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A direct role for cholesterol signaling in mammals is clearly established; yet, the direct role 
in signaling for a plant sterol or sterol precursor is unclear. Fluctuations in sitosterol and 
stigmasterol levels during development and stress conditions suggest their involvement 
in signaling activities essential for plant development and stress compensation. Stigmasterol 
may be involved in gravitropism and tolerance to abiotic stress. The isolation of stigmasterol 
biosynthesis mutants offers a promising tool to test the function of sterol end products 
in signaling responses to developmental and environmental cues.
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INTRODUCTION

Unlike mammals and fungi, plants produce mixtures of sterols, including sitosterol, stigmasterol, 
campesterol, and cholesterol (Figure 1). The interaction of sterols with phospholipids helps 
plant cells to maintain plasma membrane fluidity and permeability during stress conditions 
(Grunwald, 1971; Hartmann, 1998). In addition, sterols are precursors in the synthesis of 
steroid hormones, e.g., testosterone, estrogen, glucocorticoids, and mineral corticoids in 
mammals, ecdysteroids in insects and crustaceans, antheridiol and oogoniol (mating hormones 
of fungi), and brassinosteroids (BR) in plants (Fujioka et  al., 1997; Noguchi et  al., 1999; 
Nomura et  al., 1999; Clouse, 2002).

Campesterol is the precursor of BR (Fujioka and Yokota, 2003), and the crucial role of BR 
in plant growth and development is well established (Fujioka et  al., 1997; Choe et  al., 1998, 
1999; Noguchi et  al., 1999; Nomura et  al., 1999; Clouse, 2002), while sitosterol is implicated 
in cellulose synthesis (Peng et  al., 2002; Schrick et  al., 2012). It is, however, unclear whether 
fluctuations in stigmasterol concentration observed during development and conditions of stress 
are responsible for cellular signaling. Nonetheless, evidence pointing to stigmasterol as a potential 
signal for cellular defense and gravitropic responses is emerging (Griebel and Zeier, 2010; 
Dalal et  al., 2016). Functional characterization of genes controlling stigmasterol biosynthesis 
might help increase our understanding of the direct role of this sterol in plant development 
and stress responses. Therefore, our purpose is to examine genetic, developmental, and 
environmental conditions affecting stigmasterol production and suggest experimental approaches 
to investigate the role of stigmasterol in cell signaling.

THE BIOSYNTHESIS OF STIGMASTEROL

Stigmasterol is produced in the mevalonate pathway following a series of enzyme-catalyzed 
reactions leading to the generation of 2,3-oxidosqualene (Schaller, 2003; Bach, 2016).  
Subsequently, 2,3-oxidosqualene is converted to cycloartenol by cycloartenol synthase  
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(Schaller, 2003; Gas-Pascual et al., 2014; Sonawane et al., 2016). 
Cycloartenol is the target of branch-point enzymes including 
sterol side chain reductase 2 (SSR2) and sterol methyl transferase 1 
(SMT1). SSR2 channels cycloartenol to the cholesterol branch, 
while SMT1 catalyzes the alkylation of cycloartenol to produce 
precursors for plant sterols (Benveniste, 1986; Nes and 
Venkatramesh, 1999; Diener et  al., 2000; Schaeffer et  al., 2001; 
Sonawane et al., 2016). Downstream of SMT1, other branching 
enzymes SMT2/3, directs carbon toward sitosterol and 
stigmasterol (Carland et  al., 2010). Besides biosynthesis, free 
stigmasterol content can also be  modulated by converting it 
to sterol conjugates such as steryl esters, steryl glucosides, and 
acyl steryl glucosides. Steryl esters are conjugated by acyl 
transferases (Chen et  al., 2007; Bouvier-Navé et  al., 2010) and 
the steryl glucosides by UDP-glucose: sterol glucosyltransferase 
(DeBolt et  al., 2009).

Structurally, stigmasterol is similar to sitosterol but differs 
from sitosterol due to a double bond at position C-22 introduced 

by the sterol C-22 desaturase (Benveniste, 2002; Morikawa 
et  al., 2006). Arabidopsis contains four genes encoding sterol 
C-22 desaturases belonging to the cytochrome P450, CYP710A 
superfamily (Benveniste, 2004; Morikawa et  al., 2006) and two 
sterol C-22 desaturases are responsible for stigmasterol 
biosynthesis in Physcomitrella patens, a moss in which the 
major sterol is stigmasterol (Morikawa et al., 2009). The number 
of genes encoding/predicted to encode sterol C-22 desaturase, 
however, varies across species (Supplementary Table S1). It 
is noteworthy that SMT2/3 and CYP710A1 are the only two 
unique enzymes leading to the biosynthesis of stigmasterol in 
the stigmasterol branch, while both campesterol and stigmasterol 
branches (Figure 1) share intermediate enzymes. This is a 
case similar to cholesterol synthesis in plants, where the pathway 
involves both unique and shared enzymes with the campesterol 
branch (Sonawane et  al., 2016).

