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Recent advances in remote sensing technology, especially in the area of Unmanned
Aerial Vehicles (UAV) and Unmanned Aerial Systems (UASs) provide opportunities
for turfgrass breeders to collect more comprehensive data during early stages of
selection as well as in advanced trials. The goal of this study was to assess the
use of UAV-based aerial imagery on replicated turfgrass field trials. Both visual
(RGB) images and multispectral images were acquired with a small UAV platform
on field trials of bermudagrass (Cynodon spp.) and zoysiagrass (Zoysia spp.) with
plot sizes of 1.8 by 1.8 m and 0.9 by 0.9 m, respectively. Color indices and
vegetation indices were calculated from the data extracted from UAV-based RGB
images and multispectral images, respectively. Ground truth measurements including
visual turfgrass quality, percent green cover, and normalized difference vegetation
index (NDVI) were taken immediately following each UAV flight. Results from the study
showed that ground-based NDVI can be predicted using UAV-based NDVI (R2 = 0.90,
RMSE = 0.03). Ground percent green cover can be predicted using both UAV-based
NDVI (R2 = 0.86, RMSE = 8.29) and visible atmospherically resistant index (VARI,
R2 = 0.87, RMSE = 7.77), warranting the use of the more affordable RGB camera
to estimate ground percent green cover. Out of the top ten entries identified using
ground measurements, 92% (12 out of 13 in bermudagrass) and 80% (9 out of 11
in zoysiagrass) overlapped with those using UAV-based imagery. These results suggest
that UAV-based high-resolution imagery is a reliable and powerful tool for assessing
turfgrass performance during variety trials.

Keywords: bermudagrass, zoysiagrass, drought, normalized difference vegetation index, visible atmospherically
resistant index, remote sensing

INTRODUCTION

Constraints such as high demands of time and labor during field phenotyping limit the ability of
turfgrass breeders to collect more comprehensive data during early stages of selection and later
in advanced trials. Recent improvements in remote sensing technologies provide opportunities
to mitigate this bottleneck for future breeding advances. Non-invasive remote sensing methods
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such as digital image analysis and spectral reflectance have
been widely used for quantifying turfgrass cover and quality
(Menges et al., 1985; Richardson et al., 2001; Jiang and Carrow,
2007; Xiong et al., 2007). Vegetation indices such as NDVI
and ratio vegetation index (RVI), calculated from reflectance
at red and near infrared (NIR) bands, have been validated to
predict turfgrass health in previous studies (Fitz-Rodríguez and
Choi, 2002; Jiang and Carrow, 2007; Bremer et al., 2011). UAV
platforms are evolving rapidly and offer advantages over other
vehicles when used for remote sensing. When compared with
satellite-based and ground-based remote sensing, UAV-based
imagery has higher spatial resolution (1–2 cm per pixel) (Xiang
and Tian, 2011) and thus more powerful statistical analytics
at an affordable price. Both spatial and temporal resolution
are important for turfgrasses because they can experience
intermittent drought stresses in sandy soils in only three or 4 days
without precipitation (Zhang et al., 2018).

In agricultural studies, the use of UAV-based imagery is
increasing. High-resolution digital images have been acquired
from aerobatic model aircrafts for estimating the nutrient status
and crop biomass of corn (Zea mays L.), alfalfa (Medicago
sativa L.), and soybeans [Glycine max (L.) Merr.] (Hunt et al.,
2005). Primicerio et al. (2012) developed a six-rotor aerial
platform with a multi-spectral camera to map the vineyard
vigor of wine grapes (Vitis vinifera L.). In more recent studies,
UAV systems were applied to monitor crop growth in wheat
(Triticum spp.) (Lelong et al., 2008; Torres-Sánchez et al., 2014),
predict yield in rice (Oryza Sativa L.) (Zhou et al., 2017), detect
disease in potato (Solanum tuberosum L.) (Sugiura et al., 2016),
and detect weeds in sunflower (Helianthus annuus L.) fields
(Torres-Sánchez et al., 2013).

