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We compared the performance of two commonly used genotyping platforms,
genotyping-by-sequencing (GBS) and single nucleotide polymorphism-arrays (SNP),
to investigate the extent and pattern of genetic variation within a collection of
1,000 diverse barley genotypes selected from the German Federal ex situ GenBank
hosted at IPK Gatersleben. Each platform revealed equivalent numbers of robust bi-
allelic SNPs (39,733 and 37,930 SNPs for the 50K SNP-array and GBS datasets
respectively). A small overlap of 464 SNPs was common to both platforms, indicating
that the methodologies we used selectively access informative polymorphism in different
portions of the barley genome. Approximately half of the GBS dataset was comprised
of SNPs with minor allele frequencies (MAFs) below 1%, illustrating the power of
GBS to detect rare alleles in diverse germplasm collections. While desired for certain
applications, the highly robust calling of alleles at the same SNPs across multiple
populations is an advantage of the SNP-array, allowing direct comparisons of data from
related or unrelated studies. Overall MAFs and diversity statistics (π ) were higher for the
SNP-array data, potentially reflecting the conscious removal of markers with a low MAF
in the ascertainment population. A comparison of similarity matrices revealed a positive
correlation between both approaches, supporting the validity of using either for entire
GenBank characterization. To explore the potential of each dataset for focused genetic
analyses we explored the outcomes of their use in genome-wide association scans
for row type, growth habit and non-adhering hull, and discriminant analysis of principal
components for the drivers of sub-population differentiation. Interpretation of the results
from both types of analysis yielded broadly similar conclusions indicating that choice of
platform used for such analyses should be determined by the research question being
asked, group preferences and their capabilities to extract and interpret the different
types of output data easily and quickly. Access to the requisite infrastructure for running,
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processing, analyzing, querying, storing, and displaying either datatype is an additional
consideration. Our investigations reveal that for barley the cost per genotyping assay
is less for SNP-arrays than GBS, which translates to a cost per informative datapoint
being significantly lower for the SNP-array.

Keywords: germplasm evaluation, GBS, SNP-array, diversity, GWAS

INTRODUCTION

The detection of genome-wide sequence-defined single
nucleotide polymorphism-arrays (SNPs) is key to addressing
a wide range of biological and ecological questions, from
describing and partitioning overall levels of biological diversity
to cloning genes conferring phenotypic traits, and for practical
exploitation in animal and crop breeding. Alternative SNP
alleles can be detected using a range of technologies that can
be broadly classified into two types, semi-open and closed,
based on the nature of the data generated. Closed systems can
be represented by hybridization-based commercial SNP-arrays
(Bayer et al., 2017) where the same panel of SNPs is repeatedly
assayed for variation across all experiments and all germplasm.
Semi-open systems are typified by RAD-seq (Miller et al., 2007),
DArTseq (Kilian et al., 2012) or genotyping-by-sequencing
(GBS, Elshire et al., 2011). These are similar in nature and
assay new variation in each different set of genetic material
analyzed. They have been widely adopted by plant genetics and
ecological communities largely due to their generic nature and
low establishment costs. We use the term semi-open because all
typically involve a genome complexity reduction step, in GBS
for example through use of methylation sensitive restriction
enzymes to selectively avoid highly repetitive genomic regions
(thus introducing bias), and then short read next generation
sequencing of the regions adjacent to the cleaved restriction
sites. Their increasing popularity stems from them being species
and sequencing platform agnostic, as well as being considered
fast, cheap and informative (Lu et al., 2015). However, they
are notorious for generating noisy data. At lower sequence
depth, GBS data includes a large fraction of missing data which
requires imputation and sometimes complex computational
interpretation prior to subsequent analysis.

Our primary interests focus on the biology of barley (Hordeum
vulgare ssp. vulgare and ssp. spontaneum), a large genome (∼5
Gbp) inbreeding diploid (2n = 2x = 14) species that was one of
the worlds’ first domesticated crop plants (Snape et al., 2013).
Along with large sections of the barley genetics community,
for the last 15 years we have generally favored the application
of robust SNP-based assay platforms (in our case developed
by Illumina) for high throughput genotyping requirements
(Close et al., 2009; Comadran et al., 2012). The most recent
iteration of this platform is a 50K iSelect custom genotyping
array (Bayer et al., 2017) which includes SNPs selected from a
combination of previously informative ‘legacy’ Illumina platform
SNPs (for backward compatibility), supplemented with a large
cohort derived from comprehensive exome capture sequence
data (Russell et al., 2016). They were chosen to represent the
range of diversity observed in domesticated barley (landraces and

cultivars) from across the geographic range of the species, to have
minor allele frequencies (MAFs) of > 5% in the ascertainment
population, be located in annotated, physically and genetically
mapped positions and to be well-distributed across each of the
seven barley chromosomes. We chose the Illumina iSelect SNP
platform as it has proven to be a highly robust technology that
yields exceptional data quality with few missing values1. For
many applications this is crucially important because all new
data are backward compatible, easily extracted, quality checked,
databased and referenced over time, with the computational load
between data generation and use for analysis being minimal
and therefore suited to almost anyone in a research or breeding
environment. Data quality control (QC) and error checking is
consistent and straightforward. However, SNP-arrays suffer from
ascertainment issues (Moragues et al., 2010), are species specific
and therefore need to be developed independently for each
crop. Their development and testing can be lengthy requiring
considerable prior knowledge and adding new SNPs to the
platform is difficult and expensive. Even after development, the
service cost of a single genotyping assay is widely considered to
exceed that of GBS.