DEVELOPMENTAL REGULATION  
OF STIGMASTEROL

In mammalian systems, cholesterol biosynthesis is regulated 
via negative feedback suppression of several key genes  

FIGURE 1 | The plant sterol pathway leading to stigmasterol. Plants produce a mixture of sterols, campesterol (24-methyl) and sitosterol and stigmasterol  
(24-ethyl sterols). Stigmasterol is derived from sitosterol by the action of sterol C-22 desaturases. Campesterol is the preferred precursor of brassinosteroids (BR). 
Dashed arrows indicate multiple steps and solid arrows denote single step in the pathway. HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; CAS, cycloartenol 
synthase; SMT1, sterol methyltransferase 1; SMT2/3, sterol methyltransferase2/3; SSR2, sterol sidechain reductase2; CYP710A, sterol C-22 desaturase.

Abbreviations: BR, Brassinosteroid; CPH, Cephalopod; CVP, Cotyledon vascular 
patterning; CYP710A, Sterol C-22 desaturase; GL2, GLABRA2; NPC, Niemann-
Pick disease type C; PIN, PIN-FORMED; PR-1, PATHOGENESIS-RELATED 
PROTEIN 1; PM, Plasma membrane; ROSY1, InteractoR of SYnaptotagmin; SCM, 
SCRAMBLED; SMT, Sterol methyltransferase; SSR, Sterol sidechain reductase.
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(Goldstein and Brown, 1990). Thus, analysis of gene transcripts 
may help increase our understanding of the regulation of 
sterol biosynthesis during plant development (Schrick et  al., 
2011; Sonawane et  al., 2016; Suza and Chappell, 2016). For 
instance, in the developing seeds of tobacco (N. tabacum), 
pea (Pisum sativum), rape (Brassica napus), and seedlings of 
N. benthamiana and B. napus, increased gene expression and 
enzyme activities coincides with sterol accumulation (Harker 
et  al., 2003; Schrick et  al., 2011; Suza and Chappell, 2016). 
In addition, apical tissues of B. campestris contain high levels 
of cholesterol but exhibit a decline in cholesterol and a rise 
in sitosterol at later stages of development (Hobbs et al., 1996). 
Moreover, varying concentrations of stigmasterol and its 
precursor are noticeable at both the seed and whole plant 
developmental stages. For instance, during germination of 
tobacco seed, stigmasterol increases two-fold (Bush and 
Grunwald, 1972), and in mung bean (Vigna radiata) seedlings, 
younger sections of hypocotyls contain higher levels of 
stigmasterol compared to sitosterol (Stalleart and Geuns, 1994).

Stigmasterol content also increases in tomato (Solanum 
lycopersicon) during fruit ripening and is associated with an 
increase in CYP710A11 gene expression (Whitaker and Gapper, 
2008). In addition, in maize (Zea mays) seedlings, the 
concentration of stigmasterol is higher in roots than in shoots 
(Kemp et  al., 1967). Similar to the findings of Kemp et  al. 
(1967), N. benthamiana seedlings display striking differences 
in sterol composition between organs, with higher stigmasterol 
content in roots than in leaves (Suza and Chappell, 2016). In 
contrast, stigmasterol concentration is elevated in P. sativum 
leaves but lower in seeds (Schrick et al., 2011). Taken together, 
the developmental profile of sterols and gene expression data 
from Arabidopsis (Supplementary Figure S1) suggests highly 
coordinated regulation of stigmasterol metabolism in plants.

