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Molecular Events Occurring During
Softening of Strawberry Fruit
Maria Alejandra Moya-León, Elena Mattus-Araya and Raul Herrera*

Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile

Changes in fruit texture taking place during ripening, described as softening, are mainly
due to alterations in structure and/or composition of the cell wall. Several non-covalent
interactions between the three carbohydrate polymers of the cell wall, cellulose, pectins
and hemicellulose, and many structural proteins and ions, enable a complex structure.
During softening, the disassembly of the cell wall structure takes place, mediated by
a complete set of cell wall degrading enzymes or proteins. Softening is a coordinated
event that requires the orchestrated participation of a wide variety of proteins. Plant
hormones and a set of transcription factors are the organizers of this multi-protein
effort. Strawberry is a non climacteric fruit that softens intensively during the last stages
of development. The Chilean strawberry fruit (Fragaria chiloensis), the maternal relative
of the commercial strawberry (F. × ananassa), softens even faster than commercial
strawberry. Softening of the Chilean strawberry fruit has been studied at different levels:
changes in cell wall polymers, activity of cell wall degrading enzymes and transcriptional
changes of their genes, providing a general view of the complex process. The search
for the ‘orchestra director’ that could coordinate softening events in strawberry fruit
has been focussed on hormones like ABA and auxins, and more precisely the relation
ABA/AUX. These hormones regulate the expression of many cell wall degrading
enzyme genes, and this massive transcriptional change that takes place involves the
participation of key transcriptional factors (TF). This review provides an update of the
present knowledge regarding the softening of strawberry fruit. Nevertheless, the entire
softening process is still under active research especially for the great influence of texture
on fruit quality and its high impact on fruit shelf life, and therefore it is expected that new
and promising information will illuminate the field in the near future.

Keywords: strawberry, cell wall, softening, transcription factor, fruit ripening

FRUIT RIPENING

Fruit ripening is a complex, genetically programmed and environmentally regulated process
(Giovannoni, 2001, 2004), and explained by a series of biochemical and physiological changes that
take place at the terminal stage of fruit development. It has a remarkable impact on fruit quality,
post-harvest life and consumer acceptance. Several modifications that take place during ripening
cause changes in color, texture, flavor, aroma and nutritional value, and all these alterations will
transform fleshy fruit attractive and palatable for consumers. Biochemical processes associated
with ripening include degradation of chlorophyll and starch, biosynthesis of pigments and volatile
compounds, accumulation of sugars and organic acids (Giovannoni, 2001). Ripening associated
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traits are governed by external (i.e., light, temperature) and
internal factors (i.e., gene regulation, hormonal control), which
are integrated within the fruit and allow the development of
ripe fruit attributes. Although ripening changes are expected in
a commodity, some of them have a negative impact on its quality;
for example, fruit with a rapid softening will display a shorter
shelf-life and higher pathogen susceptibility than a harder one,
and therefore intensive and sometimes injurious horticultural
management conditions will be required to extend its post-
harvest life. Delaying negative traits remained a major challenge,
and for this reason, it is essential to understand key control points
of the global ripening process.

FRUIT SOFTENING

Softening is one of the most important ripening traits. Softening
rate not only determines post-harvest shelf life but also other
economically important aspects, such as the frequency of
harvesting, handling procedures and the distance that the fruit
can be transported. From the consumer’s point of view, texture is
the main quality attribute that determines fruit acceptance in the
market (Goulao and Oliveira, 2008).

In general, the main causes of fruit softening are cell
wall disassembly and the reduction of cell to cell adhesion,
as a result of middle lamella dissolution (Brummell and
Harpster, 2001; Brummell, 2006). Cell wall modifications include
depolymerization of the glycan matrix, solubilization and/or
depolymerization of pectins, and loss of neutral sugars from
pectin side chains (Figueroa et al., 2008; Goulao and Oliveira,
2008). These changes also induce the loosening of the xyloglucan-
cellulose network (arabinan and galactan side chains from
rhamnogalacturonan I) and cell wall swelling, increasing wall
porosity that may facilitate the access of degradative enzymes
to their substrates (Brummell, 2006; Paniagua et al., 2017).
Finally, cell wall modifications take place in most fleshy fruit,
independent of its classification as climacteric or non-climacteric,
however, softening rate and intensity varies from fruit to fruit.