Given that both approaches appear to have certain advantages
we were keen to critically explore how they each performed in a
suitably sized comparative experiment focused on the evaluation
of a diverse barley germplasm collection. We also wanted to
explore their affinity for subsequent applications of the derived
data, such as candidate gene identification using population-
based approaches. We consider these questions important not
only in our own research programs and in those of the barley
genetics community, but for comparative purposes we were
keen to carefully establish the level of concordance between
different data types. This is an important and fundamental
question given that large germplasm characterization projects
are currently being undertaken by the plant genetics community
(e.g., Lu et al., 2015; Yu et al., 20162) and these are dominated
by the use of semi-open systems, mainly GBS. We wanted to
understand and clarify the advantages and caveats associated
with each platform and the resulting data types and ask whether
the overall values afforded by one approach outweighed those
of the other. We were motivated to do this by the recent
genotypic characterization of the entire 22,000 genotypes in
the IPK Gatersleben barley GenBank collection (Milner et al.,
2019) that was achieved using the widely adopted PstI-MspI GBS
protocol (Wendler et al., 2014). The use of GBS for ‘germplasm
genomics’ could be considered a surrogate for whole genome

1https://www.illumina.com/content/dam/illumina-marketing/documents/
products/technotes/technote_iselect_design.pdf
2http://seedsofdiscovery.org/
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(shotgun) sequencing (WGS), which at the moment at least, is
not considered financially feasible in large genome crops like
maize (∼2.5 Gbp), barley (∼5 Gbp), and wheat (∼17 Gbp), in
contrast to rice (∼370 Mbp, Wang et al., 2018) and Arabidopsis
(∼135 Mbp, The 1001 Genomes Consortium, 2016). This is
because the latter genomes are suitably compact for WGS to be
affordable, and for rice in particular, the importance of the crop
sufficiently great to justify the ‘gold standard’ investment.

When GBS was becoming popular in the plant community,
we evaluated the PstI-MseI GBS protocol in a study aimed at
mapping the barley breviaristatum-e (dwarfing) locus in a bi-
parental recombinant inbred line (RIL) population (Liu et al.,
2014). In that work, after highly conservative and rigorous
filtering to remove missing data, low MAF, dominant/null and
heterozygous SNPs, we ended up with a total of 1,949 robust
and co-dominant markers that could be confidently used for
genetic analysis. Analysis of the same population with the recent
50K SNP-array revealed 14,626 robust SNP allele calls (Bayer
et al., 2017), on the face of it a significant improvement on
marker number, which subsequently provided improved genetic
resolution. While possible explanations for this could be our
conscious bias in SNP ascertainment when developing the 50K
array, or reflect the quality and depth of our GBS data, we
considered the extent of this numerical discrepancy further
motivation for the current investigation.

As a result, the primary questions we address here are: how
do these platforms, generic GBS and a species-specific SNP-
array, perform in relative terms in barley, how concordant are
the outputs, how easy are they to compare between datasets
and labs, are there clear cases where one approach provides
significant advantages over the other, and what are realistic cost
comparators? We believe that the answers to these and other
questions will be important for both ourselves and others in
the barley community who may tend to favor one technical
approach over another. It is also a critical evaluation of how
different data types are being assessed and interpreted in similar,
ongoing studies throughout the plant community. We used
the same PstI-MspI GBS dataset described in Milner et al.
(2019) and the representative diversity sub-set of 1,000 of the
>22,000 barley genotypes described in their recent IPK GenBank
study. We genotyped these 1000 lines with the barley 50K
iSelect array and used the resulting datasets as the basis for
our evaluations.

MATERIALS AND METHODS

Genetic Materials: 1,000 Genotype Set
Selection of a core set of 1,000 genotypes from an extended
collection of 22,626 genotypes lodged in the German Federal
ex situ GenBank hosted at IPK Gatersleben was done exactly
as described by Milner et al. (2019), based on GBS data with
CoreHunter33 and the average entry-to-nearest-entry criterion.
It was done after analysis of population structure and genetic
similarity, and imputation of missing values in the GBS genotype
matrix using FILLIN with default parameters (Swarts et al., 2014;
Milner et al., 2019).

SNP Genotyping and Analysis
We used exactly the same GBS dataset described by Milner
et al. (2019) and exactly the same DNAs as used in that
study were submitted for SNP genotyping using the barley
Illumina 50K iSelect SNP platform (Bayer et al., 2017). The
GBS SNP matrix of Milner et al. (2019) is accessible from
https://doi.ipk-gatersleben.de/DOI/ecfbdb3d-4882-406c-9e82-
7758ed5395c7/4f58176f-4824-4c32-bca1-3d87500d82f3/2. The
filter criteria for inclusion of GBS SNPs used by Milner et al.
(2019) were: (i) up to 10% missing genotype calls; (ii) up to 10%
heterozygous calls; and (iii) the number of heterozygous calls
does not exceed the number homozygous minor allele counts.