IMPACT OF BIOTIC AND ABIOTIC 
STRESS ON STIGMASTEROL

In Solanaceous plants, e.g., potato (Solanum tuberosum), 
cholesterol production rises to match the demand for the 
synthesis of steroid glycoalkaloids in response to wounding 
or pathogen infection (Choi et  al., 1992; Hartmann, 1998; 
Arnqvist et al., 2003). Similarly, pathogenic bacteria and reactive 
oxygen species stimulate the biosynthesis of stigmasterol in 
Arabidopsis (Griebel and Zeier, 2010; Sewelam et  al., 2014). 
Furthermore, genes encoding sterol C-22 desaturase are 
responsive to phytohormones, suggesting a role for stigmasterol 
in various stress responses (Supplementary Figure S1). Indeed, 
the overexpression of one of the Arabidopsis stigmasterol 
biosynthesis genes resulted in enhanced resistance to bacterial 
pathogens (Wang et  al., 2012). Recently, Gamir et  al. (2017) 
reported that PATHOGENESIS-RELATED PROTEIN 1 (PR-1) 
can bind sterols including stigmasterol in vitro. The authors 
conclude that PR-1 inhibits pathogen growth by sequestering 
sterols from pathogens (Gamir et al., 2017). However, it remains 
to be  demonstrated whether the predicted ability of PR-1 to 
bind stigmasterol has a real biological significance.

Stigmasterol concentration increases in roots of wheat (Triticum 
aestivum) exposed to salt (Magdy et  al., 1994). In addition, salt-
induced increase in stigmasterol is associated with salt exclusion 
capacity of citrus (Citrus medica) rootstocks (Douglas and Walker, 
1983), possibly due to the activation of the plasma membrane 
H+-ATPase by stigmasterol (Grandmougin-Ferjani et  al., 1997). 
The plasma membrane H+-ATPase is the primary transporter of 
protons out of the cell (Muramatsu et  al., 2002), and its activity 
is essential for maintaining ion homeostasis (Niu et  al., 1995). 
Indeed, stigmasterol treatment of germinating seeds improved 
salt tolerances of faba beans (Vicia faba L.) and flax (Linum 
usitatissimum) (Hashem et  al., 2011; Hassanein et  al., 2012).

Plants grown in saline conditions experience retardation of 
root growth, but Ca2+ supply ameliorates these deleterious 
effects of salinity stress (Shabala et  al., 2003). The beneficial 
effect of Ca2+ in the context of salinity stress is associated 
with the stabilization of plasma membrane and enhanced 
exchange of cations such as Na+ (Hirschi, 2004). It appears 
that Ca2+ may stimulate stigmasterol production in roots (Pilar 
et  al., 1993; Magdy et  al., 1994), and possibly, the stigmasterol 
induced by Ca2+ affects the plasma membrane H+-ATPase 
(Grandmougin-Ferjani et al., 1997), leading to enhanced extrusion 
of Na+ from the cell (Qiu et  al., 2003).

Stigmasterol is elevated at the expense of sitosterol in tomato 
(Lycopersicon esculentum) when stored at 15°C (Whitaker, 
1991). Indeed, analysis of Arabidopsis over-expressing 
AtCYP710A1 and Atcyp710a1 mutant lines suggests a role for 
stigmasterol in tolerance to unfavorable temperatures (Senthil-
Kumar et  al., 2013). Higher levels of sitosterol are detected 
in etiolated barley (Hordeum vulgare) tissues compared to 
stigmasterol, but the two sterols are detected in equal amounts 
in green tissues (Bush et al., 1971). Similar to etiolated barley, 
soybean plants grown under filtered sunlight conditions 
accumulate sitosterol, while stigmasterol levels decrease (Izzo 
and Navari-Izzo, 1981). The fluctuations in stigmasterol content 
in response to various environmental cues suggest that the 
conversion of sitosterol to stigmasterol may modulate plant 
response to environmental stimuli.

POTENTIAL ROLE FOR STIGMASTEROL 
IN CELL SIGNALING

Cholesterol modulates its own biosynthesis in mammalian cells 
via negative feedback (Marigo and Tabin, 1996; Edwards and 
Ericsson, 1999). Research in Solanum species suggested the 
existence of analogous cholesterol feedback mechanisms in 
plants (Bhatt and Bhatt, 1984); however, the idea that cholesterol 
modulates sterol biosynthesis in plants did not escape skepticism, 
since unlike mammals, plants synthesize an array of sterol 
end products (Hartmann, 1998). Production of several sterol 
end products presents a challenge in elucidating role of sterol 
end products in cell signaling in plants.

Analysis of Arabidopsis sterol biosynthesis mutants suggests 
that sterols play critical roles in plant development independent 
of BR (Lindsey et  al., 2003) by influencing position-dependent 
cell fate during embryogenesis (Jang et  al., 2000; Schrick et  al., 
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2000; Clouse, 2002). For example, the fackel mutants lacking a 
functional sterol C-14 reductase display embryonic defects and 
dwarfism at the seedling stage and produce less BR, but exogenous 
BR fails to complement the mutant (Mayer et  al., 1991; Jang 
et  al., 2000; Schrick et  al., 2000), whereas the loss of SMT1 
function in smt1/cph plants results in the accumulation of 
cholesterol, defective embryo development, and increased sensitivity 
to Ca2+. Similar to fackel, the defective phenotype of smt1/cph 
plants cannot be  rescued by exogenous BR (Diener et  al., 2000).

