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Tar spot complex (TSC), caused by at least two fungal pathogens, Phyllachora maydis

and Monographella maydis, is one of the major foliar diseases of maize in Central and

South America. P. maydis was also detected in the United States of America in 2015 and

since then the pathogen has spread in themaize growing regions of the country. Although

remote sensing (RS) techniques are increasingly being used for plant phenotyping, they

have not been applied to phenotyping TSC resistance in maize. In this study, several

multispectral vegetation indices (VIs) and thermal imaging of maize plots under disease

pressure and disease-free conditions were tested using an unmanned aerial vehicle

(UAV) over two crop seasons. A strong relationship between grain yield, a vegetative

index (MCARI2), and canopy temperature was observed under disease pressure. A

strong relationship was also observed between the area under the disease progress

curve of TSC and three vegetative indices (RDVI, MCARI1, and MCARI2). In addition, we

demonstrated that TSC could cause up to 58% yield loss in the most susceptible maize

hybrids. Our results suggest that the RS techniques tested in this study could be used for

high throughput phenotyping of TSC resistance and potentially for other foliar diseases of

maize. This may help reduce the cost and time required for the development of improved

maize germplasm. Challenges and opportunities in the use of RS technologies for disease

resistance phenotyping are discussed.

Keywords: corn, disease control, plant pathogen, new diseases, UAV

INTRODUCTION

Tar spot complex (TSC) is a major foliar disease of maize in many regions of Latin America.
The disease is caused by the interaction of two fungal pathogens, Phyllachora maydis Maubl. and
Monographella maydis Müller & Samuels. A third fungus, Coniothyrium phyllachorae Maubl. is
also often associated with TSC (Hock et al., 1989). The initial symptoms of the disease appear as
dark oval or irregularly shaped stromata of P. maydis erupting through the epidermis of the lower
and central leaves (Figure 1A). Approximately 2 weeks later, the area surrounding the stromata
becomes chlorotic, forming a halo-like effect that is often referred to as the typical “fish-eye”
symptom of TSC, which is caused by M. maydis (Figure 1B). Approximately within 1 month, the
disease symptoms progress from lower to upper leaves. While P. maydis is an obligate parasite,
M. maydis is thought to be an endophyte or facultative parasite, causing extensive chlorosis in
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the presence of P. maydis (Dittrich et al., 1991; Hock et al., 1992).
It is not known whetherM. maydis and P. maydis can be present
as pathogens in a plant independently, or if infection in maize
is triggered only by their simultaneous co-occurrence. Although
C. phyllachorae is often isolated from the leaves infected by
P. maydis and M. maydis, its role in TSC is still not clear, and
it is believed to be a hyperparasite or mycoparasite, with no
obvious host symptom expression (Ceballos and Deutsch, 1992;
Hock et al., 1992). In the case of severe TSC epidemics, the
chlorotic halos coalesce and the entire plant can become necrotic
approximately within a week. Hock et al. (1989) proposed the
potential involvement of phytotoxin production in TSC, as a
cause of the rapid foliage “burning” effect. It was suggested that
optimal temperature for the development of the disease is 16–
18◦C (± 5–7◦C) with a monthly average rainfall of 150mm and
10–20 foggy days per month (Hock et al., 1989).

The disease complex has been reported in several Latin
American countries and was considered to be confined to the
tropical areas of the region (Hock et al., 1989). Most of the
information regarding yield losses caused by TSC is anecdotal.
Hock (1988) mentioned losses of 30% of maize yields but did
not specify the details of the study. In another study, Hock et al.
(1995) reported yield losses ranging from 11 to 25% in Poza Rica,
Veracruz, Mexico, although the details of this study were not
revealed either. Bajet et al. (1994) reported losses of 46% in their
fungicide efficacy study in the same location. To our knowledge,
the latter study is the only detailed yield loss report for TSC, and
it has not been updated.

Despite TSCs historical occurrence in only certain tropical
areas of Latin America, P. maydis (alone, i.e., not in association
withM.maydis) was detected for the first time in several locations
in the Midwestern United States in 2015 (Bissonnette, 2015; Ruhl
et al., 2016; Wise et al., 2016). In addition to reconfirmation
at the same locations in 2016, the pathogen was also reported
in Florida (Bradley, 2016; Hansen et al., 2016; Miller, 2016)
and Minnesota in 2017 and 2018 (Dr. Martin Chilvers, personal
communication). There have been no reports of yield losses
caused by P. maydis alone so far; however, Mottaleb et al. (2018)
have hypothesized that if TSC did form in the USA by the
association of M. maydis with P. maydis, a loss of only 1% of
the country-wide grain production would equate to 1.5 million
metric tons worth US $231.6 million.

