be reliably integrated

with computer vision products for plant disease phenotyping. We train a CNN object

detection model to identify foliar symptoms of diseases in cassava (Manihot esculenta

Crantz). We then deploy the model in a mobile app and test its performance on mobile

images and video of 720 diseased leaflets in an agricultural field in Tanzania. Within each

disease category we test two levels of severity of symptoms-mild and pronounced, to

assess the model performance for early detection of symptoms. In both severities we see

a decrease in performance for real world images and video as measured with the F-1

score. The F-1 score dropped by 32% for pronounced symptoms in real world images

(the closest data to the training data) due to a decrease in model recall. If the potential

of mobile CNN models are to be realized our data suggest it is crucial to consider tuning

recall in order to achieve the desired performance in real world settings. In addition,

the varied performance related to different input data (image or video) is an important

consideration for design in real world applications.

Keywords: cassava disease detection, deep learning, convolutional neural networks, mobile plant disease

diagnostics, object detection

1. INTRODUCTION

Conventional plant disease diagnosis by human experts is inherently subjective and limited to
regions that can support the required human infrastructure (Bock et al., 2010). Computer vision
algorithms show promise to transform this field with the landmark result of a deep convolutional
neural network (CNN) winning the Imagenet competition to classify over 1 million images from
1,000 categories, almost halving the error rates of its competition (LeCun et al., 2015). This success
brought about a revolution in computer vision with CNN models dominating the approach for a
variety of classification and detection tasks. As CNNmodels become the standard computer vision
model to be deployed in real-time vision applications, assessing and reporting whether the results
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of their performance translates from research datasets to real time
scenarios is crucial. Results of different CNN architectures are
usually reported on standard large scale computer vision datasets
of a million andmore static images (He et al., 2016, 2017; Szegedy
et al., 2016; Howard et al., 2017). Domain specific datasets like
medical imagery or plant diseases, where transfer learning is
often applied to CNNmodels, comprise smaller datasets as expert
labeled images are more challenging to acquire (Masood and Ali
Al-Jumaily, 2013; Ramcharan et al., 2017).In a recent assessment
for a skin lesion classification task, researchers reported the
performance of the deep learning model matched at least 21
dermatologists tested across three critical diagnostic tasks (Esteva
et al., 2017). This study was done on a labeled dataset of 129,450
clinical images and the researchers concluded that the technology
could be deployable on a mobile device but further evaluation
in real-world settings is needed. Similar promising results have
been shown in studies of plant disease classification (Mohanty
et al., 2016; Johannes et al., 2017; Ramcharan et al., 2017) and
health care (Miotto et al., 2017). Deploying on mobile devices
would also be beneficial in democratizing access to algorithms
while maintaining user privacy by running inference offline.

Despite the ubiquity of smartphones there are few examples
of CNN models deployed on these phones categorizing visual
scenes in the real world where performance is affected by input
data type and compounded by wide extremes in lighting as is
normal in outdoor settings. Clear examples of computer vision
in real world settings such as autonomous vehicles (cars and
drones) leverage multiple sensors in both the visible and non-
visible spectrum (Floreano and Wood, 2015; Janai et al., 2017). If
mobile CNN models are to achieve their promise it is important
to recognize the constraint of a single sensor (i.e., camera) and
test the performance of a CNN on mobile devices in conditions
they are intended to be used in.

Here, we investigate plant disease diagnostics on a mobile
device. We deploy and test the performance of a CNN object
detection model for real-time plant disease diagnosis in an
agricultural field. Within each disease category we test two levels
of severity of symptoms - mild and pronounced, to assess the
model performance for early detection of symptoms. We report
precision, recall, F-1 score, and accuracy for mobile images and
video to assess how the CNN performs in a real world app with
different types of input data.

2. METHODS

We use the Tensorflow platform to deploy a smartphone CNN
object detection model designed to identify foliar symptoms
of three diseases, two types of pest damage, and nutrient
deficiency (or lack thereof) in cassava (Manihot esculenta
Crantz). We utilize the Single Shot Multibox (SSD) model with
the MobileNet detector and classifier pre-trained on the COCO
dataset (Common Objects in Context) of 1.5 million images (80
object categories). For simplicity, we refer to the CNN object
detector model as the mobile CNN model. We employ transfer
learning to fine tune the model parameters to our dataset which
comprised 2,415 cassava leaf images for pronounced symptoms

of each class. The cassava leaf dataset was built with images taken
in experimental fields of the International Institute of Tropical
Agriculture (IITA), in Bagamoyo District, Tanzania. Complete
details of this dataset were previously reported in Ramcharan
et al. (2017). In addition to the 6 image classes implemented in
Ramcharan et al. (2017), an additional nutrient deficiency class of
336 images was included in this work and examples of all image
classes are shown in Figure 1.