For the 50K data, prior to sample submission, DNA
quality was assessed using a Nanodrop 2000 (Thermo Fisher
Scientific, Waltham, MA, United States) with a requirement
for 260/280 and 260/230 ratios to be > 1.8. DNA was then
quantified using Picogreen (Thermo Fisher Scientific, Waltham,
MA, United States) and 300 ng DNA per sample lyophilized
and sent to Geneseek (Neogen Europe, Ltd., Auchincruive,
United Kingdom) for Illumina HTS processing and HiScan array
imaging (Illumina, San Diego, CA, United States). SNP alleles
were called using GenomeStudio Genotyping Module v2.0.2
(Illumina, San Diego, CA, United States) and the resulting data
investigated and analyzed as previously reported for 9K Illumina
data (Milne et al., 2010; Comadran et al., 2012). The physical
positions of both GBS and 50K SNPs were assigned by BLAST
(Altschul et al., 1990) according to their position on the 2017
barley genome assembly (Mascher et al., 2017).

Genetic Analyses
Both the GBS and SNP-array genotyping matrices were formatted
for analysis using PLINK1.93 (Chang et al., 2015). Flags: –maf
was used to compute minor allele frequency value and extract
selected SNPs; –geno was used to extract SNPs with less than
the desired percentage of missing values; –pca was used to
compute principal components analysis (PCA) with the var-
wts option to extract variant weight; and the –recode flag to
create the VCF file to compute π in Vcftools (Danecek et al.,
2011). Sliding window analyses were performed using an in-
house Perl script ‘plotDensity,’ obtained from F. Choulet (INRA
Clermont Ferrand) with the following parameters: a window of
10 Mbp and a step of 1 Mbp. D′ and R2 were computed with
snpStats R package (Clayton, 2017) and all figures were generated
using the R environment with ggplot3 packages (Wickham, 2016).
Genome-wide association scan (GWAS) analysis was conducted
using the compressed mixed linear model (Zhang et al., 2010)
implemented in the GAPIT R package (Lipka et al., 2012; Tang
et al., 2018). The phenotypic data were also the same as used
in Milner et al. (2019) except for the categorical scores for
growth habit (winter vs. spring) which were prior genotype
classifications. The FDR-corrected p-values were used to draw
Manhattan plots using qqman R package (Turner, 2014). We
used the first three principal components (PC’s) in the GWAS
model for population correction. A Mantel test for correlation
between distance matrices computed from GBS and 50K data

3COREHUNTER3 http://www.corehunter.org
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was performed using mantel.rtest function of the R package
ade4. Allele counts and frequencies were verified using in-
house python script.

Discriminant analysis of principal component (DAPC) was
conducted as described in Jombart and Collins (2015). First,
clusters were identified using find.clusters function. According of
the results of the PCA, k = 3 (GP1, GP2, and GP3) was chosen,
and 400 axes (n.pca, accounting for > 80% of the cumulative
variance) retained for the discriminant analysis. The latter was
run using the function dapc with all of the retained eigenvalues.
Cluster assignation was used to create subpopulations. Fst
estimates between subpopulations were calculated according to
Weir and Cockerham (1984). Regions of genetic differentiation
between subpopulations was displayed as Manhattan plots based
on −1/log10Fst values of individual markers plotted linearly
along each chromosome according to physical position.

RESULTS

SNP Metrics
Among the 43,461 scorable assays on the 50K SNP-array in this
experiment we extracted 42,300 (96%) robust and polymorphic
SNPs after examination of genotype clusters in GenomeStudio.
For comparison, the GBS genotype matrix was comprised of the
37,327 high quality polymorphic bi-allelic GBS SNPs described
in Milner et al. (2019). We removed 2,567 SNP in the 50K
SNP-array dataset and 603 SNP in the GBS dataset for all
subsequent comparative analysis due to their not being assigned a
physical position on the current barley genome pseudomolecules
(Mascher et al., 2017). The final datasets for comparison therefore
comprised 39,733 and 37,327 SNP distributed on the seven
chromosomes of the barley genome for 50K SNP-array and
GBS datasets respectively. Only 464 markers were in common
in both datasets illustrating the fact that each assay platform
accesses different regions of the barley genome. The distribution
of SNPs among the seven chromosomes was only slightly
different (Table 1) with more markers from the 50K SNP-
array on chromosomes 2H (+685), 4H (+506), 5H (+1,702),
and 6H (+313) and more markers from GBS on 1H (+345),
3H (+71), and 7H (+384). Overall SNP densities along each

chromosome for both datasets were broadly similar, with only
two differences apparent on the short arms of chromosomes 4H
and 5H where the SNP density was higher on the 50K dataset
(Supplementary Figure S1).