Thus far, phenotyping TSC resistance in maize is performed
only in the field due to the absence of a reliable greenhouse
inoculation technique. At the International Maize and Wheat
Improvement Center (CIMMYT), disease evaluation is
conducted on a 1–5 scale, in which one is very resistant
(no disease symptoms) and five is very susceptible, with all
foliage chlorotic and necrotic. Disease scoring is performed
by visual observation every 10–14 days starting from anthesis,
usually three to four times in total, depending on the disease
severity and the rate of its development. Multiple previous
studies, however, have reported possible inaccuracies in the
visual disease ratings due to the biases of evaluators (Nutter,
1993; Newton and Hackett, 1994; Parker et al., 1995; Steddom
et al., 2005; Bock et al., 2008, 2010). Inconsistencies in disease
scoring may occur within the same trial both between different

disease evaluators and between different scores given by the same
evaluator in a given trial. Furthermore, the visual evaluations
may be time-consuming and expensive, requiring highly trained
and experienced technical personnel.

Remote sensing (RS) imagery has played an important
role in plant phenotyping in different environments and for
various crops. The objective of the technology is to minimize
labor expenses, reduce the time needed for phenotyping,
and to improve the accuracy of the phenotypic data. The
leaf surface absorbs, transmits, or reflects light radiance
differentially, depending on its internal structure, chemical
composition, and plant development stage. Spectral radiometers
detect electromagnetic wavelengths beyond those visible to the
human eye, such as reflectance in the infrared spectrum. This
information can be merged to identify specific plant features that
may not be observable in the visible spectrum.Measuring spectral
reflectance, therefore, can be used to understand the plant health
status or to quantify the extent of the disease in afflicted parts
of the plant (Simko et al., 2017). Confounding effects caused by
abiotic stresses, however, must also be taken into consideration.
Factors such as water and nutrient stress may also decrease
the photosynthetic activity of the plant, in turn influencing leaf
reflectance at the canopy level.

Laboratory-based spectroscopy has been used to detect
different diseases in a number of crops (Bauriegel et al.,
2011a,b; Mahlein et al., 2012, 2017; Bergsträsser et al., 2015;
Kuska et al., 2015). Furthermore, low altitude field-based
spectroscopy including multispectral and hyperspectral remote
imagery, has been used for disease resistance phenotyping
in different crops. These include powdery mildew and leaf
rust in wheat; Huanglongbing disease in orange trees; root
rot in cotton; Flavescence dorée and grapevine trunk disease
in vineyard; late blight in potato; and Xylella fastidiosa in
olive (Franke and Menz, 2007; Yang et al., 2010; Garcia-Ruiz
et al., 2013; Khaled et al., 2017; Zarco-Tejada et al., 2018;
Albetis et al., 2019; Franceschini et al., 2019). The majority
of these studies utilized visible (VIs, mostly green and red
spectrum region) and near-infrared (NIR) spectrums using
hyperspectral and/or multispectral sensors. Furthermore, most
of these studies used classification machine-learning algorithms
for distinguishing diseased plants from non-diseased. In general,
the accuracies varied from 50 to 90%, depending on the disease
development stage. In some studies, red-edge spectral region,
which is generally associated with canopy and leaf structural
traits (e.g., leaf area index, LAI) proved to be a reliable indicator
to distinguish different levels of disease severities (Garcia-Ruiz
et al., 2013; Franceschini et al., 2019). Despite their successful
application to various plant disease phenotyping, these RS
technologies have never been used for phenotyping maize foliar
diseases, including TSC.

The first objective of this study was to explore the potential
of multispectral and thermal imaging using an unmanned aerial
vehicle to phenotype TSC resistance in maize, and to compare
the effectiveness of this method with that of conventional
visual disease evaluation. The second objective was to assess
potential grain yield losses to TSC in a humid lowland tropical
environment in Mexico.
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FIGURE 1 | Symptoms of tar spot complex (TSC) on maize plants: (A) stromata of Phyllachora maydis appears on leaves initially; (B) chlorotic and necrotic spots

caused by Monographella maydis surround the stromata of P. maydis ∼2 weeks later causing the so called “fish-eye” symptom.