For this study, three cassava disease experts reviewed images
and agreed on classifications. Images were then annotated
at Penn State University. Initially three different annotation
styles were tested to identify class objects: (1) whole leaflet -
object bounding boxes are drawn around leaflets with visible
symptoms and boxes contain the leaf edges, (2) within leaflet—
object bounding boxes are drawn around visible symptoms,
inside of leaflets only, and do not contain leaf edges, and (3)
combined inside and whole leaflet—annotation style (1) and (2)
are combined with the same class labels for whole leaflet and
within leaflet bounding boxes. Based on training results to 500
epochs (see Supplementary Material) on two 16Gb NVIDIA
V100 GPUs the whole leaflet annotation style recorded the lowest
overall loss and was selected to test on amobile device in the field.

We selected three classes for detection in the field - cassava
mosaic disease (CMD), cassava brown streak disease (CBSD), and
green mite damage (CGM) (Legg, 2012). For simplicity, CMD,
CBSD and CGM are referred to collectively as disease in the
subsequent text. These diseases were selected as they are the
major constraints to cassava production in sub-Saharan Africa
(Onzo et al., 2005; Legg et al., 2006). Within each disease class,
an IITA cassava disease expert identified 40 validation leaves
which were split into 20mild symptom leaves and 20 pronounced
symptom leaves. The work flow design of the experiment is
shown in Figure 2. Examples of the leaves in this dataset are
shown in Figure 3. The average number of leaflets per leaf was 6,
resulting in an average of 120 objects per disease/severity group.
Where possible, all leaves for each disease were flagged on the
same variety of cassava. First, images of each of the 120 leaves
were taken with a study experiment mobile device and model
inference was run on a desktop to calculate performance metrics.
Second, the mobile app was used for model inference in real time
for the 120 leaves in overcast or cloudy conditions during the
day. Model inference on the mobile app ranged from 50 to 200
ms. In order to evaluate the performance of the app, while the
app was running on the mobile device, the device screen was
recorded for 10 s using a free Android screen capture application.
For simplicity, recordings of the app running on the mobile
device are referred to from here on as “screen capture videos.”
If weather conditions were sunny, an umbrella was used to shade
leaves to obtain consistent light conditions across diseases. Leaves
were also wiped to ensure surface was free of water and dirt.
The mobile CNN model was deployed on a Samsung Galaxy S5
Android device using the Tensorflow Demo App. The phone was
held parallel to the leaf, at a distance such that all leaflets were
visible in the frame. A screen capture was recorded for the first
10 s where the model was shown the leaf and bounding boxes
were proposed. These videos were then downloaded and used to
calculate the real world video performance metrics for the model
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FIGURE 1 | Examples of training images from 7 classes with leaflet annotations. Classes are (A) Healthy, (B) Brown streak disease, (C) Mosaic disease, (D) Green

mite damage, (E) Red mite damage, (F) Brown leaf spot and (G) Nutrient Deficiency.

and this data are available upon request. For all experiments,
detection boxes were displayed when model confidence was 85%
or greater.

2.1. Data Preprocessing
The cassava leaf dataset of JPEG images were taken with a
Sony Cybershot 20.2-MP digital camera. Complete details of this

dataset were previously reported in Ramcharan et al. (2017). For
this study, IITA cassava experts extracted 2,415 images from the
dataset based on the visibility of the most severe symptoms of
each class. This was done to test the potential for the model
to learn from the clearest examples of the symptoms and then
detect milder symptoms, which would be beneficial for more
timely detection of diseases. The dataset totaled seven class
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FIGURE 2 | Experimental workflow to test performance of a CNN object detection model for real-time plant disease diagnosis.

FIGURE 3 | Examples images from field experiment showing mild symptoms (A–C) and pronounced symptoms (D–F) of CBSD, CMD, and CGM respectively.

labels as follows: three disease classes—cassava mosaic disease
(CMD) (391 images), cassava brown streak disease (CBSD)
(395 images), and brown leaf spot (BLS) (130 images), two
mite damage classes—cassava green mite damage (GMD) (435
images), and red mite damage (RMD (351 images), and one
nutritional deficiency class (NUTD) (336 images).