Recent studies with UAVs on turfgrass have also shown
promising results. Xiang and Tian (2011) used an unmanned
helicopter to monitor turfgrass response after glyphosate
application and found only a 1.5% difference in the estimation
of herbicide damage between aerial images and ground surveys.
Caturegli et al. (2016) used UAV-based multi-spectral imagery to
estimate the nitrogen status of hybrid bermudagrass (C. dactylon
L. × C. transvaalensis Burtt-Davy), zoysiagrass (Z. matrella L.
Merr.), and seashore paspalum (Paspalum vaginatunt Swartz.),
concluding that UAV imagery can adequately assess the spatial
variability of nitrogen status for these turfgrass species in large
areas such as golf courses and sod farms. Another study assessed
the health of creeping bentgrass (Agrostis stolonifera L.) using a
RGB camera and a modified NIR camera under different mowing
heights (Sommer et al., 2017). It was reported that color indices
calculated from RGB images were better correlated (R2

∼0.8)
with ground truth data compared to mNDVI from the modified
NIR camera (R2

∼0.6). To our knowledge, no investigation has
been conducted regarding the use of UAV-based imagery on
turfgrass variety trials. Prior to being used by turfgrass breeders
in variety trials, data extracted based on UAV images need to
be compared with ground measurements. Therefore, the overall
goal of the present study was to assess the potential use of
visual (RGB) and multispectral images collected with a UAV
platform in replicated turfgrass field trials. The objectives were
(1) to examine the correlation between UAV-based measurements

and ground measurements; (2) to determine the feasibility of
developing a general model to predict ground measurements for
two turfgrass species in different sampling dates; and (3) to assess
if the information extracted from UAV-based imagery can help
turfgrass breeders to make better decisions (genotype rankings)
during selection processes.

MATERIALS AND METHODS

UAV System and Cameras
A Solo quadcopter (3D Robotics, Berkeley, CA, United States)
with vertical take-off and landing capabilities was used to collect
aerial images for this study (Figure 1). The UAV system,
equipped with four brushless motors, can fly by either remote
control or autonomously with Global Positioning Systems (GPS)
and waypoint navigation system. The whole system consists of
the drone, controller, and a ground station with software for
mission planning, flight control and telemetry (Torres-Sánchez
et al., 2013). The ground station interface between the pilot-in-
command and the UAV has supporting software that implements
a flight plan and monitors the flight. The software also has a
telemetry system that collects relevant flight data and information
including GPS position data and flight time. This information is
known as the telemetry log and is useful during image processing.
Two persons were involved during the flight mission, one being
the remote pilot who was in charge of taking-off and landing
the UAV by activating the programmed flight plan during the
flight operations, and the second who acted as a visual observer
that kept watch of the UAV for potential collision threats with
other air traffic. Two cameras mounted separately on two similar
quadcopters were used in this study. The first was a GoPro Hero 4
(GoPro, Inc. San Mateo, CA, United States) visual camera which

FIGURE 1 | (A) Back view of Unmanned aerial vehicle (3DR Solo quadcopter).
(B) Front view of UAV with GoPro RGB camera. (C) Parrot Sequoia
multispectral camera mounted on UAV. (D) UAV with multispectral camera
waiting to take off in the field.
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acquires 7-megapixel images in true color (Red, R; Green, G, and
Blue, B, bands) with 8-bit radiometric resolution (Figure 1B).
The second camera was a Parrot Sequoia (MicaSense, Seattle,

WA, United States) multispectral camera that measures at four
narrow spectral bands (green: 530–570 nm; red: 640–680 nm; red
edge: 730–740 nm; NIR: 770–810 nm) (Figures 1C,D).

FIGURE 2 | Workflow of raster image process and data acquisition. (A) Reflectance image on red band. (B) Reflectance image on near infrared band. (C) Calculated
NDVI image using a. and b. through the equation. (D) Polygons represent individual field plot. (E) Average NDVI value for each plot using zonal statistics based on C
and D. For illustration purpose, the plots are bermudagrass plots.
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TABLE 1 | Equations for color indices used in the study.

Indices Equation Reference

NDVI: normalized difference
vegetation index

(RNIR−RRed)/
(RNIR+RRed)

Lee et al., 2011

GNDVI: green normalized
difference vegetation index

(RNIR−RGreen)/
(RNIR+RGreen)

Gitelson et al., 1996

NDRI: normalized red edge index (RNIR−RRed edge)/
(RNIR+RRed edge)

Mutanga and Skidmore,
2004

NDI: normalized difference index (g−r)/(g+r) Woebbecke et al., 1995

ExG: excessive green index 2g−r−b Woebbecke et al., 1995

ExR: excessive red 1.4r−g Meyer and Neto, 2008

ExGR: excessive green index
minus excess red index

3g−2.4r−b Meyer and Neto, 2008

VARI: visible atmospherically
resistant index

(g−r)/(g+r-b) Gitelson et al., 2002

GLI: green leaf index (2g−b−r)/(2g+b+r) Louhaichi et al., 2001

Study Site and UAV Flights
The study site was part of a multi-state breeding project funded
by U.S. Department of Agriculture – Specialty Crop Research
Initiative. Two advanced breeding trials of bermudagrass and
zoysiagrass were planted using plugs in June 2016 on a loamy
sand (Tifton-Urban land complex, pH 5.3) at the University
of Georgia Tifton Campus. Field plots were arranged as a
randomized complete block design with three replications. The
plot size was 1.8 by 1.8 m for bermudagrass and 0.9 m by 0.9 m for
zoysiagrass. Forty advanced lines from two breeding programs
(University of Georgia and Oklahoma State University) and