Both datasets revealed a high number of markers in the
distal regions of each chromosome decreasing markedly in the
peri-centromeric/centromeric regions. As this could be biased
due to the distribution of genes, we partitioned our analysis
according to genic and intergenic markers. In accordance with
the origin of the information for the 50K assay being from
exome capture data we observed a large number of SNPs in
genic regions, with 72% (28,875) associated with genes and
present at higher density in the gene-rich distal regions of each
chromosome (Supplementary Figure S1). In contrast, the GBS
dataset showed a reduced representation with 52% (19,436) of
SNPs in genic regions, generating more of a balance between
genic and intergenic SNPs. With both platforms, as expected,
gene associated markers remain more frequent in the distal parts
of all chromosome arms, a feature that was especially apparent in
the 50K dataset.

Allele Frequencies and Diversity
Statistics
A striking difference between datasets was the high proportion
of GBS markers associated with a low minor allele frequency
(MAF) compared to the 50K dataset. The percentage of markers
with a MAF < 1 or <5% was 1.2 and 7.6% for the 50K chip
but reached 41.6 and 58.9% for GBS respectively (Figure 1).
Across the genome, we did not observe specific regions on the
physical map with low MAF (Figure 2). However, a pattern
in the centromeric regions, visible as horizontal tracks in the
pericentromeric regions in Figure 2, mainly in the 50K data,
is likely the result of a limited number of extended conserved
centromeric haplotypes within the current germplasm set (i.e.,
high linkage disequilibrium between sets of markers). Exploring
MAF further, in the GBS dataset we found 11,849 SNP with
a MAF of < 1% in the landraces and 1,617 in the cultivars,
emphasizing the value of GBS for detecting low frequency
variants in more diverse materials. In stark contrast, only 24
and 26 SNP exhibited a MAF of < 1% in landraces and
cultivars, respectively, in the data from the 50K SNP-array,

TABLE 1 | Single nucleotide polymorphism-arrays (SNPs) marker distribution.

(A) Number of SNPs per chromosome according to assay platform.

1H 2H 3H 4H 5H 6H 7H Anchored Un Total

50K 4,364 6,564 6,076 4,668 7,333 4,937 5,791 39,733 2,567 42,300

GBS 4,709 5,879 6,147 4,162 5,631 4,624 6,175 37,327 603 37,930

(B) Distribution of monomorphic and polymorphic SNPs according to assay platform and germplasm classification.

50K GBS

Landrace Cultivar Landrace Cultivar

Monomorphic 26 24 1,617 11,849

Polymorphic 39,707 39,709 35,710 25,478
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FIGURE 1 | Distribution of minor allele frequencies in GBS and 50K array
data. SNP counts were aggregated in 2% bins.

likely reflecting the 50K chip design strategy that prioritized
markers with MAFs of > 5% in the SNP ascertainment (i.e.,
landrace and cultivar) genepool. Finally, we examined the degree
of polymorphism along each chromosome within the population
revealed by each marker type by calculating the nucleotide
diversity statistic π (Nei and Li, 1979). Along all chromosomes
the 50K SNP chip data consistently revealed higher levels of
diversity than GBS (Figure 3), presumably reflecting the low
MAF of the latter.

Overall Patterns of Genetic Diversity
As the SNPs on the 50K chip were largely ascertained from
the European domesticated gene pool (cultivars and landraces),
we expected that its use across a wider spectrum of material
may reveal biases associated with the origin of the data used
in its design. We were therefore keen to investigate the degree
of concordance between data generated by the ‘closed’ 50K
platform with that from the semi-open GBS approach. To
assess how each platform performs in diversity analyses we ran
PCAs using the 39,733 (50K) and 37,327 (GBS) SNP marker
datasets (Figure 4). We initially compared three different analysis
softwares, SNPRelate (Zheng et al., 2012), Eigensoft6 (Price
et al., 2006), and PLINK1.9 (Chang et al., 2015) in each case
partitioning the diversity into 10, 20, 32, and 50 PC’s. All gave
virtually identical results with the percentage variation explained
by the first PC’s decreasing as the number of PC’s increased.
As the spatial distribution of the individuals over the first 3
PC’s was otherwise maintained in each treatment of the data,
we report here only the results from using PLINK1.9 and
the first 20 PC’s. In this analysis the first two PC’s explained
together 44.3% of the variance for the 50K array and 33.71%
of the variance for GBS (Figure 4). Both datasets show that
PC1 broadly separates eastern and western barleys, defining two
distinct genetic pools. PC2 was more, but not exclusively related
to the differentiation between 2-row and 6-row inflorescence
architectures and explained a lower level of variation in the
GBS data (9.58%) compared to the 50K (19.59%). PC2 is
also correlated with different growth habits in the western
barley material with the vast majority of the six row-types

having a winter growth habit. Overall, the results of PCA on
GBS and 50K data were concordant, and the correlation of
genetic distance matrices was high (r = 0.62, p = 0.0001; 99
permutations, Mantel test).