LabelImg (Tzutalin, 2015), an open source graphical
annotation tool for manually drawing and labeling object
bounding boxes in images, was employed to draw ground truth
bounding boxes and create corresponding xml files with stored
xmin, xmax, ymin, ymax data for each ground truth box. Images
and corresponding xml files were then converted to TFRecord
files to be implemented in the Tensorflow environment.
TFRecord files combine all images and annotations into one
file, thereby reducing training time as it eliminates the need to

open individual files. Each of the three models were then trained
to 500 epochs.

2.2. CNN Model
We evaluated the performance of the mobile CNN model
built using standard precision metrics as well as a field-based
independent evaluation on a mobile device. For the object
detector model architecture, we selected the Single ShotMultibox
(SSD)model with theMobileNet detector and classifier (Liu et al.,
2016). This model was used as it is one of the fastest object
detection models available through Tensorflow (Google, 2017).
An SSD model performs the tasks of object localization and
object classification in a single forward pass–a key component
in providing real time object recognition on a mobile device
(Mohanty et al., 2016). A pre-trained SSD model checkpoint
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trained on the COCO dataset (Common Objects in Context) was
downloaded from Tensorflow’s Detection Model Zoo (Google,
2017) and transfer learning was employed to fine tune the model
parameters. COCO is a large scale object detection, segmentation
and captioning dataset comprised 330 K images, 1.5 million
object instances, and 80 object classes. Each model was trained
up to 500 epochs using a batch size of 15 on 2 NVIDIA Tesla
V100GPU’s in Azure, theMicrosoft cloud computing and storage
platform. An 80–20 training-evaluation data split was used as
this data partitioning scheme produced the best results for
cassava disease classification (Ramcharan et al., 2017). The SSD
model parameters were selected as follows: initial learning rate of
0.004, weighted sigmoid classification loss function, andweighted
smooth L1 localization loss function between the predicted
bounding box (l) and ground truth bounding box (g). These loss
functions are computed based on default bounding boxes-a set of
boxes with specified aspect ratios. The classification loss function
measures the model’s confidence in classifying pixels within a
default bounding box into one class (Liu et al., 2016). Localization
loss measures the geometric distance between a default bounding
box and the ground truth annotation bounding box. The overall
loss function is a weighted combination of the classification loss
(classif) and the localization loss (loc) with the weight for the
localization loss, α,set to 1 (Liu et al., 2016) (Equation 1).

L(x, c, l, g) =
1

N
(Lclassif f (x, c)+ αLloc(x, l, g)) (1)

Themaximum number of hardmining examples was set to 3,000,
and the ratio between negative and positive examples was left at
the default value of 3:1. A positive example is a proposed box
with an annotated object of interest and correct box scale. A
negative example is a proposed box with no annotated objects
of interest and an incorrect box scale. The default box generator
was applied to 6 different convolution layers with a minimum
and maximum scale of 0.2 and 0.95 respectively. The default
boxes were generated with fixed aspect ratios 1.0, 2.0, 0.5, 3.0, and
0.333. The complete details of the SSD model design principles
are provided in Liu et al. (2016). In order to perform real time
inference on a mobile device, images were resized to 300 × 300
pixels before being fed into the network.

3. RESULTS

Validation results for the model are provided in three ways and
results are presented for the three disease classes studied in the
field. First, precision and recall results with an 80–20 training-
testing data split are reported in Table 1. The mean average
precision (mAP) is the average across N classes of the true
positive class labels divided by the total number of objects labeled
as belonging to the positive class (Equation 2). The mean average
recall (mAR) is defined as the average across N classes of the
number of true positive class labels divided by the total number
of ground truth positive class labels (Equation 3). These metrics
were calculated assuming the cost of a false positive was equal
to no predictions for a leaflet. For the disease classes of interest,
the CNN detection model achieves 94± 5.7% (mean±s.d.) mAP

TABLE 1 | Mean average precision of CNN model for real world images and video.

Severity mAP Class average precision

CBSD CMD CGM

Test dataset Pronounced 94 ± 5.7 87.5 98.3 96.2

Real world image Pronounced 91.9 ± 10 81.8 97.9 89.1

Real world video Pronounced 89.6 ± 10 81.0 100 94.7

Real world image Mild 75.0 ± 19 61.1 100 82.6

Real world video Mild 81.2 ± 27 45.7 100 79.3

mAR Class average recall

CBSD CMD CGM

Test dataset Pronounced 67.6 ± 4.7 62.7 68.2 72.0

Real world image Pronounced 39.3 ± 10.9 32.5 33.6 51.9

Real world video Pronounced 39.8 ± 19.9 21.0 25.0 57.3

Real world image Mild 16.8 ± 10.9 21.1 4.40 25.0

Real world video Mild 15.8 ± 10.3 11.3 8.50 27.6

TABLE 2 | F-1 Scores for real world evaluation.