four commercial cultivars (“Celebration,” “Latitude 36,” “TifTuf,”
and “Tifway”) were included in the bermudagrass trial. In the
zoysiagrass study, 40 advanced lines from two breeding programs
(Texas A&M and University of Florida) and 3 commercial
cultivars (“Empire,” “Palisades,” and “Zeon”) were tested. The
UAV-based RGB and multispectral images were taken on 28
September 2017, 5 April 2018, 8 May 2018, and 18 June 2018 at
0930 h with no cloud cover. The flight altitude was 30 m for the
RGB camera, resulting in image resolution of 2.2 cm per pixel.
For the multispectral camera, the flight altitude was 46 m (to aid
in image stitching later because the multispectral camera has a
narrower field of view) which resulted in an image resolution of
4.3 cm per pixel. The UAV speed was set to 4.5 ms−1 for all flights.
All flights were controlled using a free software, “Tower Beta”
(DroidPlanner, 2018), installed on a smart device (Tablet) and by
creating a flight plan for UAV equipped with each camera prior
to any flight. The software maintained the desired flight altitude
and flight speed during the flight while capturing the images at
80% front and side overlaps.

Image Preprocess and Data Acquisition
Geotagging of the RGB images collected by the GoPro
Hero 4 was completed using the information provided by
the telemetry log saved on the smart device and using
the open source software, ‘Mission Planner’ (Oborne, 2018).
Multispectral images were geotagged during flight with an
on-board GPS in the Parrot Sequoia camera. Geotagged
images were then processed and stitched in Pix4Dmapper
Pro 4.2.27 (Pix4D SA, Lausanne, Switzerland) to generate an

FIGURE 3 | Maximum and minimum daily temperature and precipitation of the study area in (A) September 2017 and (B) April, May, and June 2018. Arrows indicate
when the data were collected.
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orthomosaic consisting of information collected for individual
bands (RGB, NIR, and Red). Standard templates of “Ag RGB”
and “Ag Multispectral” in Pix4Dmapper were used for stitching
RGB and multispectral images respectively. The georeferenced
orthomosaic was exported in a TIFF format for further analysis
in ArcGIS (Esri, Redlands, CA, United States). For data analysis,
a shape file consisting of the individual field plot information
was created in ArcMap version 10.4.1 (Esri, Redlands, CA,
United States). Data were extracted within each polygon (each
polygon represented a plot) using the ArcMap feature in
zonal statistics (Figure 2). Three different vegetation indices
including NDVI, Green NDVI (GNDVI), and Normalized
Difference Red Edge Index (NDRI) were calculated from the

multispectral images (Table 1). Six color indices were calculated
with normalized values for R, G, and B bands from the digital
image (Torres-Sánchez et al., 2014; Saberioon et al., 2014; Zhou
et al., 2017). The following normalization scheme was applied to
the color indices:

r = R/(R+ G+ B); g = G/(R+ G+ B); b = B/(R+ G+ B)

where R, G, and B are the values of the red, green, and blue
bands, respectively. Those six color indices included normalized
difference index (NDI), excessive green index (ExG), excessive
red (ExR), excessive green index minus excess red index (ExGR),
VARI, and green leaf index (GLI) (Table 1).

FIGURE 4 | Boxplots of (A) Percent green cover (PGC). (B) Turfgrass quality (TQ). (C) Ground NDVI. (D) UAV-based NDVI in bermudagrass and zoysiagrass field
trials from September 2017 to June 2018.

TABLE 2 | Spearman’s rank correlation coefficients between ground measurements (TQ, PGC, and NDVI.G) and UAV-based measurements (NDVI.U, GNDVI.U, NDRI.U,
VARI, NDI, ExG, ExR, ExGR, and GLI) in bermudagrass and zoysiagrass variety trials from September 2017 to June 2018 in Tifton, GA.