Genome-Wide Association Scans
One obvious application of high throughput genetic
characterization of germplasm collections is to explore the
possibility of using the data for trait related gene identification
using population genetic approaches. Here, we chose GWAS
initially to investigate two of the traits analyzed by Milner et al.
(2019) (row-type, naked hull) along with binary scores for
seasonal growth habit. In all cases we used legacy phenotypic
data and compared the output from 50K and GBS datasets
(Figure 5 and Supplementary Figure S2). Given the virtual
exclusivity of the different marker types we wanted to establish if
the same regions of the genome were identified using different
markers and whether one marker type consistently provided
higher resolution or greater support than the other. We chose
these traits because at least some of the causal genes are
well-established.

First, for row-type we detected three significant associations
in both datasets (Figure 5A). Those on chromosome 2H were
close (∼650 kbp away in each case) to the major row-type gene
SIX ROWED SPIKE1 (HvVRS1, Komatsuda et al., 2007) which
is both necessary and sufficient to induce the two to six row
inflorescence conversion in cultivated barley. Those on 4H were
close to the modifier of lateral spikelet fertility gene HvVRS5 (syn.
INTERMEDIUM-C, Ramsay et al., 2011) which is epistatic to
HvVRS1. In this case GBS outperformed the 50K chip in terms
of resolution (closest marker 1.3 vs. 223 kbp from the target gene
respectively). As in Milner et al. (2019) we also detected a highly
significant association on chromosome 1H. This is distinct from
the HvVRS3 gene (Bull et al., 2017; van Esse et al., 2017) which
also maps on chromosome 1H. It falls in a region with several
strong inflorescence development candidate genes (Schnurbush
et al., personal communication).

Second, in both wild barley and the majority of domesticated
types, the awn-bearing lemma is firmly bound to the grain
through a lipid-based cementing layer between the caryopsis and
lemma (Taketa et al., 2008). Driven largely for use as food either
during or soon after domestication, over time individuals were
selected where the tough and fibrous hull separated easily from
the harvested grain. These so-called naked barleys carry a loss-
of-function allele in the NUDUM (HvNUD) gene, an ethylene
response factor required to promote formation of the cementing
layer. Using lemma adherence to the grain as a binary character
we again performed a GWAS with each marker type. The most
highly associated marker on the 50K SNP-array was some 44 kbp
distal to NUD on chromosome 7H, compared to 1,831 kbp in
the GBS marker set. However, the GBS marker set had more
supporting markers and identified a second locus at the bottom of
chromosome 6H. This locus was also above the threshold p-value
in the 50K dataset, but below the adjusted FDR. This region along
with two others on the top and bottom of 2H in both datasets and
top of 5H in the 50K dataset may be worthy of further exploration
as modifiers of the naked phenotype.
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FIGURE 2 | Minor allele frequencies according to physical location of markers along barley chromosomes. (A–G) 50K SNP-array data for chromosomes 1H–7H top
to bottom respectively (left panel) and (H–N) GBS data chromosomes 1H–7H top to bottom respectively (right panel). SNPs are color coded according to MAF.
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FIGURE 3 | Sliding window analysis of genetic diversity (π ) (A–G) seven barley chromosomes 1H–7H respectively. Red, 50K data; Blue, GBS data.
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FIGURE 4 | Principal coordinates analysis. (A,C,E) Shows diversity revealed by the 50K SNP-array and (B,D,F) by GBS. (A,B) Shows genotypes color coded
according to geographical origin, (C,D) according to growth habit and (E,F) according to row-type.
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FIGURE 5 | Genome-wide association scans (GWASs) of phenological traits
segregating in the 1000 core population. (A,C,E) Use the 50K array data.

(Continued)

FIGURE 5 | Continued
(B,D,F) Use GBS data. (A,B) Data for row-type, (C,D) non-adhering hull, and
(E,F) seasonal growth habit. Horizontal red line = –log10(5e-8), Horizontal
Blue line = –log10(1e-5). The location of known genes associated with each
trait is indicated. Y-axis; −log10(p) values.

Third, we took the same approach to explore growth habit
(flowering dependent upon a period of vernalization) using
both marker types and a categorical classification of winter
versus spring growth type. We observed a single well-supported
(i.e., multiple significant SNPS) association on chromosome 5H
[−log10(p)∼8.0] in the 50K dataset some 29 kbp from the
vernalization gene HvVRN1 (von Zitzewitz et al., 2005). In
the GBS dataset, we found 29 more significant but less well-
supported single SNPs broadly distributed across the genome
with −log10(p) values of > 8 to < 20. Surprisingly none
convincingly co-located with the HvVRN1 50K peak, with the
closest of 8 markers distributed across 5H chromosome with
−log10(p) > 8 some 50 Mbp from the VRNH1 locus. Based on
this small dataset we conclude that both platforms, in general
terms, perform equally well with any differences being trait-
specific (Table 2). Combining both datasets for GWAS may be
expected to enhance the likelihood of detecting trait-specific
significant and real associations.