The SMT2/3 (COTYLEDON VASCULAR PATTERNING1—
CVP1) locus converts 24-methylene lophenol to 24-ethylidene 
lophenol (Carland et  al., 2002). Consequently, Arabidopsis 
plants overexpressing SMT2 accumulate sitosterol at the 
expense of campesterol and display reduced stature and 
growth (Schaller et  al., 1998; Schaeffer et  al., 2001). The 
smt2/cvp1 plants exhibit aberrant alignment of vascular strands 
and misshapen vascular cells, reduced levels of sitosterol, 
and higher concentration of campesterol (Schaeffer et  al., 
2001; Carland et  al., 2002); however, the aberrant phenotype 
of AtSMT2 and smt2/cvp1 plants is not associated with defective 
BR signaling (Schaller et  al., 1998; Schaeffer et  al., 2001;  
Carland et  al., 2002).

Another classic Arabidopsis sterol mutant is hydra, with 
defective embryonic morphogenesis, seedling cell patterning, 
and root growth (Lindsey et al., 2003). HYDRA1 and HYDRA2/
FACKEL encode sterol isomerase and C-14 reductase, respectively 
(Souter et  al., 2002). Similar to fackel, hydra mutants produce 
less campesterol, but BR application does not rescue their 
phenotypic defects. Interestingly, both hydra1 and hydra2/fackel 
mutants produce high levels of stigmasterol compared to the 
wild type (Souter et  al., 2002). Whether dysregulation of 
stigmasterol is the cause for the pleiotropic defects in the 
hydra mutants is unclear.

The compactness in the packing of plasma membrane (PM) 
lipid bilayer acyl chains—referred as membrane order (or liquid-
ordered)—is influenced by sterol composition (Roche et al., 2008). 
The separation of liquid-ordered and liquid-disordered phases 
in the PM is observed in vivo in tobacco cells (Gerbeau-Pissot 
et  al., 2014). In “raft hypothesis,” stress induction can lead to 
the formation of larger structures (proposed lipid rafts) from 
liquid-ordered nanodomains enriched in sterols and sphingolipids 
(Lingwood and Simons, 2010). The interaction of sterols with 
phospholipids to form lipid rafts in mammalian membrane systems 
is crucial for correct signaling and activity of intrinsic membrane 
proteins. Lipid rafts are associated with many plant proteins 
involved in redox regulation, hormone transport and signaling, 
and ion homeostasis (Willemsen et  al., 2003; Borner et  al., 2005; 
Lefebvre et  al., 2007; Zauber et  al., 2014). Examples of proteins 
associated with lipid rafts and sterols include GLABRA2 (GL2), 
SCRAMBLED (SCM), and PIN-FORMED (PIN). PIN proteins 
are involved in the transport of auxin to mediate polar cell 
growth and root gravitropism (Moore, 2002). GL2 is a phospholipid/
sterol-binding transcription factor involved in the regulation of 
root hair development (Masucci et  al., 1996), whereas SCM is 
a receptor for positional cues to modulate expression of GL2 
and other cell fate regulators during root hair development 
(Grierson et  al., 2014). Indeed, proteome analysis of smt1/cph, 

with an altered plasma membrane composition, revealed a 
compromised cell signaling (Zauber et al., 2014). Sterol depletion 
in the plasma membrane by cyclodextrin and filipin suggests 
the sensing of modifications of cell environment at the PM is 
sterol dependent in plants, which can lead to adaptive cell responses 
through regulated signaling processes (Roche et al., 2008; Bonneau 
et  al., 2010). In tobacco cells, the proportion of ordered phases 
transiently increased during the early steps of the signaling 
triggered by cryptogein and flagellin, two elicitors of plant defense 
reactions (Gerbeau-Pissot et  al., 2014).