MATERIALS AND METHODS

Plant Material
Twenty-five tropical and subtropical maize hybrids were
selected for the experiment (Table 1). All hybrids had been
previously evaluated for agronomic performance and resistance
to TSC in multiple locations in Mexico (data not shown).
The hybrids included two resistant (CLTHW13007 and
CLTHW13008) and two susceptible (DTMA-112/DTMA-
229 and DTMA-217/DTMA-207) controls, and their
status was based on their reactions to the disease during
previous evaluations of TSC resistance at CIMMYT (data
not shown).

Inoculation and Disease Scoring
The experiment was conducted during the winter–spring
growing cycles of 2016 and 2017 at CIMMYT’s Agua Fria
Experimental Station in the north of the state of Puebla, Mexico
(20.45◦N, 97.64◦W) at 110m above sea level (Figure 2). The
typical annual precipitation at the station is ∼1,200mm and
the air temperature ranges from 5 to 42◦C during the winter
growing cycle (November–April), with average relative humidity
of 85%. The soils are clay loam with a pH of 7.5–8.5. Low
temperatures, high relative humidity, and extended leaf wetness
during this period also favor the development of Northern Leaf
Blight (NLB) of maize, caused by Setosphaeria turcica (Luttrell)
Leonard and Suggs [anamorph Exserohilum turcicum (Passerini)
Leonard and Suggs]. To avoid coinfection with NLB and to favor
the development of TSC, planting was delayed by 2 months,
and crops were planted in late January. This promoted optimal
development conditions for TSC while reducing the risk of
NLB infection.

The inoculation was conducted as follows: a mix of several
TSC-susceptible but NLB-resistant maize genotypes was planted

30–45 days prior to the experiment on a small plot (∼10–
20 m2) in the same location as the experiment. These plants
were infected naturally by TSC during the late stages of plant
development and provided the initial inoculum for the trial.
Leaves (∼100–150, in total) from these susceptible plants with
fully expressed TSC symptoms were collected, submerged in
water for several seconds to wet the leaf surface, and placed
into a 200-l plastic barrel, closed with a lid, and left to incubate
under shade for∼24 h. Then, the barrel was filled with water, the
leaves were agitated lightly, and the resulting spore suspension
was filtered through a coarse sieve to remove large leaf debris.
Tween-20 (Sigma Aldrich, St. Louis, MO, USA) was added to
the water/spore suspension (1ml per 15 l of inoculum) as a
surfactant. The spore suspension was sprayed over the maize
foliage with a handheld sprayer after 6–7 pm to make use of
the period of dew-induced leaf wetness during the night. The
inoculation was carried out twice, with the first performed before
the tasseling stage and the second 7 days later.

Disease assessments were conducted three to four times per
growing season with 10-day intervals between each assessment,
starting at anthesis. The disease scoring was conducted
throughout plots using a 1–5 disease rating scale, in which: 1
= highly resistant or close to immune reaction with nearly 0%
of leaves infected and with no visible stromata of P. maydis; 2
= a resistant to moderately resistant reaction with 1–25% of the
leaf area affected by a few scattered stromata of P. maydis; 3 = a
moderately resistant to moderately susceptible reaction with 26–
50% of the leaf area affected with moderate densities of chlorotic
lesions with well-developed “fisheye” symptoms induced by M.

maydis; 4 = a susceptible reaction with 51–75% of the leaves
affected with large coalesced chlorotic and necrotic spots; 5
= a highly susceptible reaction with 76–100% of the leaves
affected with extensive necrosis and often premature senescence
of the plants.
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TABLE 1 | Grain yield loss caused by tar spot complex of maize calculated as the percentage difference of grain yield (t/ha) between fungicide and non-fungicide

treatments over 2016 and 2017 growing cycles at the International Maize and Wheat Improvement Center (CIMMYT), Mexico.

Genotype

entry #

Available pedigree or

commercial name

Origin

(company/organization)

Non-fungicide treatment Fungicide treatment % grain yield loss

AUDPCa Grain Yield (t/ha) AUDPC Grain Yield (t/ha)