Discriminant Analysis of Principal
Components (DAPCs)
To explore genetic drivers of the observed population structure
we used DAPC (Jombart et al., 2010), a multivariate approach
that identifies clusters of genetically related individuals based on
genetic data and the contribution that individual factors (SNP
alleles) make to the observed population subdivision. For each
marker type the first two PC’s clearly distinguish three major
groupings (GP1-GP3) (Supplementary Figure S3). Comparing
the cluster assignment of individuals from DAPC highlighted
30 individuals that appeared to be discordant between the
datasets and these were removed for further analysis. Of
the concordant individuals, 459 fell into group1 (GP1), 246
into GP2 and 265 into GP3 (Supplementary Figure S3 and
Supplementary Table S1). GP1 was comprised of mainly (92%)
6-row genotypes exhibiting both spring and winter growth habit
and were classified as a combination of landraces and cultivars
from across the geographical range (Supplementary Figure S4).
GP2 was principally (78,5%) 2-row spring type landraces and
cultivars from across the geographical range (Supplementary
Figure S5) and GP3 (75,5%) six row spring types mainly from
Asia (Supplementary Figure S6).

In addition to DAPC loading plots (Jombart et al., 2010,
data not shown) we calculated Fst statistics independently
for each marker between groups (GP1/GP2, GP1/GP3, and
GP2/GP3) and displayed the resulting data as Manhattan plots in
order to illustrate the drivers of differentiation (Supplementary
Figure S7). Overall patterns generally appear similar from
both datasets, with more support (markers) for differentiated
regions in the 50K dataset most likely a result of the number
of markers included in the analysis. Between GP1 and GP2
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TABLE 2 | Genetic resolution of GWAS for row-type, growth habit, and hull adherence.

Traits Associate SNP Chr Position Technology Gene Minimum distance in bp

Row- type JHI-Hv50k-2016-107445 2H 651,372,755 50K VRS1 657,881

2:651372029 2H 651,372,029 GBS 658,607

JHI-Hv50k-2016-231001 4H 17,377,068 50K INT-C 223,056

4:17598761 4H 17,598,761 GBS 1,363

Growth habit JHI-Hv50k-2016-335893 5H 598,787,735 50K VrnH1 339,089

5:648520473 5H 648,520,473 GBS 49,391,201

Grain Hull JHI-Hv50k-2016-491472 7H 546,632,335 50K NUD 44,963

7:548419008 7H 548,419,008 GBS 1,831,636

that contrast mainly for row-type we observed strong signals
of differentiation around the row-type genes HvVRS1 (2H)
and HvVRS5 (4H) and a complex region on chromosome 1H
flanked by the same locus observed in the GWAS analysis for
row-type (Figures 5A,B). A signal was also observed near the
photo-period response gene HvPPDH2 (Turner et al., 2005). For
GP1 and GP3 that contrast mainly by geographical origin, the
Fst revealed a complex set of highly significant signals largely
unrelated to known major genes, with the possible exception of
HvVRNH1 on chromosome 5H and HvCEN on 2H that may stem
from the mixed growth habits of the individuals in GP1. GP2
and GP3 differ largely according to row-type and geographical
origin and once again revealed complex signals, including those
close to HvVRS1, HvVRS5, HvVRNH1, and HvCEN that may
be expected to differentiate these groups. In all comparisons
there was very strong support for differentiation between groups
at a tractable number of highly specific genomic regions that,
based on our regional gene content analysis, do not contain
well-known or characterized candidate genes which are ripe for
further investigation.

Relative Costs
A widely held opinion in the plant research community is that
GBS is considerably cheaper than SNP-arrays. We were therefore
interested to compare the relative costs of each technology
when applied to exactly the same set of genetic materials. In
our analyses (conducted in the United Kingdom) the cost of
genotyping a single accession with the barley 50K SNP chip
through a commercial vendor is £40 per sample (January 2019).
On the basis of the experiment reported here this returned
approximately 37,000 high quality markers, the vast majority
with a MAF > 5% and therefore suitable for most common
types of genetic analyses. PstI/MspI GBS can also be provided as
a commercial service at a current cost of £60.50 per genotype
(January 2019) based on a 1,000-sample size. We presume
that these cover all necessary operational costs including staff,
supplies, the original purchase and annual maintenance of
necessary instrumentation, and in the case of GBS a license for
commercial use3, but excludes other than basic data analysis. At
this moment in time we consider this a realistic comparison.
As the number of informative bi-allelic SNPs with MAF > 5%
observed in the current GBS study is approximately half of that
revealed by the 50K platform (following Milner et al., 2019),
we conclude that for applications requiring this MAF, the cost

for each informative bi-allelic SNP is significantly lower for
barley using the 50K SNP chip (ca. 1/3 of the cost). Note
however that this cost comparison excludes the considerable
investment required for the development and fabrication of a
high-quality SNP-array and that all quoted costs are subject to
fluctuations over time.