The composition of free sterols and sterol conjugates influences 
the liquid-ordered phase formation (Grosjean et  al., 2015). 
Stigmasterol by itself lacks the ability to increase membrane order, 
whereas sitosterol and campesterol increase the order. However, 
by interacting together with glycosylinositolphosphoceramide, the 
major sphingolipid in plant, stigmasterol can increase the membrane 
order, while the interaction with glucosylceramide decreased the 
order. Sitosterol by itself induces the production of many small 
domains, which increases in size together with the addition of 
free sterol-sphingolipid and free sterol-sterylglycoside/
acylsterylglycoside combination (Grosjean et  al., 2015). These 
findings suggest a role for specific sterol species to fine tune 
the membrane sterol composition, thereby regulating 
signaling events.

The orc mutation is allelic to SMT1, and analysis of the 
smt1orc plants revealed trace amounts of stigmasterol and aberrant 
localization of PIN2 and PIN3 (Willemsen et al., 2003). Therefore, 
regulated membrane sterol composition is important for correct 
positioning of proteins, such as PIN, and physiological responses 
such as root gravitropism (Men et  al., 2008). The hydra2/fackel 
plants show an ectopic expression of GL2 in trichoblasts, resulting 
in a glabrous root phenotype possibly due to a compromised 
function of GL2 (Souter et  al., 2002). There is a possibility that 
GL2 activity in hydra/fackel plants is diminished by a sterol 
molecule which causes a conformational change blocking DNA 
interaction with certain trans-factors (Schrick et  al., 2004). 
Conversely, a sterol or its derivative may bind GL2 and tether 
it to the membrane in a manner similar to the way cholesterol 
tethers Hedgehog in vertebrate systems (Jeong and McMahon, 
2002). Since stigmasterol plays a role in cell proliferation 
(Hartmann, 1998) and hydra/fackel plants accumulate high levels 
of stigmasterol (Lindsey et al., 2003), a dysregulated metabolism 
of stigmasterol may interfere with various cellular processes 
during development. Indeed, GL2 expression is dysregulated in 
the developing siliques of the Arabidopsis acbp1 mutant with 
high stigmasterol (Lung et al., 2017). Perhaps, the aberrant SCM 
distribution in roots of the ugt80B1 is due to deficiency in a 
stigmasterol conjugate (Pook et  al., 2017), offering additional 
support for a role for stigmasterol in cell signaling.

STIGMASTEROL ROLE IN MODULATING 
CELL BIOLOGY

Stigmasterol is one of the major sterols in plasma membranes 
of plant cells and plays a role in cell proliferation (Hartmann, 
1998) and activation of plasma membrane H+-ATPase 
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(Grandmougin-Ferjani et al., 1997). In plants, the plasma membrane 
H+-ATPase is the primary transporter of protons out of the cell, 
thus creating a pH and electrochemical gradient across the plasma 
membrane (Muramatsu et  al., 2002). The activity of the plasma 
membrane H+-ATPase is essential for maintaining ion homeostasis, 
since carrier-mediated ion transport is coupled to a downhill 
pH gradient (Niu et  al., 1995). In addition, the activity of the 
plasma membrane H+-ATPase promotes the adaptation of maize 
roots to low pH (Yan et al., 1998) and low phosphorous availability 
in soybeans (Shen et  al., 2006).

In Arabidopsis, exogenous stigmasterol activates the expression 
of genes involved in cell expansion and division (He et  al., 
2003). Furthermore, exogenous stigmasterol increases flower 
numbers of chamomile (Chamomilla recutita L. Rausch) (Abd 
El-Wahed and Krima, 2004) and in vitro multiplication of 
shoots of Marubakaido apple rootstock (Malus prunifolia (Wild.) 
Borkh) (Pereira-Netto, 2012). In tobacco seeds, depletion of 
cycloartenol by increased activity of SMT1 was associated with 
elevated activity of HMGR in tobacco seeds (Holmberg et  al., 
2002). By contrast, studies in P. sativum showed that stigmasterol 
inhibits HMGR activity (Stermer et  al., 1994), suggesting a 
role for stigmasterol in regulation of sterol biosynthesis.

In Arabidopsis, the key gene controlling stigmasterol production 
is CYP710A1, but Arabidopsis also produces low levels of 
brassicasterol from the C-22 desaturation of epi-campesterol by 
CYP710A2 (Benveniste, 2002; Morikawa et  al., 2006). The 
expression of CYP710A2 mRNA responds rapidly to gravity 
stimulation (Kimbrough et al., 2004), suggesting a role for sterol 
C-22 desaturation in plants response to gravity. The recent 
discovery that InteractoR Of SYnaptotagmin1 (ROSY1), a regulator 
of cellular trafficking and gravitropic response binds stigmasterol 

(Dalal et  al., 2016), supports the idea that CYP710A genes and 
stigmasterol play a role in root response to gravity. In addition, 
the rosy1-1 mutant is impaired in auxin transport but is more 
tolerant to salt stress (Dalal et al., 2016), suggesting a connection 
between ROSY1 and stigmasterol in regulating auxin transport 
and abiotic stress responses.