Test dataset Severity F-1 score

Test dataset Pronounced 0.79

Real world image Pronounced 0.54

Real world video Pronounced 0.48

Real world image Mild 0.26

Real world video Mild 0.25

(67.6 ± 4.7% mAR) for the test dataset. Second, the results of
the mAP and mAR evaluation using 120 images (comprising 742
leaflet “objects”) of the field experimental leaves run on a desktop
are reported. For pronounced symptomatic leaves, the model
achieves 91.9± 10%mAP and 39.3± 10.9%mAR, while for mild
symptomatic leaves, the model achieves 75.0 ± 19% mAP and
16.8 ± 10.9% mAR. Third, the results of the precision and recall
evaluations from 120 screen capture videos (of the 742 leaflet
objects) are reported. For pronounced symptomatic leaves, the
model achieves 89.6 ± 10% mAP and 39.8± 19.9% mAR, while
for mild symptomatic leaves, the model achieves 81.2 ± 27%
mAP and 15.8 ± 10.3% mAR. These results show that the model
maintains its average precision for pronounced symptoms in real
world images and video and there is a small drop in performance
for mild symptoms. With respect to precision the mobile CNN
model does slightly better on cassava mosaic disease (CMD)
symptoms and slightly worse on cassava brown streak disease
(CBSD) and cassava greenmite damage (CGM). Themodel recall
is reduced by almost half its test dataset value in real world
images and video of pronounced symptoms. This reduction
is almost four times as large in mild symptom real world
images and video.

The F-1 scores (Equation 4) are also reported in Table 2. The
F-1 score takes into account false positive and false negatives as
it is a weighted average of precision and recall. The F-1 scores
are 0.54 and 0.48 for pronounced symptoms in real world images
and video, respectively. For mild symptoms the F-1 scores are
0.26 and 0.25 for real world images and video, respectively.
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Using the test dataset F-1 score as the baseline for comparison,
the results show there is a 32% drop in F-1 score moving
from the test dataset to pronounced symptoms in real world
images (the closest data to the training data). For pronounced
symptoms in real world video the F-1 score is reduced by 39%.
Comparing the test dataset to real world mild symptoms the F-
1 score drops by 67% for images and video. These results show
there is a noticeable drop in mobile CNN model performance
from the test dataset to real world conditions with real world
images performed slightly better than real world video for both
pronounced and mild symptoms.

mAP =
1

N

N∑

n= 1

Positive Detections

All Positive Detections
(2)

TABLE 3 | Accuracy results for the mobile CNN model for real world images and

video.

Severity Accuracy Class average accuracy

CBSD CMD CGM

Real world image Pronounced 80.6 ± 4.10 76.1 83.9 81.7

Real world video Pronounced 70.4 ± 22.5 45.9 90.3 74.0

Real world image Mild 43.2 ± 20.4 61.1 21.1 47.5

Real world video Mild 29.4 ± 12.2 23.9 20.8 43.4

mAR =
1

N

N∑

n= 1

True Positive Detections

Ground Truth Positive Labels
(3)

F − 1Score =
2 ∗ Recall ∗ Precision

Recall + Precision
(4)

We also calculated accuracies for the mobile CNN model on
the real world images and screen capture videos. The accuracy
is calculated as the percent of the examples the model correctly
detects i.e., the proportion of the observations where the
predicted and ground truth annotations match.

Images and videos were reviewed by a cassava disease expert
in order to calculate these metrics. Accuracy results for the
mobile CNN model run on 120 images (comprising 742 leaflet
“objects”) of the field experimental leaves are reported in
Table 3. For pronounced symptomatic leaves, the model achieves
80.6 ±4.10% accuracy, while for mild symptomatic leaves, the
accuracy reduces to 43.2 ± 20.4%. The accuracy evaluation is
then repeated using 120 screen capture videos of the mobile
CNN model running real time in the field. For pronounced
symptomatic leaves, the model achieves 70.4 ± 22.5% accuracy,
while for mild symptomatic leaves, accuracy reduces to 29.4 ±

12.2%. Based on class average accuracy, the mobile CNN model
does the best with CGM, followed by CMD, then CBSD.