DISCUSSION

The application of DNA based genotypic analyses to efficiently
study genetic diversity in populations of plants underpins
contemporary genetic analyses from germplasm evaluation,
high-resolution genetic mapping and genomic prediction. If
a simple pre-requisite is for the genetic data generated to
be robust, reproducible and long lived then it is important
that we understand the comparative values and features of
different genotyping approaches. Here, we set out to compare
two popular methods for genotypic analysis of plants, PstI/MspI
GBS and Illumina InfiniumTM SNP-array technology, seeking to
understand how they performed on a common set of 1000 diverse
barley genotypes. When we started this piece of work we were
unaware of any similar comparison having been conducted at
a comparable scale and reported in the scientific literature. The
1000 barley genotypes that we examined originated from the
German Federal ex situ GenBank hosted at IPK Gatersleben and
represented the breadth of diversity from across the range of the
species. GenBanks are vitally important international germplasm
resources and given the considerable long-term investment they
represent, it is important that we understand whether their
characterization using one molecular approach (in this case
GBS) provides an accurate overall reflection of genetic diversity.
A detailed description of the 1000 genotypes and how they were
identified and chosen as a core set is given in Milner et al.
(2019) and a description of the design of the 50K SNP-array is
provided in Bayer et al. (2017).

Starting with collections of 39,733 and 37,327 high quality
SNPs distributed across the barley genome for 50K SNP-array
and GBS datasets respectively, a number of features immediately
became apparent. Firstly, the overlap between the datasets was
restricted to 464 common markers highlighting the different
type of sequences accessed by each approach. While the 50K
SNPs were derived from exome capture data and therefore
focused on coding sequence variation, the GBS data represents a
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wider survey of diversity in low copy genomic regions that are
associated with low levels of DNA methylation. Although the
latter regions may include many genes, our data indicates that
the same SNPs are rarely sampled. Much gene level variation
therefore appears to be excluded from the comparison. Secondly,
applying MAF cutoff thresholds of<1 or<5%, the percentage of
markers falling below these thresholds was 1.2 and 7.6% for the
50K chip but reached 41.6 and 58.9% for GBS, a clear reflection
of the high number of low frequency alleles detected by the
latter approach. Thirdly, the overall physical distribution of the
markers revealed a much higher frequency of 50K SNPs in the
gene-rich telomeric ends of each of the chromosomes reflecting
the biased design strategy for the 50K chip (Bayer et al., 2017).
The GBS SNPs showed a similar bias toward the telomeric ends,
but it was less extreme. Furthermore, the GBS markers revealed
considerably less genetic diversity (π) than the 50K SNPs, most
likely a direct consequence of the low MAF. In contrast, rare
SNPs were underrepresented in the 50K data which may be an
issue for certain applications, for example GWAS of relatively
rare phenotypes. Fourthly, the overall correlation between the
diversity matrices was reasonably high (r = 0.62, p = 0.01, 99
permutations, Mantel test) suggesting that the overall sampling of
diversity is well-represented by both approaches. This conclusion
was supported by our GWAS results that indicated that, in the
majority of cases, both approaches are likely to detect markers
closely associated to genes controlling major phenotypic traits.
Despite the apparent differences, the general message is that
both perform comparably well in the types of analyses that
we conducted here.

Comparisons between molecular approaches for revealing
polymorphism have been extensively performed across a number
of species (e.g., Lubberstedt et al., 2000; Uptmoor et al., 2003)
including barley (Russell et al., 1997), but have mainly focused
on early generation molecular assays (e.g., AFLP and SSRs). Only
recently Elbasyoni et al. (2018), compared SNP-arrays with GBS
for estimating genomic kinship and population structure, and
assessing genomic prediction accuracy in 282 hexaploid winter
wheat genotypes. Interestingly, a similar number of SNPs to those
used here were analyzed (20,089 GBS SNPs and 39,674 array SNPs
with MAF > 0.05). In their study, a Mantel test comparison of
genetic diversity matrices revealed a strong positive correlation
(r = 0.77; p-value < 0.0001; 1000 permutations) between the
two datasets and PCAs revealed a similar topography across
the main PC’s. Comparing the performance of SNP-arrays and
GBS for genomic selection revealed that GBS data with up to
50% missing values improved genomic prediction accuracies
and estimated breeding values for four traits when compared
to both SNP-arrays and, somewhat curiously, GBS SNPs with
only 10% missing values. These observations led the authors
to conclude that GBS (with more missing data) is comparable
to or better than SNP-array data for both genetic diversity and
genomic prediction applications. The authors also commented
that while SNP-arrays are reliable, robust marker platforms with
low missing values, they have relatively high costs. However,
a realistic cost comparison between the two approaches was
not provided to support this assertion. There could be several
reasons for the discrepancies between these two studies, including

the ascertainment of SNPs on each array (e.g., the barley array
used a larger and wider ascertainment dataset than the wheat
array) (Moragues et al., 2010), the polyploid nature of the wheat
genome, and the distribution of SNPs across the recombination
landscape of the respective genomes.

Cost comparisons are surprisingly difficult to conduct at an
organizational level due to a number of factors, including the
resources available, how the work is done, the cost of supplies,
access to appropriate equipment (and what it cost to purchase
and to maintain it annually), whether – for GBS – a license
from Keygene has been purchased4, how staff time costs have
been calculated and so on. We used quotations for genotyping
1000 samples from two commercial service providers, making
the assumption that they had conducted detailed costings to
cover all associated costs (many of which may be hidden in an
academic setting). The work of the contracting lab is therefore
exactly the same – plant growth, DNA isolation, sending samples
to the service provider and receiving the data. For barley we
found that the per genotype cost was roughly equivalent for
each technology, but the cost per informative SNP (i.e., co-
dominant, MAF > 5%, < 10% missing data) from the 50K array
was significantly less than that obtained by GBS. However, we
acknowledge that this cost comparison may not hold for all
species, particularly for those with more complex genomes (e.g.,
wheat) or less well-developed SNP-array technology.