1 CLTHW14001 CIMMYT 29.94 4.70 29.49 5.81 19*

2 CLTHW14007 CIMMYT 29.72 5.13 29.17 6.36 19*

3 CLTHW13001 CIMMYT 28.85 4.90 29.4 5.30 8

4 CLTHW15008 CIMMYT 49.37 4.35 29.51 4.99 13*

5 H-565/CML576 INIFAP 49.71 4.35 29.33 5.46 20*

6 P-4082W PIONEER 92.41 3.28 29.48 4.89 33*

7 DK-357 DEKALB 105.58 1.91 32.46 4.19 54*

8 XT-3402 ASPROS 46.23 4.25 29.17 5.26 19*

9 ZAPATA-7 CAUDILLO 73.01 2.89 29.65 4.48 35*

10 REGATA REGA 48.31 3.56 29.67 4.94 28*

11 Imparable BERENTSEN 75.57 2.3 29.43 3.01 23*

12 PS-464 POWER 86.66 2.08 30.47 4.98 58*

13 CLTHW13003 CIMMYT 56.96 4.04 29.82 5.16 23*

14 CLTHW11001 CIMMYT 63.41 4.01 29.75 5.62 27*

15 CLTHW13006 CIMMYT 60.06 3.04 29.28 4.03 25*

16 CSTHW13003 CIMMYT 102.21 2.38 31.75 5.14 54*

17 CSTHW13004 CIMMYT 96.86 3.08 32.63 4.95 38*

18 CSTHW13005 CIMMYT 105.26 2.42 35.54 4.64 48*

19 CSTHW14007 CIMMYT 114.15 1.53 35.53 3.58 57*

20 CSTHW14008 CIMMYT 103.37 2.01 30.02 4.21 52*

21 CSTHW14009 CIMMYT 112.99 1.89 31.42 4.24 55*

22 Resistant Check 1b CIMMYT 48.69 4.47 29.74 4.54 1

23 Resistant Check 2 CIMMYT 54.41 4.09 29.4 5.29 23*

24 Susceptible Check 1 CIMMYT 120.19 2.21 30.79 3.56 38*

25 Susceptible Check 2 CIMMYT 117.04 2.35 35.17 4.20 44*

The asterisk (*) indicates that a significant difference between the two treatments (i.e., fungicide vs. non-fungicide) for the genotypes was detected at p ≤ 0.05.
aArea under disease progress curve.
bResistant Check 1, CLTHW13007; Resistant Check 2, CLTHW13008; Susceptible Check 1, DTMA-112/DTMA-229; Susceptible Check 2, DTMA-217/DTMA-207.

Experimental Design
The crops were planted in two side-by-side blocks in a square
lattice design, each with three randomized replicates, at the
end of January 2016 and January 2017. One block was TSC-
free (disease controlled by fungicide applications, herein referred
to as “fungicide treatment”; Figure 2A1) and the other was
TSC-infected (without fungicide control, herein referred to as
“non-fungicide treatment,” Figure 2A2). The experimental plots
consisted of four 5m long rows spaced 60 cm apart, with ∼20–
25 cm within-row spacing between plants. Plots were fertilized
with N-P-K at 150-80-30 according to the recommended doses
based on the soil analysis. Irrigation was applied as required.
To prevent fungicide drift between blocks, four rows of closely
planted maize plants (filler rows), and a 1.5m wide, empty
strip of land were used to separate the two blocks. In the
fungicide treatment block, the disease was controlled using the
fungicide Priori XtraTM (Azoxystrobin 18.2 + Cyproconazole
7.27, Syngenta Crop Protection, Greensboro, NC) at a rate of 1
l/ha. The fungicide was applied with handheld sprayers at 7- to
10-day intervals at least six times during each growing cycle. Only

two internal rows were harvested, and grain yield was measured
in tons per hectare with the grain moisture adjusted to 12.5%.

Remote Sensing and Data Processing
The flights were carried out using a fixed-wing UAV-based RS
eBee platform (SenseFly Ltd., Cheseaux-Lausanne, Switzerland)
weighing <2 kg including camera and battery. The nominal
radio link range of the platform was 3 km with a maximum
flight time of ∼30–35min, a cruise speed of 11–25 m/s, and
resistance to winds of up to 12 m/s. The UAV was equipped with
a multispectral MultiSpec 4C camera, which provided spectral
images at 550 (40 nm full width at half maximum, FWHM),
660 (40 nm FWHM), 735 (10 nm FWHM), and 790 nm (40 nm
FWHM), and a ThermoMAP (7.5–13.5µm) thermal infrared
camera (Airinov, Paris, France). The two cameras were mounted
separately, and successive flights were conducted with different
cameras. The UAV flew 55m above the ground at midday in
sunny conditions, covering an area of 1.7 ha (i.e., an area
0.2 ha larger than the experimental area, in order to obtain
accurate orthomosaics). The images were acquired with 80%
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FIGURE 2 | Location of the experiment at the International Maize and Wheat Improvement Center (CIMMYT), Agua Fria experimental station in the state of Puebla,