CELL WALL MODIFYING ENZYMES

Polysaccharide modifications can alter cell wall properties and are
largely due to the sequential and coordinated action of a variety
of ripening-related enzymes, which are secreted into the cell wall
space during the progress of ripening (Opazo et al., 2010). Some
of these enzymes are present throughout fruit development,
others increase or decrease during development, whereas those
related to softening appear only during ripening (Brummell and
Harpster, 2001; Brummell, 2006). The entire set of enzymes can
modify the structure of cell wall polysaccharides by removing
sequentially the side chains of ramified polysaccharides and
breaking down the main bone of each polysaccharide. As a
result of this, covalent bonds are broken down promoting a
reduction in the size of polysaccharides and the degree of
polymerization, but also the non-covalent interactions between
the polysaccharides are also modified. Specific changes include

cleavage of polymeric backbones, removal of polymeric or single-
sugar side chains, elimination of methyl ester or acetyl groups
from homogalacturonan (HGA), and loosening of hydrogen
bonds between cellulose microfibrils and glycans (Paniagua et al.,
2014, 2017). The addition of all these minor effects has led to
extensive softening and ultimately tissue disintegration.

The disassembly of the complex cell wall structure requires
the orderly participation of enzymes. Each cell wall degrading
enzyme displays a particular activity (hydrolase, transglycosylase,
lyase) and needs to recognize its own substrate within the cell
wall structure. After the action of the first set of enzymes, hidden
substrates can be exposed to second round enzymes. In addition,
some proteins without activity also take part in the process.
Although efforts have been made to gain in the understanding
of the role of enzymes involved in fruit softening, still there
are lots of enzymes present in fruit whose activity or transcript
abundance has been described but its function in softening has
not yet been reported.

The key to understand fruit softening lies in understanding the
cell wall structure, its composition, as well as, its interaction with
the different cell wall-degrading enzymes. During the past few
years, significant advances in the knowledge of genes involved in
fruit softening have provided good insight into the mechanism
of cell wall disassembly. But, there is still a dearth and need in
understanding the precise role of each polysaccharide and each
enzyme involved in fruit softening. Another level of complexity of
the process is the existence of isoforms for some of the enzymes
involved in cell wall disassembly. The characterization of those
enzymes and the time when they are expressed during fruit
development is just coming up to light.

STRAWBERRIES AND THEIR
CHILEAN MOTHER

Fragaria chiloensis (L.) Mill or the Chilean strawberry is a native
fruit from Chile, distributed throughout the Andes and the
coastal mountain range of Chile (Hancock et al., 1999; Lavín et al.,
2000; Retamales et al., 2005). The berry is appreciated for its good
organoleptic qualities, being its sweet and pleasant aroma the
main characteristic of this non-climacteric fruit, in addition to its
fruit size, resistance to pathogens and better sustainability to soil
salinity and low temperature (González G. et al., 2009; González
M. et al., 2009). Interestingly, F. chiloensis is the maternal
relative of Fragaria × ananassa, the commercial strawberry, and
therefore a good gene source in strawberry breeding programs.
F. chiloensis has the potential to be developed as a new exotic
berry in the world market (Retamales et al., 2005), however,
the fruit is highly perishable as its rapid softening alters the
texture and negatively influences its post-harvest life and quality
(Perkins-Veazie, 1995; Figueroa et al., 2008). Hence, in order to
reach the international market there is need for improvement
of its shelf life. Nevertheless, the short life cycle and its ploidy
(2n = 8X = 56) makes this Fragaria species a great challenge for
any breeding initiative. In addition, F. chiloensis has not been
sequenced yet as the challenge for sequencing octoploid species is
much higher than for diploids ones. The only strawberry species
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sequenced so far is Fragaria vesca (Shulaev et al., 2010), also
recognized as woodland strawberry, although we are aware that
efforts are ongoing with the sequencing of F. × ananassa.

In strawberries, softening is characterized by an extensive
dissolution of the middle lamella of the cortical parenchyma cells;
cells appear disconnected by a considerable intercellular space
and a little cell to cell contact area (Redgwell et al., 1997; Santiago-
Doménech et al., 2008). At the cell wall level, a moderate pectin
solubilization and depolymerisation, and a slight reduction of the
molecular weight of hemicellulosic polymers are general features
of softening (Koh and Melton, 2002; Nishizawa et al., 2002; Rosli
et al., 2004; Figueroa et al., 2010). On the other hand, cellulose
content appears to be small in strawberry fruit and remained
almost unaffected during softening (Koh et al., 1997; Figueroa
et al., 2008). Comparatively F. chiloensis’s fruit exhibited a higher
softening rate than F. × ananassa (cv. Chandler) during ripening
(Figueroa et al., 2010), and the most significant change observed
in cell wall components is in pectin-rich fractions, especially in
the HCl-soluble pectin fraction (i.e., covalently bound pectins),
rather than in the hemicellulose fraction (Figueroa et al., 2010;
Paniagua et al., 2017). This indicates that softening of strawberry
fruit is closely related to catabolism of covalently bound pectins
rather than ionically bound pectins or hemicelluloses.