Ground measurements UAV-based Measurements

PGC NDVI.G NDVI.U GNDVI.U NDRI.U VARI NDI ExG ExR ExGR GLI

TQ† 0.65 0.66 0.64 0.59 0.60 0.59 0.48 0.44 −0.28 0.53 0.63

PGC 0.88 0.89 0.82 0.68 0.88 0.56 0.66 −0.70 0.79 0.79

NDVI.G 0.92 0.88 0.76 0.88 0.60 0.67 −0.68 0.79 0.81

NDVI.U 0.98 0.76 0.91 0.49 0.80 −0.81 0.90 0.90

GNDVI.U 0.73 0.85 0.38 0.82 −0.82 0.90 0.89

NDRI.U 0.70 0.41 0.67 −0.59 0.72 0.76

VARI 0.69 0.69 −0.78 −0.78 0.84

NDI 0.12 −0.19 0.30 0.38

ExG −0.89 0.95 0.93

ExR −0.92 −0.82

ExGR 0.97

TQ, turfgrass quality; PGC, percent green cover; NDVI.G, normalized difference vegetation index at ground level; NDVI.U, UAV-based NDVI; RNDVI.U, UAV-based green
NDVI; NDRI.U, UAV-based normalized difference red edge index; VARI, UAV-based visible atmospherically resistant index; NDI, normalized difference index; ExG, excess
green; ExR, excess red; ExGR, excess green minus excess red; GLI, green leaf index. †All coefficients are significantly at 0.001 P level except when labeled with “ns.”
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Ground Measurements
Ground truth measurements including turfgrass quality (TQ),
percent green cover, and canopy spectral reflectance of the plots
were collected on the same day within an hour or two of the
UAV-based imagery data collection. Visual ratings of TQ were
based on the National Turfgrass Evaluation Program using a 1
to 9 scale (9 = excellent performance and 1 = poor performance,
6 = minimum acceptable quality) (Morris and Shearman, 2008).
Percent green cover was estimated from digital images collected
using a digital camera (Powershot G5; Canon, Tokyo, Japan)
mounted to an enclosed photo box (56 cm by 56 cm) with four 9-
W compact fluorescent lamps (TCP; Lighthouse Supply, Bristol,
VA, United States). Each image was analyzed using SigmaScan
Pro (version 5.0; Systat Software, San Jose, CA, United States)
for percent green cover (0–100%) using a hue range from 60
to 120 and saturation range from 10 to 100 as outlined by
Richardson et al. (2001). Canopy spectral reflectance values were
measured using a Crop Circle ACS470 sensor (Holland Scientific,
Lincoln, NE, United States), equipped with a decimeter level GPS
(Raven Industries, Sioux Falls, SD, United States). The spectral
sensor, with active light source, measured light reflectance in
three spectral bands centered on 550 nm (green), 650 nm (red),
and 730 nm (NIR). The system was mounted to a mobile cart
at 61 cm above ground with a target ground area of 35 by
6.4 cm. Data were collected and processed using TurfScout
platform (TurfScout, Greensboro, NC), where NDVI values were
calculated within the program.

Data Analysis
All data were subjected to analysis of variance using SAS
9.4 (SAS Institute Inc., Cary, NC, United States). For each
parameter, Fisher’s protected LSD at 0.05 probability level
was used to separate significant means and to mark the top
statistical group in bermudagrass and zoysiagrass entries. Turf
Performance Index was calculated by summing up the number
of times an entry entered the top statistical group (Wherley
et al., 2013). Spearman’s rank correlation and linear regression
were performed between UAV-based measurements and ground
measurements in SAS using the CORR and Generalized Linear
Model (GLM) procedures, respectively. Graphs were generated
using SigmaPlot 14 (Systat Software, Inc. Point Richmond, CA,
United States). Box plots were generated using ggplot2 in Rstudio
(Wickham, 2016).

RESULTS AND DISCUSSION

Distribution of Ground Truth
Measurements and UAV-Based
Measurements
Ground percent green cover, TQ, ground and UAV-based NDVI
in bermudagrass ranged from 10 to 100%, 2 to 8, 0.17 to 0.66,
and 0.35 to 0.80, respectively (Figure 2). The aforementioned
parameters in zoysiagrass ranged from 10 to 80%, 2 to 6, 0.10 to
0.53, and 0.28 to 0.74, respectively. Parameters such as percent
green cover and NDVI were affected by different sampling

dates due to the combination of temperature, irradiance, and
precipitation. In general, sampling dates in September 2017 and
April 2018 were drier than the other two dates. Weather data
were obtained from a weather station located about 1 kilometer
away from the study site (Figure 3). Although no soil moisture
data and leaf water content was taken, virtual symptoms of leaf
wilting under varying degrees was observed in the plots due to
the combination of evapotranspiration demand and irrigation
frequency (once every 2 weeks). The study site was originally
established to evaluate long-term drought resistance in advance
experimental lines, and the irrigation frequency was designed
to encourage periodic drought. Zoysiagrasses responded more
rapidly compared to bermudagrasses in these drier environments
as indicated by percent green cover and NDVI (Figure 4).
This was likely due to the relative poor drought resistance
of zoysiagrass as compared to that of bermudagrass (Zhang
et al., 2018). Seasonal effects and interaction between turfgrass
species and environments are not the focus of this study.
Data over different seasons and species were collected to better
elucidate the relationship between ground truth and UAV-based
measurements and to build a more robust model.