Mexico (A). Color-infrared image (790, 660, 550 nm) of maize hybrids in the experimental trials under fungicide treatment (A1) and non-fungicide treatment (A2) of tar

spot complex of maize. Image data were extracted from two polygons from the two central rows in each plot (B).

lateral and 90% longitudinal overlaps, flying north/south and
east/west. This resulted in a ground resolution of 6 and 12 cm
for the multispectral and thermal cameras, respectively. For the
multispectral camera, radiometric calibrations, and corrections
were performed before each flight using the standard camera
panel provided by the manufacturer. In addition, during each
flight, sun irradiance was measured by the incident light sensor
built into the multispectral camera, allowing for radiometric
adjustment of images taken under different light conditions.
The flights and visual disease assessments were conducted on
the same days, starting at anthesis. Four and three flights were
performed in 2016 and 2017, respectively.

The images were geotagged for orthomosaic processing
using Pix4D Mapper R© software (v3.3.24; Pix4D, Lausanne,
Switzerland). The images were converted into reflectance and
surface temperature for the multispectral and radiometric
thermal infrared data, respectively. In total, eight different
vegetation indices (VIs) were calculated for each orthomosaic.
Structural VIs were: normalized difference vegetation index
(NDVI), renormalized DVI (RDVI), optimized soil-adjusted
vegetation index (OSAVI), modified simple ratio (MSR),
and modified chlorophyll absorption in reflectance indices
(MCARI1 and MCARI2), while pigment specific simple ratio
for chlorophyll A (PSSRa) was used as a chlorophyll-related
index and green (G) was used as a red- green-blue (RGB)
ratio index (Table 2). For each wavelength required to calculate
the VIs, the closest wavelength response of the multispectral

signal was considered, taking into account the FWHM of each
channel. Canopy temperature was estimated using the thermal
infrared signal.

The image data were extracted from only the two central
rows (out of four rows) of each plot since only those were
harvested for the grain yield estimation. Two polygons were
outlined (Figure 2B), one for each central row. The area of 0.2×
0.5m surrounding the two central rows was considered a buffer
zone. The pixels were selected and averaged from the inside of
the polygons using ArcGIS R© software (v10.1; ESRI, Redlands,
CA, USA).

Data Analysis
The Analysis of Variance (ANOVA) was performed to determine
if the maize genotypes performed similarly between the
experimental years in terms of grain yield reduction caused by
TSC. The phenotypic data were analyzed with a standard linear
mixed model in which the year, replication, and plots within
replication were considered as random effects. The treatments
(fungicide and non-fungicide) and genotypes were considered as
fixed effects. The disease data obtained through visual scoring
across the two cycles were summarized and analyzed using
the area under the disease progress curve (AUDPC) with
the trapezoidal method i.e., Riemann’s integrals (Vanderplank,
1963). The area under the curve (AUC) for the individual
wavelengths, vegetative indices (VIs) and thermal imagery was
also obtained using Riemann’s integrals. This allows integration
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TABLE 2 | Relationship between grain yield of maize hybrids and area under the disease progress curve (AUDPC) of tar spot complex with areas under different

wavelengths, vegetative indices and thermal imagery under fungicide and non-fungicide treatments.

Indices Equation Relationship (R2) with yield Relationship (R2) with AUDPC

Wavelengths Fungicide

treatment

Non-fungicide

treatment

Fungicide

treatment

Non-fungicide

treatment

W550 (550 nm) 0.00 0.40* 0.20** 0.50*

W660 (660 nm) 0.08 0.59* 0.02 0.72*

W735 (735 nm) 0.08 0.72* 0.28* 0.85*

W790 (790 nm) 0.37* 0.79* 0.26* 0.91*

STRUCTURAL INDICES

Normalized difference vegetation index (NDVI)

(Rouse et al., 1973)

(
R800−R670
R800+R670

) 0.28* 0.76* 0.02 0.90*

Renormalized DVI (RDVI) (Roujean and Breon,

1995)

(
R800−R670√
R800+R670

) 0.40* 0.79* 0.13 0.93*

Optimized soil-adjusted vegetation index

(OSAVI) (Rondeaux et al., 1996)

(1+0.16)*(R800−R670 )
(R800+R670+0.16)