Following this argument, softening studies in strawberry fruit
have been focused mainly on pectinolytic enzymes, as pectin
degradation has been proposed to be a major determinant
of fruit firmness (Jiménez-Bermúdez et al., 2002; Rosli et al.,
2004; Figueroa et al., 2008; Santiago-Doménech et al., 2008;
Villarreal et al., 2008; Quesada et al., 2009). Nevertheless, just
few years ago enzymes that may affect the hemicellulose/cellulose
network have been incorporated in fruit studies (Nardi et al.,
2014). How these enzymes take concerted part in cell wall
disassembly? is still intriguing. At the present time, several
studies have reported a series of enzymes involved in strawberry
fruit softening, such as, Polygalacturonase [PG] (EC.3.2.1.15)
(García-Gago et al., 2009; Quesada et al., 2009), Pectate lyase
[PL] (EC.4.2.2.2) (Benítez-Burraco et al., 2003; Youssef et al.,
2009), Pectin methylesterase [PME] (EC.3.1.1.11) (Castillejo
et al., 2004; Osorio et al., 2008), β-Galactosidase [β-Gal]
(EC.3.2.1.23) (Trainotti et al., 1999), α-Arabinofuranosidase
[AFase] (EC.3.2.1.-) (Rosli et al., 2009), Endoglucanase [EGase]
(EC.3.2.1.4) (Palomer et al., 2006; Mercado et al., 2010), and
Xyloglucan endotransglycosylase/hydrolase [XTH] (EC 2.4.1.-)
(Opazo et al., 2010, 2013), among others. Also proteins with no
catalytic activity seem to be important, as the case of Expansins
[EXP] (Harrison et al., 2001).

In the following paragraphs, we compiled evidence of key cell
wall degrading enzymes in fruit softening, describing how the
process could proceed and searching for key regulators of this
biological process.

METABOLISM OF PECTINS

In strawberries, a reduction in the content of pectins extracted
from cell wall material is advised during softening nevertheless
significant differences have been reported between different

species. In F. × ananassa the metabolism of pectins includes
a reduction in the size of pectin-polymers especially in HCl-
soluble pectin fraction (shift to lower MW polymers), while in
F. chiloensis there are no major changes in the size of pectin-
polymers that remained in the cell wall after softening (Figueroa
et al., 2010), suggesting that pectins are fully depolymerized to
soluble saccharides in F. chiloensis and partly fractionated in
F. × ananassa. This important difference should be explained by
a different set of pectinases.

A group of enzymes linked to the metabolism of pectins are
expressed in a coordinate way during the last stages of fruit
development, corresponding to the ripening phase of strawberry
(LG to R stages) (Figure 1). Pectinases, and particularly PG,
have received extensive attention due to their direct relation to
strawberry fruit firmness. PG catalyses the hydrolysis of alpha-
1,4 glycosyl bonds between the galacturonic acid residues of
homogalacturonan. In F. chiloensis, both PG transcripts and
activity increase during ripening development of the fruit,
reaching the highest activity at the ripe stage (Figueroa et al.,
2008). In comparison, in different F. × ananassa cultivars
PG transcripts accumulates during fruit development although
changes in activity were not evident (Villarreal et al., 2008).
Another study reported different levels of PG activity and PG
transcripts in F. × ananassa cultivars with texture dissimilarities
(Zhou et al., 2015). In the softer cultivar (Toyonoka) PG activity
and PG transcripts dramatically increased during the last stages
of fruit ripening and correlates with fruit softening, whereas
in the harder cultivar (Sweet Charlie) a lower level of PG
transcripts was detected during ripening meanwhile PG activity
decreased. The direct relation between PG and fruit firmness in
F.× ananassawas only confirmed after silencing FaPG1, showing
that transformed fruit had a diminution in pectin solubilization
(Pose et al., 2013).