Correlation Between Ground
Measurements and UAV-Based
Measurements
For multispectral imagery, ground truth measurements including
TQ, percent green cover, and ground NDVI were positively
correlated with the UAV-based vegetation indices NDVI (0.64,
0.89, and 0.92, P < 0.0001), GNDVI (0.59, 0.82, and 0.88,

TABLE 3 | Regressions between ground measurements including percent green
cover (PGC), turfgrass quality (TQ), and ground normalized difference vegetation
index (NDVI.G) and UAV-based measurements including NDVI.G and visible
atmospherically resistant index (VARI).

Adjusted R2 p-value RMSE†

Bermudagrass

PGC (%) = 217.11 × NDVI.U − 73.27 0.88 ∗∗∗ 7.37

PGC (%) = 567.35 × VARI + 33.86 0.89 ∗∗∗ 6.94

TQ = 9.19 × NDVI.U − 0.58 0.68 ∗∗∗ 0.58

TQ = 22.92 × VARI + 4.00 0.63 ∗∗∗ 0.62

NDVI.G = 0.85 × NDVI.U − 0.08 0.86 ∗∗∗ 0.03

Zoysiagrass

PGC (%) = 140.39 × NDVI.U − 30.88 0.73 ∗∗∗ 7.70

PGC (%) = 693.31 × VARI + 35.02 0.69 ∗∗∗ 8.24

TQ = 4.41 × NDVI.U + 1.78 0.13 ∗∗∗ 1.04

TQ = 14.17 × VARI +3.86 0.05 ∗∗ 1.09

NDVI.G = 0.73 × NDVI.U − 0.06 0.84 ∗∗∗ 0.03

Species Combined

PGC (%) = 177.49 × NDVI.U − 48.74 0.86 ∗∗∗ 8.29

PGC (%) = 571.61 × VARI + 34.38 0.87 ∗∗∗ 7.77

TQ = 7.47 × NDVI.U + 0.41 0.49 ∗∗∗ 0.87

TQ = 23.21 × VARI + 3.92 0.47 ∗∗∗ 0.89

NDVI.G = 0.91 × NDVI.U − 0.13 0.90 ∗∗∗ 0.03

∗∗ and ∗∗∗ indicate model significance level at 0.01, 0.001 P level. †RMSE is the
standard deviation of the error.
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P < 0.0001), and NDRI (0.60, 0.68, and 0.76, P < 0.0001),
respectively (Table 2). For RGB imagery, the aforementioned
ground truth measurements were positively correlated with
the UAV-based color indices VARI (0.59, 0.88, and 0.88,
P < 0.0001), NDI (0.48, 0.56, and 0.60, P < 0.0001), ExG (0.44,
0.66, and 0.67, P < 0.0001), ExR (−0.28, −0.70, and −0.68,
P > 0.0001), ExGR (0.53, 0.79, and 0.79, P < 0.0001), and
GLI (0.63, 0.79, and 0.81, P < 0.0001), respectively. Further
results and discussion is focused on UAV-based NDVI and
VARI due to their higher correlation with the ground truth
measurements in the study.

Predicting Ground Measurements Using
UAV-Based Measurements
Regression analysis indicated that ground percent green cover
in bermudagrass can be predicted using UAV-based NDVI
(PGC = 217.11× NDVI. U – 73.27, R2 = 0.88, RMSE = 7.37) and
VARI (PGC = 567.35 × VARI + 33.86, R2 = 0.89, RMSE = 6.94)
(Table 3 and Figure 5) with only ∼7% difference according
to the root mean square errors. Similarly, models fitted to
predict ground percent green cover in zoysiagrass had R2 of 0.73
(PGC = 140.39 × NDVI.U – 30.88, RMSE = 7.70) and 0.69

(PGC = 693.31 × VARI + 35.02, RMSE = 8.24) using UAV-
based NDVI and VARI, respectively. Ballesteros et al. (2014)
also found that the color index VARI was a good predictor for
estimating percent green cover in maize (PGC = 293.8 × VARI
+ 67.13, R2 = 0.95, RMSE = 6.71) and onion (Allium cepa
L.) (PGC = 279.1 × VARI + 68.13, R2 = 0.82, RMSE = 6.29).
Models of row crops like maize and onion had steeper slopes
in predicting percent green cover than turfgrass in our study,
which can be caused by multiple factors. Firstly, maize and onion
crops have wider leaves than turfgrass so percent green cover
maybe more responsive to the change in VARI. Secondly, for row
crops, percent green cover is more of an interest before canopy
closure and this would likely to impact the threshold settings in
obtaining percent green cover. In turfgrass, percent green cover
is used throughout every stage of growth. Therefore, results on
row crops may not be directly applicable for turfgrass. When data
from both the bermudagrass and zoysiagrass experiments were
combined, ground NDVI was still accurately predicted using
UAV-based NDVI (R2 = 0.84–0.86, RMSE = 0.03), indicating that
UAV-based sensor information is consistent across at least these
two turfgrass species. Sommer et al. (2017) reported that color
indices (R2 = 0.80) from a RGB camera were better correlated
with ground measurement NDVI than mNDVI (R2 = 0.60)