Stigmasterol is induced by Ca2+ (Pilar et  al., 1993), and 
Arabidopsis mutants defective in Ca2+ uptake have a 
compromised cell expansion, short root hairs, and stunted 
roots (Foreman et  al., 2003). Since gravistimulation induces 
Ca2+ (Monshausen et al., 2011), Ca2+ may stimulate CYP710A2 
expression and stigmasterol production in roots. Therefore, 
CYP710A proteins might participate in a similar signaling 
pathway with ROSY1 to modulate plant cell response to gravity 
and salt stress (Dalal et  al., 2016).

CONCLUDING REMARKS AND  
FUTURE DIRECTIONS

There is need to validate gene expression data from microarray 
experiments (Supplementary Figure S1) and correlate hormone/
stress induced gene expression with stigmasterol concentration. 
In addition, it is intriguing that blocking BR biosynthesis affects 
CYP710A gene expression (Supplementary Figure S1), suggesting 
a role for BR in regulating stigmasterol metabolism. Based on 
the mechanism for cholesterol and lipid sensing in mammals 
and insects, the notion of plant (stigma)sterol sensor(s) is not 
far-fetched. Indeed, the discovery of plant proteins with sterol/
lipid sensing/binding domains offers a promising avenue for 
testing the signaling role of stigmasterol (Figure 2).

FIGURE 2 | Schematic representation of functions of stigmasterol and its signaling roles in plant cells. Stigmasterol biosynthesis occurs during development, 
abiotic stress, gravistimulation, pathogen attack, and in response to signaling molecules such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), 
calcium (Ca2+), and hydrogen peroxide (H2O2). Stigmasterol binds to ROSY1 leading to gravitropic response. Stigmasterol activates H+-ATPase to create pH and 
electrochemical gradient across the plasma membrane. The pH gradient leads to activation of the Na+/H+ exchanger to exclude Na+ to adapt to salinity stress. 
Furthermore, the activity of H+-ATPase is necessary for ion homeostasis, adaptation to low pH, low phosphorus, and abiotic stress. Exogenous application of 
stigmasterol impacts growth and sterol homeostasis via an unidentified (stigma)sterol sensor.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Aboobucker and Suza Stigmasterol Biosynthesis and Signaling

Frontiers in Plant Science | www.frontiersin.org 6 March 2019 | Volume 10 | Article 354

The potential candidate for a stigmasterol sensing system 
would be ROSY1, which shows binding specificity for stigmasterol 
to regulate root response to gravity (Dalal et  al., 2016). Other 
candidates include Arabidopsis Niemann-Pick disease type C 
like proteins (AtNPC1-1 and AtNPC1-2) (Feldman et al., 2015), 
possessing putative sterol sensing domains reminiscent of SCAP 
and related regulators of sterol metabolism in animals and 
yeast (Goldstein and Brown, 1990; Nohturfft and Losick, 2002). 
Evaluating the sterol binding specificity of plant NPC proteins 
might provide clues as to whether AtNPC1-1 and AtNPC1-2 
act as sterol sensors to modulate lipid metabolism; however, 
testing the implication of stigmasterol interaction with plant 
sterol sensing proteins requires circumventing gene redundancy 
(Supplementary Table S1). The creation of double/triple/
quadruple mutants for Arabidopsis CYP710A genes may help 
in overcoming the challenge. Alternatively, crop or model grass 
species predicted to encode single copies of CYP710A 
(Supplementary Table S1), and rich genetic resources, such 
as maize or Brachypodium, may provide an opportunity to 
attempt to eliminate the production of stigmasterol via insertional 
mutagenesis or gene editing approaches.

Sterol glucosides are synthesized at the PM (Zauber et  al., 
2014), while the CYP710A is predicted to localize to the 
apoplast (Supplementary Table S1). This begs the question 
of what would be  the cellular site of stigmasterol synthesis, 
since plant sterols are believed to originate primarily within 
the ER (Hartmann, 1998). Experiments to test the impact of 
ectopic expression of CYP710A via retention to ER or vacuole 
may help identify the preferred site of stigmasterol synthesis. 
This information will be  helpful in designing gene constructs 
to manipulate stigmasterol content in a more targeted fashion.
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