Another enzyme that acts on pectin through a β-elimination
reaction is PL. In F. × ananassa the expression of PL increases
with the first signs of ripening, and high expression levels are
detected in fully ripe fruit, indicating a clear relationship with
ripening (Medina-Escobar et al., 1997; Benítez-Burraco et al.,
2003). Three FaPL genes (PLa, PLb, and PLc) have been reported
in strawberry (Benítez-Burraco et al., 2003), although only FaPLc
showed a clear increment in transcript accumulation during
ripening (Severo et al., 2011). The reduction in the expression of
FaPL in fruit by antisense strategy provided fruit with significant
higher firmness, confirming that PL is involved in softening
(Jiménez-Bermúdez et al., 2002). Nevertheless, the transgenic
lines generated by silencing FaPG1 showed the preponderant role
of PG in fruit firmness, contrary to what was claimed for PL (Pose
et al., 2013). In F. chiloensis fruit FcPL is expressed coincidently
with firmness reduction, nevertheless the low level of transcripts
and activity indicates a less important role compared to FcPG
(Figueroa et al., 2008).

PME catalyzes reactions on pectins by double-displacement
mechanisms promoting: (1) de-esterification through
transferring the C6 carboxyl groups in the pectin-PME
complexes to water molecules altering the degree and pattern of
methyl esterification, and (2) transacylation through transferring
the C6 carboxyl groups to hydroxyl groups of another pectin
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FIGURE 1 | Diagram showing the temporal expression profile of cell wall degrading genes during ripening development of two strawberry fruit species:
(A) F. × ananassa, and (B) F. chiloensis. Cell wall degrading enzymes correspond to Pectin methylesterase (PME), α-Arabinofuranosidase (AFase),
Polygalacturonase (PG), Pectate lyase (PL), β-Galactosidase (βGal), Xyloglucan endotransglycosilase/ hydrolase (XTH), Endoglucanase (EGase), Expansins (EXP) and
Rhamnogalacturonan I lyase (RGL). Fruit stages for F. × ananassa correspond to: LG, large green; SW, small white; LW, large white; P, pink/turning; R, red. Fruit
stages for F. chiloensis correspond to: LG, large green (large size fruit with red achenes); T, turning (large size fruit with white receptacle and red achenes); and R,
ripe fruit (full size fruit with pink receptacle and red/brown achenes). (C) Scheme showing changes in auxins and ABA levels in F. × ananassa fruit; in gray the
ABA/AUX ratio (adapted from Symons et al., 2012).

molecule (Kohli et al., 2015). De-esterification of pectins seems
to be necessary for providing access to other pectinases such
as PG. PME activity has been detected in growing F. chiloensis
fruit (early stages of development), and the activity reached a
maximum level at the transition stage (Figueroa et al., 2010).
It is therefore, considered as an early player during cell wall
disassembly. In commercial strawberry it has been suggested a
close relationship between PME and softening, because PME
activity is reduced immediately after UV-C irradiation with the
consequence of a firmer fruit (Pombo et al., 2009). A decrease in
the firmness of F. × ananassa fruit at the late ripening stages is
concomitant to the high accumulation of transcripts reported for
PME and PG (Severo et al., 2011).

The metabolism of pectins required an organized performance
as a synchronized participation of pectinases is necessary.
PME is an early player, followed by PG and/or PL. The
major participation of PG in the case of F. chiloensis than
PL could explain the complete depolymerization of pectins
observed in this fruit.

Other pectinases have received much less attention. This is
the case of Rhamnogalacturonan I lyase (RGL) (EC 4.2.2.-)

that catalyzes the cleavage of α-(1,4) bonds between rhamnose
and galacturonic acid in the rhamnogalacturonan I backbone
chain of pectins by a β-elimination mechanism (Mutter et al.,
1996). Only recently, Molina-Hidalgo et al. (2013) described the
participation of RG lyase I in the degradation of RG-I backbone
in F. × ananassa. FaRGL I is expressed in fruit receptacles
with a maximal accumulation of transcripts in overripe and
senescence stages. Gene transient silencing of FaRGL I prevents
the dissolution of middle lamella (Molina-Hidalgo et al., 2013).