Confusion matrices for the real world image and video model
experiments give a more detailed analysis on how the model
performance changes for different class/severity categories. In

FIGURE 4 | Confusion matrices for real world mobile images and real world mobile video.
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the confusion matrix plots in Figure 4, the rows correspond
to the true class, and the column shows the model predicted
class. The diagonal cells show the proportion (range 0–1) of the
examples the model correctly detects i.e., the proportion of the
observations where the predicted and ground truth annotations
match. The off-diagonal cells show where the model made
incorrect predictions.

The diagonal cells of the confusion matrices for leaves with
pronounced symptoms show the model performs, as expected,
much better where the symptoms are pronounced compared
to leaves where the symptoms are mild. The biggest drop in
accuracy going from pronounced symptoms to mild symptoms
was for CMD for both image and video inferences of the model.
This result can be due to the distortions of the leaf shape
that occur for pronounced symptoms of CMD which are less
obvious where symptoms are mild; the leaf distortion effect of
disease does not occur for CBSD and only occurs in severe
damage by CGM (not captured in this experiment). These results
suggest that if symptoms change significantly during the different
stages of infection, a model trained on one stage will be less
reliable in detecting a different stage of infection of a disease.
Comparing the performance of the model on images and video,
the model accuracy is not significantly different for CMD and
CGM classes but there is a surprising drop in accuracy for
CBSD. There is a significant difference in CBSD accuracy for
images (M = 0.73, SD = 0.10) and video (M = 0.35, SD = 0.11);
t(36) = 6.64, p = 0.0. This may be due to the subtlety of infection
of CBSD. CBSD symptoms are not localized on an area of the leaf
(unlike CMD and CGM). The contrast in color and patterns of
CBSD symptoms is less pronounced than CMD and CGM. This
could make CBSD symptoms more sensitive to motion blur and
compression artifacts causing frame-to-frame variability, even
though videos appear smooth to the eye (Tripathi et al., 2016).
The accuracy of the model could be improved with domain
adaptation algorithms (Ben-David et al., 2010) to reduce this
performance gap. The confusion matrices also show that the
mobile CNN model confuses mild symptoms with healthy leaves
for symptoms that do not result in distortions in leaf shape. For
CMD, the model was very effective in detecting severe symptoms,
but very poor with mild symptoms. The leaf distortion that
occurs in severe CMD infection makes identification of that class
straightforward, but where symptoms aremild and leaf distortion
was absent, there was a high level of confusion with CBSD (false
positive rate is high for CBSD). This is unsurprising, as the
difficulty of distinguishing between mild symptoms of these two
diseases is a common problem faced in real-world field situations
by cassava researchers.

4. DISCUSSION AND CONCLUSION

In this study we evaluate the performance of a CNN model
deployed offline in real time on a mobile device to detect
foliar symptoms of cassava pests and diseases. Using the single-
shot detector model, a CNN architecture optimized for mobile
devices, we assess the performance of the model to detect
pronounced and mild symptoms of 3 disease classes. In both
severities we see a decrease in F-1 score comparing the test
dataset results to real world images and video. The decrease in

performance was mostly due to the decrease in recall as the
models overall maintained precision in real world conditions.
Accuracy results also reflected the decrease in performance
moving from real world images to video. The performance
of the model in the mobile video changed depending on the
difficulty of the visual diagnostic task. In order to obtain higher
accuracy detections, there are a number of potential solutions-
feed the mobile CNN model images collected on a mobile
device instead of real time video assessment, train on video
images saved directly from the mobile app, or employ domain
adaptation algorithms to improve performance. The mobile
CNN model also decreased in performance for mild symptoms,
with accuracies decreasing more for diseases that change the leaf
characteristics considerably during different stages of infection.
In order to create a model that can detect mild symptoms of
disease, images of mild infection are needed for model training.
Collecting these images based solely on visual characteristics
may be difficult as some groups of image classes e.g., viral
diseases, may look similar to each other where infection is not
severe. PCR tests may be needed to complement images to
confirm symptoms. This study demonstrates the need to evaluate
mobile CNN performance in realistic plant disease diagnostic
operating conditions, withmultiple performancemetrics in order
to validate models with data encountered in typical settings.
Based on our results, we also recommend mobile CNN models
to be used on the specific type of data with which it was
trained until sufficient training examples exist from diverse data
sources to better capture the diversity of data that occur in the
real world.
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