0.35* 0.79* 0.08 0.92*

Modified simple ratio (MSR) (Chen, 1996)
R800
R670

− 1/(
R800
R670

)
0.5

+ 1 0.03 0.55* 0.06 0.57*

Modified chlorophyll absorption in reflectance

index (MCARI1) (Haboudane et al., 2004)

1.2*[2.5*
(

R800 − R670
)

− 1.3*
(

R800 − R550
)

] 0.37* 0.79* 0.24* 0.93*

Modified chlorophyll absorption in reflectance

index (MCARI2) (Haboudane et al., 2004)

1.2*[2.5*(R800−R670)−1.3*(R800−R550)]
√

(2*R800+1)2−
(

6*R800−5*
√
R680

)

−0.5

0.36* 0.81* 0.16** 0.93*

CHLOROPHYLL INDEX

Pigment specific simple ratio for chlorophyll A

(PSSRa) (Blackburn, 1998)

(
R800
R680

) 0.16** 0.79* 0.00 0.87*

RGB RATIO

Green (G) (Zarco-Tejada et al., 2005) (
R550
R670

) 0.05 0.76* 0.14 0.88*

THERMAL IMAGERY

Canopy temperature 0.36* 0.81* 0.15 0.89*

VISUAL DISEASE EVALUATION

AUDPC (Vanderplank, 1963) 0.14 0.84* – –

*p < 0.01; **p < 0.05.

of the temporal information from the imagery data and the
disease measurements into single variables (AUDPC and AUC).
Differences in individual maize genotype performance were
evaluated in terms of grain yield losses (t/ha) for each entry under
the two treatments. The data from AUDPC and AUCs were used
for individual association by means of regression analysis with
grain yield and with each other. The analyses were performed
using the statistical software R, version 3.3.3, and its respective
libraries for mixed models and multiple comparison procedures
(Bates et al., 2015; Lenth, 2016; R Core Team, 2017).

RESULTS

Effect of Tar Spot Complex on Grain Yield
The results of ANOVA indicated that the effect of interaction
of experimental years with the maize genotypes was not
significant (p > 0.05, data not shown). Therefore, the effect of
TSC was analyzed across both experimental years. The disease
development was optimal during both cycles with the susceptible
checks reaching the highest AUDPC values among all genotypes
across the 2 years (Table 1). The disease control in the fungicide
treatment was also optimal with only traces of the disease

observable on the lower foliage, resulting in low AUDPC scores.
This explained the strong relationship between the yield and
AUDPC (Table 2) in the non-fungicide treatment (R² = 0.84).
As expected, the relationship between AUDPC and grain yield in
the fungicide treatment was weak (R²= 0.14).

Comparing the performance of individual genotypes between
the two treatments (fungicide vs. non-fungicide) revealed that the
yields of most of the genotypes were affected (lowered) by the
disease under the non-fungicide treatment (Table 1). The only
exceptions were CLTHW13001 and the Resistant Check 1, with
yields which were not significantly different (p > 0.05) between
the two treatments. The highest yield loss of 58% was observed
in PS-464.

Remote Sensing
The analysis of the relationship of grain yield with the AUCs
of the individual wavelengths, VIs, canopy temperature, and
the AUDPC across the 2 years revealed that the majority of
the RS variables were strongly correlated with yield under the
non-fungicide treatment (p ≤ 0.01, Table 2). Under the non-
fungicide treatment, the coefficient of determination (R2) of
the interactions between the grain yield and the individual
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wavelengths (550, 660, 735, and 790 nm) was 0.40–0.79. The R2

of the relationship of the structural VIs (NDVI, RDVI, OSAVI,
MSR, MCARI1, and MCARI2) was 0.55–0.81. Furthermore,
the R2 of the relationship of the chlorophyll index PSSRa and
RGB ratio G with grain yield was 0.79 and 0.76, respectively.
These data imply that, the genotypes with higher AUCs for
these variables, with the exception of W660, also had higher
yields under disease pressure. In contrast, under the non-
fungicide treatment, the R2 of the canopy temperature and
AUDPC were 0.81 and 0.84, respectively. This indicated that
the genotypes with lower canopy temperature AUC values
and lower AUDPC scores had higher yields under disease
pressure. While the relationships for different wavelengths,
VIs, canopy temperatures, and AUDPCs with grain yields
were noticeably higher under the non-fungicide treatment,
these relationships were predictably weaker under the fungicide
treatment. This is explained by the absence of the disease
i.e., photosynthesis, and thus grain yield, were unaffected
in un-diseased plants. Under the fungicide treatment, the
relationship of W550, W660, W735, MSR, and G with yield
was not significant (p > 0.05), however, W790 nm, the other
indices and canopy temperature had a significant (p ≤ 0.01)
relationship with yield. Among all RS variables, MCARI2
and canopy temperature had the strongest relationship with
grain yield (R2 = 0.81 for both) under disease pressure
(Table 2). Furthermore, MCARI1, MCARI2, and RDVI showed
the strongest relationships with AUDPC values (R2 = 0.93 for
each index).