Missing data in low coverage GBS leads to both missing
calls and under-called heterozygotes. These are the product of
a number of factors, the major technical ones being depth of
sequence coverage (related to genome size) and the level of
multiplexing required to provide the cost efficiencies generally
assumed for the GBS protocol. Missing data may reflect
unsampled sequences or genuine biological diversity in the
form of null alleles [presence/absence variants (PAVs)] and
may therefore have hidden genetic value. These alternatives are
difficult to distinguish. To capture value from missing data,
fast and accurate allele imputation programs such as FILLIN
and FSFHap (Swarts et al., 2014) have been both developed
and proven highly successful in accurately predicting allele calls
in sparse GBS, large sample-size datasets. Unsurprisingly, they
ideally require high coverage (low missing data) information
from representative haplotype panels or very large datasets
(numbers of individuals) to ensure haplotype generation and
imputation is accurate, particularly as it’s impossible to impute
minor alleles correctly if they are not replicated anywhere else in
the overall population. While this may be straightforward for very
large sample sets in a single study, our impression is that making
subsequent comparisons to much smaller datasets conducted in
a different lab with different germplasm and different filtering
criteria/software may not be completely straightforward. An
advantage of the 50K chip lies in its robustness and the simple
comparability of data generated in independent studies.

Missing data and bad calls are also observed on even the
best SNP chips and can similarly be the result of technical
or biological factors such as the presence of close sequence-
related paralogs, sequence polymorphisms in the assay footprint

4https://www.keygene.com/work-with-keygene/licensing/
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outside of the queried SNP causing the assay to fail, borderline
quality DNA or the presence of genuine PAVs. Runs of physically
adjacent missing datapoints in an otherwise technically sound
SNP chip assay or population-based quality filtering for SNaPs
(Gabur et al., 2018) can provide strong support for genuine PAV
interpretation which can then be included in genetic analyses. We
identified 623 markers in the 50K dataset that recorded missing
data in more than 10% of the individuals (data not shown)
while all other markers exhibited robust calls throughout each
individual genome. While these are good PAV candidates, further
work is required to distinguish which of the above explanations is
true. It would also be interesting to test whether their inclusion as
rare variants in GWAS (i.e., as a second or third allele) improved
the power to detect genetic components of complex traits in
barley, as recently shown in oilseed rape (Gabur et al., 2018).

We used two approaches to explore the use of each marker
dataset for identifying the location of genes underlying specific
traits, GWAS and DAPC. Similar results were obtained for
GWAS with both marker types, perhaps with the exception
of growth habit using GBS data which generated several
poorly supported but highly significant associations. We also
explored DAPC because we had previously and successfully
used this approach to investigate the discrimination between the
genetically narrow spring and winter 2-row elite NW European
genepools (Comadran et al., 2012). The results revealed signals
associated with genes that would be expected to differentiate
the genepools (Supplementary Figure S7). Perhaps more
significantly, the analysis also highlighted a tractable number of
highly significant signals for which no current causal gene has
been identified. While these are ripe for further investigation, this
is outside the scope of the current report.

The use of SNP-arrays and GBS has already started to
give way to (low coverage) whole genome shotgun sequencing
in small genome models and crops (Wang et al., 2018). We
attribute this largely to the availability of high-quality reference
(pan)genome sequences and the generation of an appropriate
depth of highly accurate sequence coverage that is easily
attainable at today’s sequencing costs. However, for many of
our major crops, especially those with large genomes, and
for many applications, we predict that genotyping methods
that efficiently and relatively cheaply sample relevant diversity,
like GBS and SNP chips, will remain methods of choice for
routine genetic analyses. For the intermediate sized 5 Gbp barley
genome, we suggest that sequencing costs would need to drop
by around an order of magnitude before whole genome shotgun
sequencing at an appropriate depth could be routinely used
as a genotyping platform that is capable of robustly revealing
homo- and hetero-zygous loci. While this is clearly on the
horizon, such a transition will require a fundamental shift in
the skills and infrastructure available throughout the community
(both fundamental and applied) to efficiently deconvolute and
interpret whole genome sequence data. In a well-resourced
research context, we argue the shift to whole genome survey
sequencing is almost certainly attainable now, especially for
populations that are used repeatedly to address a wide range
of different scientific questions (e.g., GWAS, MAGIC, or NAM
populations used by the academic community). If correct, the

types of questions we raised as motivation for the current study,
may soon become redundant.

CONCLUSION

Both GBS and SNP-arrays efficiently sample the diversity present
in the domesticated barley genepool but access different regions
of the genome and reveal different characteristics. Choice of
technology should be carefully considered according to desired
applications and objectives, along with group preferences,
available skills and infrastructure. Current commercial cost
comparisons question the widely held view that GBS is
considerably cheaper than SNP-arrays, in barley at least.
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