FIGURE 5 | Linear regressions in predicting percent green cover (PGC) using (A) Ground NDVI, (B) UAV-based NDVI, and (C) VARI. (D) In predicting ground NDVI
using UAV-based NDVI. Triangle points represented zoysiagrass and circled points represented bermudagrass.
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from a modified NIR camera. In our study, VARI was a good
predictor for ground percent green cover in our study, supporting
the use of a more affordable digital camera for data collection
if ground percent green cover is the interest. Multi-spectral

cameras may provide more information for the detection of
weed pressure (Torres-Sánchez et al., 2013), disease incidence
(Mahlein, 2016; Brodbeck et al., 2017), and drought stress
(Zarco-Tejada et al., 2013).

TABLE 4 | Turf performance index (TPI) and genotypic ranking using ground measurements (percent green cover and ground NDVI) and UAV-based measurements
(NDVI and VARI) in bermudagrass and zoysiagrass from September 2017 to June 2018.

Ground UAV Ground UAV

Bermudagrass TPI† Rank TPI‡ Rank Zoysiagrass TPI Rank TPI Rank

Tif16118 8 1 8 1 DALZ1409 7 1 8 1

Tif16116 8 1 5 5 DALZ1604 7 1 8 1

Tif16115 7 3 7 2 DALZ1606 7 1 5 5

TifTuf 7 3 6 3 Palisades 7 1 4 10

Tif16110 7 3 5 5 DALZ1614 5 5 7 3

Tif16112 7 3 5 5 Empire 5 5 6 4

OSU1337 6 7 6 3 FZ1440 5 5 5 5

Tif16106 6 7 3 10 FAES1335 5 5 4 10

OSU1439 6 7 3 10 FAES1322 5 5 4 10

OSU1406 5 10 5 5 DALZ1625 5 5 3 20

Tif16102 5 10 4 9 DALZ1410 5 5 2 32

Tif16104 5 10 3 10 FZ1427 4 12 5 5

Tif16117 5 10 0 27 DALZ1605 4 12 4 10

OSU1408 4 14 3 10 FZ1436 4 12 3 20

Tif16105 4 14 3 10 FZ1327 4 12 2 32

Tif16114 4 14 1 18 DALZ1611 3 16 4 10

Tif16108 3 16 3 10 DALZ1311 3 16 3 20

OSU1433 3 16 1 18 DALZ1603 3 16 3 20

OSU1418 3 16 1 18 FAES1313 3 16 3 20

Tif16103 3 16 0 27 DALZ1609 3 16 3 20

Tif16107 3 16 0 27 FZ1309 3 16 3 20

Tif16101 3 16 0 27 DALZ1408 3 16 2 32

Tif16113 2 23 2 16 DALZ1313 3 16 2 32

Tifway 2 23 2 16 FZ1252 3 16 2 32

OSU1412 2 23 1 18 FZ1410 3 16 2 32

Latitude36 2 23 1 18 FZ1407 2 26 4 10

OSU1402 2 23 1 18 FAES1336 2 26 4 10

OSU1403 2 23 1 18 FZ1429 2 26 4 10

OSU1417 2 23 0 27 DALZ1310 2 26 3 20

OSU1257 2 23 0 27 Zeon 2 26 2 32

Tif16119 2 23 0 27 DALZ1626 2 26 1 40

OSU1435 2 23 0 27 FZ1337 2 26 1 40

OSU1414 1 33 1 18 FZ1422 1 33 5 5

OSU1425 1 33 0 27 DALZ1613 1 33 4 10

Tif16109 1 33 0 27 FAES1337 1 33 3 20

Tif16120 1 33 0 27 DALZ1601 1 33 3 20

OSU1423 1 33 0 27 DALZ1607 1 33 3 20

Tif16111 1 33 0 27 FZ1333 1 33 1 40

OSU1318 0 38 1 18 DALZ1314 0 39 5 5

Celebration 0 38 0 27 DALZ1615 0 39 4 10

OSU1310 0 38 0 27 FAES1307 0 39 3 20

OSU1409 0 38 0 27 FAES1319 0 39 2 32

OSU1415 0 38 0 27 FAES1312 0 39 1 40

OSU1420 0 38 0 27

†Ground TPI summed up the number of times an entry entered the top statistical group in percent green cover and ground NDVI. ‡UAV TPI summed up the number of
times an entry entered the top statistical group in UAV-based NDVI and VARI.
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All models for the sensor-based prediction of TQ were more
poorly fitted (R2 = 0.63–0.68 for bermudagrass and 0.05–0.13
for zoysiagrass) than those for percent green cover. This agrees
with previous findings that TQ is more difficult to predict based