DISCUSSION

Our results suggest that potential yield losses from TSC in maize
hybrids may be as high as 58% in susceptible genotypes under
strong disease pressure. This number is considerably higher than
the 46% reported by Bajet et al. (1994). Although the effect of the
disease on inbred lines was not investigated in our study, grain
yield losses would also likely be extensive. The strong relationship
between AUDPC and grain yield (R²= 0.84) indicates the overall
impact TSC could have on maize production following a severe
epidemic in susceptible maize germplasm. The severity of TSC
infection at Agua Fria Station over the 2 years during which
the experiment ran was not exceptionally strong, so our results
present a conservative estimate of yield loss. Natural epidemics
of greater severity, which do occur occasionally, may lead to even
higher grain yield losses.

The onset of disease in relation to maize growth stage (e.g.,
disease symptoms appearing before or after flowering) may
have a major effect on yield losses, although this hypothesis
requires further testing. Another factor influencing yield losses
may be the role of M. maydis in TSC epidemiology. Hock
et al. (1989) suggested that M. maydis may produce toxins
causing accelerated senescence-like effects on maize foliage. In
separate studies (Loladze et al., unpublished data), detected
the presence of such phytotoxins in several isolates of M.
maydis. The differences in phytotoxin production between
the isolates possibly suggests the existence of different races

within populations of M. maydis. Depending on the phytotoxin
production properties of the races present in a particular
location and year, the disease severity and extent of damage
caused by TSC may vary significantly, explaining yearly
fluctuations in maize yield losses. A study to test this theory
is underway.

An additional indirect factor affecting yield losses caused by
TSC could be ear rots, which are often found in plants weakened
by TSC (Loladze et al., unpublished data). Although rots are
not caused directly by the same pathogens causing TSC, they
could play a significant role in overall yield loss dynamics. The
interaction between TSC and ear rots, therefore, also needs to be
addressed in a separate study.

The application of hyperspectral signals for phenotyping
disease resistance in a number of crops has been discussed
extensively by Shakoor et al. (2017) and Simko et al. (2017).
Examples of such diseases include stripe rust and fusarium in
wheat (Bauriegel et al., 2011a; Devadas et al., 2015), sugarcane
orange rust (Apan et al., 2004), Venturia inaequalis in apple trees
(Delalieux et al., 2007), and red leaf blotch in almond (López-
López et al., 2016). All of the above-mentioned studies reported
high accuracies of hyperspectral signals when applied to disease
resistance phenotyping.

The results of the current study, however, demonstrate
the potential use of multispectral imaging for maize disease
evaluation, a method considerably less expensive than the use
of hyperspectral cameras. Several previous studies demonstrated
that NDVI, a structural index calculated on the basis of red,
and NIR wavelengths, was moderately to highly accurate in
distinguishing different levels of severity for wheat diseases and
insect pests. These included leaf rust and stripe rust of wheat, and
sunn pest (Franke and Menz, 2007; Genc et al., 2008; Pretorius
et al., 2017). In our study, however, NDVI was not the most
accurate index in terms of correlation with grain yield losses in
maize caused by TSC (R2 = 0.76).