on percent green cover or NDVI (Sullivan et al., 2017), which
was largely due to its subjective nature and greater coefficients
of variation than optical sensor measurements (Bell et al., 2002;
Lee et al., 2011; Bremer et al., 2011). Although TQ, based on 1–9

TABLE 5 | Turf performance index (TPI) based on TQ, percent green cover, ground NDVI, UAV-based NDVI and VARI and genotypic ranking based on TPI in
bermudagrass and zoysiagrass from September 2017 to June 2018.

All dates Drought All dates Drought

Bermudagrass TPI† Rank TPI‡ Rank Zoysiagrass TPI Rank TPI Rank

Tif16118 19 1 10 1 DALZ1409 19 1 10 1

Tif16115 17 2 10 1 DALZ1604 19 1 9 2

TifTuf 17 2 10 1 DALZ1606 16 3 8 5

OSU1337 16 4 6 9 DALZ1614 15 4 9 2

Tif16110 16 4 8 5 Empire 14 5 9 2

Tif16116 16 4 9 4 Palisades 14 5 7 8

Tif16112 15 7 6 9 FAES1335 13 7 7 8

OSU1406 14 8 7 6 FZ1427 13 7 8 5

Tif16106 12 9 7 6 DALZ1605 12 9 6 10

OSU1439 11 10 3 15 FAES1322 12 9 8 5

Tif16102 11 10 7 6 FZ1440 12 9 6 10

Tif16104 11 10 5 12 DALZ1311 10 12 4 19

OSU1408 9 13 4 13 DALZ1611 10 12 6 10

Tif16105 9 13 6 9 DALZ1625 10 12 5 13

OSU1412 6 15 3 15 FZ1422 10 12 4 19

OSU1433 6 15 3 15 DALZ1410 9 16 5 13

Tif16108 6 15 1 21 FAES1313 9 16 5 13

Tif16113 6 15 1 21 FAES1336 9 16 5 13

Tif16114 6 15 1 21 FZ1436 9 16 3 30

Tif16117 6 15 4 13 DALZ1314 8 20 5 13

Tifway 5 21 2 18 DALZ1408 8 20 4 19

OSU1417 4 22 2 18 DALZ1603 8 20 3 30

OSU1418 4 22 1 21 DALZ1609 8 20 4 19

Tif16103 4 22 1 21 FZ1327 8 20 4 19

Tif16107 4 22 0 33 FZ1407 8 20 4 19

Latitude36 3 26 1 21 FZ1429 8 20 4 19

OSU1257 3 26 1 21 DALZ1310 7 27 3 30

OSU1402 3 26 1 21 DALZ1313 7 27 4 19

OSU1403 3 26 1 21 DALZ1613 7 27 4 19

Tif16101 3 26 1 21 FAES1337 7 27 2 37

Tif16119 3 26 2 18 FZ1252 7 27 4 19

OSU1414 2 32 0 33 FZ1309 7 27 5 13

OSU1425 2 32 1 21 Zeon 6 33 4 19

OSU1435 2 32 1 21 DALZ1615 5 34 3 30

Tif16109 2 32 0 33 FAES1307 5 34 3 30

Tif16120 2 32 0 33 FAES1319 5 34 3 30

OSU1318 1 37 0 33 FZ1410 5 34 2 37

OSU1423 1 37 0 33 DALZ1601 4 38 2 37

Tif16111 1 37 0 33 DALZ1607 4 38 3 30

Celebration 0 40 0 33 DALZ1626 4 38 2 37

OSU1310 0 40 0 33 FZ1337 4 38 2 37

OSU1409 0 40 0 33 FAES1312 3 42 1 42

OSU1415 0 40 0 33 FZ1333 3 42 1 42

OSU1420 0 40 0 33

†All dates TPI summed up the number of times an entry entered the top statistical group for all five parameters on all four dates. ‡Drought dates TPI summed up the
number of times an entry entered the top statistical group for all five parameters on September 2017 and May 2018.
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scale, is still an important parameter to be used when evaluating
turf performance, objective measurements such as percent green
cover and NDVI are being adopted more often for their reliable
and repeatable estimation of quality (Richardson et al., 2001,
2008, Bremer et al., 2011). Results from our study demonstrated
great potential for UAV-based imagery to be used in assessing
turf performance.

Bremer et al. (2011) reported that separate models for different
grass species may be required to predict TQ with ground NDVI.
To date we have not found a report on whether ground-based
NDVI or percent green cover of turfgrass can be predicted using
UAV-based measurements, or whether these relationships are
species dependent. In our study, the model based on combined
data from both species had an increased R2 (0.90) and equal
root mean square of error (RMSE = 0.03) in the prediction of
ground NDVI using UAV-based NDVI compared to models fitted
from individual species (Table 3). Using a species combined
model to predict percent green cover in bermudagrass resulted
in an increased error of 0.92% in UAV-based NDVI and 0.83%
in VARI. The increase in errors were smaller when predicting
zoysiagrass percent green cover (0.59% for NDVI.U and 0.47%
for VARI). These results suggest that developing a general
model to predict ground NDVI using a UAV platform for
both bermudagrass and zoysiagrass, and possibly more species,
without a significant sacrifice of accuracy is possible. However,
before building a general model to increase the efficiency of
data collection, certain issues need to be addressed and the
limitation of the current model should be taken into account.
Several UAV-based platforms and sensors need to be tested
for the same purpose in order to determine if the model is
platform/sensor dependent. The model may be limited when it
comes to a different turfgrass species with broader leaf such as St.
Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] and
under less ideal weather conditions, such as overcast and cloudy
days. Compared to different species and weather conditions,
repeated time scale is less of a concern for fitting the model.
Further investigation, addressing those limitations, should be
completed to improve the fit of general models to predict ground
measurements from UAV-based systems.

Entry Ranking Using Ground
Measurements and UAV-Based
Measurements
Depending on the trait or genes targeted for improvement,
typically the top performing 10–20% (Hanna et al., 2013) of
genotypes are advanced to the next cycle of selection during
early generation turfgrass breeding variety trials, which in the
context of this study represents the best 5–10 performers.
There was a 100% overlap in the identification of the top
5 bermudagrass entries using ground measurements (percent
green cover and NDVI) and UAV-based measurements (NDVI
and VARI) (Table 4), including Tif16118 (1st vs. 1st), Tif16116
(1st vs. 5th), Tif16115 (3rd vs. 2nd), TifTuf (3rd vs. 3rd),
Tif16110 (3rd vs. 5th), and Tif16112 (3rd vs. 5th). An overlap
of 93% was observed in identifying the top 10 bermudagrass
entries between two groups of measurements, meaning 12

out of 13 identified by ground measurements were the same
entries identified using UAV-based measurements. Less overlap
(55%) was found in identifying the top 5 zoysiagrass entries
using both types of measurements, but 80% of the top 10
zoysiagrass entries corresponded to ground and UAV-based
rankings. The 55% overlap of the top 5 zoysiagrasses was due to
the lack of statistical separation among 5th ranking entries using
ground measurements, including DALZ1614, Empire, FZ1440,
FAES1335, FAES1322, DALZ1625, and DALZ1410.

Stress tolerance is a common interest in turfgrass variety
trials (Chandra, 2015), with performance during drought stress
being of the utmost importance. In our study, both ground and
UAV-based measurements were used to rank the entries from
all dates combined and also only during the two drier dates
(September 2017 and May 2018). There was an 83% overlap in
the identification of the top 5 entries in both species over all dates,
and when the two drier dates were analyzed separately (Table 5).
A few entries had an increased ranking under conditions of
reduced soil moisture, indicating some mechanism of drought
tolerance or avoidance. These entries were Tif16115 (from 2nd
to 1st) and TifTuf (from 2nd to 1st) bermudagrass, DALZ1614
(from 4th to 2nd), FA1427 (from 7th to 5th), and FAES1322 (from
9th to 5th) zoysiagrass.

In summary, predicting objective variables such as ground
percent green cover and NDVI is more reliable than subjective
visual TQ. Data (VARI and NDVI) extracted based on high-
resolution UAV imagery provide accurate estimates of ground
measurement such as percent green cover and NDVI. Given
the advantages in field of view, spatial and temporal resolution,
UAV-based imagery would equip turfgrass breeder with powerful
tools for assessing turfgrass performance, which would greatly
increases the efficiency of data collection in relatively large trials
(>1,000 plots). Before developing a general model for predicting
ground measurement for turfgrass, further investigation of more
UAV platforms/sensors on different turfgrass species under
varying weather conditions and locations is needed. Further
research using more advanced thermal and hyperspectral sensors
should be conducted during periods of drought stress, as well
as for disease detection, to determine their value against more
readily available UAV-based imagery platforms.
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