Our study showed that a number of VIs calculated
from a multispectral signal and thermal data were highly
correlated with disease severity and grain yield under non-
fungicide treatments. The strongest relationship with yield was
observed with MCARI2 VI and canopy temperature (R2 =
0.81 for each, Table 2). This, however, was weaker than the
relationship between AUDPC and grain yield (R2 = 0.84).
In addition, the strong relationship between MCARI2 and
AUDPC (R2 = 0.93) suggests that this index could potentially
serve as an auxiliary instrument for large-scale disease trials,
especially on high throughput phenotyping platforms. While
the relationship between grain yield and AUDPC was still
slightly stronger under the non-fungicide treatment (R2 = 0.84),
both canopy temperature and MCARI2 could potentially be
used to assess disease resistance and possibly forecast yield
losses caused by TSC in maize. Therefore, the relationship
between the AUDPC and grain yield was still slightly higher
than that between AUC and the grain yield. Nevertheless,
RS still has a potential application to disease phenotyping
on large-scale high throughput phenotyping platforms. In
such cases, the visual scoring would be excessively laborious
time consuming.
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VI MCARI2 is an improved version of MCARI, which
was modified in order to reduce the noise effects of soil
within the reflectance signal while preserving the sensitivity
to canopy leaf area index (LAI) and resistance to chlorophyll
content variability (Haboudane et al., 2004). Previously, a
spectrum region associated with canopy and leaf structures
(red-edge) was reported to be sensitive enough to differentiate
various levels of disease severity (Garcia-Ruiz et al., 2013;
Franceschini et al., 2019). Similar results were found in our
study where red-edge and NIR (735 and 790 nm) showed
strong relationships with yield and AUDPC under non-fungicide
treatments (Table 2). However, those wavelengths had still
slightly lower relationship with yield and AUDPC as compared
with MCARI2.

Vegetation presents two peaks of light absorption in the blue
and red spectrum regions due to Chlorophyll content (Ca+b),
high reflectance in green, while its biomass and canopy structure
are related to reflectance in red-edge and NIR spectrum regions
(Richardson et al., 2002). The VIs are used for combining
multispectral observations into single metrics, which minimize
the effect of external factors on spectral data and derive specific
canopy characteristics (Baret and Guyot, 1991). These facts and
a possible reduction of LAI caused by the TSC-induced decrease
of photosynthetic activity, led us to consider that MCARI2 could
also be used as a potential alternative for assessment of yield
losses caused by the disease.

In some cases, plant disease development may be associated
with temperature changes in the foliage of the diseased plants,
which can be measured by infrared thermography (Simko et al.,
2017). Some plant diseases may induce stomatal closure, thus
reducing evaporative cooling and increasing canopy temperature
(Chaerle et al., 2001; Calderón et al., 2015). In the current
study, although notable differences in canopy temperatures
between resistant and susceptible genotypes were observed,
no progressive curve of canopy temperature paralleling the
disease development curve was detected (data not shown).
Nevertheless, when the canopy temperature data were used
to calculate the AUC, such time-series information showed a
strong relationship with the yield data under the non-fungicide
treatment (R2 = 0.81). The absence of a growth curve for
the canopy temperature could have been influenced by the
field conditions (e.g., ambient temperatures, thermal radiation,
or sunlight intensity) during the flights and/or by the stage
of plant development and its interaction with the pathogen
(Chaerle et al., 1999, 2004; Lindenthal et al., 2005; Simko et al.,
2017). At the same time, it is noteworthy that our experimental
plots were not subjected to water stress or nutrient deficiencies,
factors that could have influenced evapotranspiration, and thus
canopy temperature.

Provided that abiotic stresses, such as drought and soil
nutrient deficiencies, are minimized during disease trials, RS
can play an important role in high throughput phenotyping
for resistance to foliar diseases of maize. This can potentially
decrease the likelihood of human error and reduce the workload

of visual scoring on a large scale (Mahlein, 2016). With
ongoing improvements in RS technology and image data
analysis techniques and procedures, the relationships between
plant traits and imaging data may be further enhanced. This
may lead to wider and more common application of RS
technology in maize breeding on large-scale and multi-location
phenotyping platforms.

While RS technology has potential to significantly innovate
high throughput phenotyping of disease resistance, barriers
limiting the introduction of the technology into breeding
programs remain. Large initial investments for purchasing the
system, highly trained specialists for image acquisition and
processing, and potential delays in data processing are some of
the challenges (Khaled et al., 2017). Although RS technologies,
which include cameras, platforms, and data processing software
are becoming more affordable, systems and protocols need
to be adapted to the phenotyping requirements of particular,
economically important maize diseases.

The use of RS for early disease impact evaluation and the
detection of interactions of biotic and abiotic stresses requires
further investigation, as also suggested by previous authors
(Calderón et al., 2013; Mahlein, 2016; Khaled et al., 2017;
Simko et al., 2017). With the constant advancement of the RS
technology, the possibilities of pre-symptomatic early detection
of plant diseases, as this was recently done in olive crops, still
remains to be explored in maize (Zarco-Tejada et al., 2018).
This could potentially help target maize diseases with appropriate
disease management interventions before the development of
severe epidemics.
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