On the other hand, pectins are often ramified by different
oligosaccharides, and as described for the principal backbone,
a series of enzymes should participate in their metabolism.
β-galactosidases and α-arabinofuranosidases are some of the
enzymes taking part in the removal of pectin side chains and may
act on side chains of pectic (or hemicellulosic) polysaccharides.
In commercial strawberry, three β-Gal genes were expressed
in the fruit, but only FaβGal1 showed a high accumulation of
transcripts at the ripe stage (Trainotti et al., 2001). The highest
accumulation of transcripts takes place at the very late ripening
stage (Severo et al., 2011). Total β-Gal activity was also detected
during development and ripening of commercial strawberry.
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Not much is known about AFase in ripening fruit except for
that three cDNAs have been identified in different strawberry
cultivars, and that AFase activity was considerably higher in
soft cultivars (Rosli et al., 2009). AFase can remove arabinose
from pectin side chains and hemicelluloses. It is believed that
the removal of side chains from pectins or hemicelluloses can
exposed the remaining polymer to the action of other enzymes,
and most importantly, it can alter firmness by reducing the
integrity of the oligosaccharide matrix.

METABOLISM OF OTHER CELL
WALL POLYSACCHARIDES

Another group of enzymes participates in hemicellulose
metabolism helping cell wall disassembly, but not as first players
in softening, such as EGase and XTH (Figure 1). Increasing
levels of EGase transcripts have been detected during ripening of
commercial strawberry (Harpster et al., 1998). The application
of heat treatments to strawberries (cv. Selva) causes lower
levels of EGase expression and a reduction in EGase activity
with the consequent arrest in fruit softening (Martínez and
Civello, 2008). Nonetheless, the reduction of EGase expression
level observed in antisense strawberry plants did not influence
fruit firmness (Woolley et al., 2001; Palomer et al., 2006;
Mercado et al., 2010).

Xyloglucan endotransglycosylase/hydrolase enzyme displays
high specificity for xyloglucans (Rose et al., 2002). XTHs belong
to family 16 of glycosyl hydrolases and may display either
endotransglycosylase (XET; EC 2.4.1.207), endohydrolase (XEH;
EC 3.2.1.151), or both activities (Minic and Jouanin, 2006). Two
XTH genes were identified in F. chiloensis, one associated to fruit
ripening (FcXTH1) and the other to vegetative tissues (FcXTH2)
(Opazo et al., 2010). A biochemical characterization of FcXTH1
enzyme showed that it displays strict endotransglycosylase
activity (Mendez-Yañez et al., 2017). By means of bioinformatics
tools, it has been possible to demonstrate a better interaction
of FcXTH1 with xyloglucans than with cellulose (Mendez-
Yañez et al., 2017), suggesting its active participation in the
reorganization of hemicellulose during ripening of F. chiloensis
fruit. Two XTHs were described in F. × ananassa that were
associated to hemicellulose degradation (Nardi et al., 2014), and
interestingly, firmer cultivars showed higher accumulation of
transcripts of both genes.

Another player is β-xylosidase (β-Xyl) (EC 3.2.1.37), an
enzyme that hydrolizes xylo-oligosaccharides releasing xylose
units. FaβXyl from F. × ananassa has been isolated and
characterized during fruit ripening (Bustamante et al., 2006b).
The level of FaβXyl transcripts rise at the white fruit stage in a
softer cultivar (Toyonaka) while in a harder cultivar (Camarosa)
the increase in transcripts took place at a later ripening stage
(75% red). The activity of the enzyme remains almost constant
in Camarosa, but in Toyonaka a constant increment during
ripening was determined with maximum activity when the fruit
reached full ripeness (Bustamante et al., 2006b).

Expansins on the other hand are proteins with no catalytic
activity that probably disrupt the hydrogen bonds between

cellulose microfibrils and cell wall matrix polysaccharides, and
thereby allow accessibility to cell wall enzymes (McQueen-Mason
and Cosgrove, 1994; Rose and Bennett, 1999). In commercial
strawberry fruit, seven expansin genes have been identified
and the expression profile of each of them characterized in
developing fruit (Civello et al., 1999; Harrison et al., 2001;
Dotto et al., 2006). In F. chiloensis fruit five expansins have
been analyzed and the expression level of FcEXP1, FcEXP2
and FcEXP5 correlates with fruit firmness reduction (Figueroa
et al., 2009). The participation of these three gene isoforms
suggests functional redundancy, however, a recent bioinformatics
approach analyzed the interaction of each of these expansins
with different cell wall polysaccharides (Valenzuela-Riffo et al.,
2018). The results suggest that expansin proteins can bind
not only cellulose but also other cell wall polymers such as
xyloglucans of different conformation. The authors conclude
that the three FcEXP proteins could be acting on different
cell wall domains.

In summary, many enzymes and proteins with different
substrate specificity and mechanisms of action participate in
the metabolism of cell wall polysaccharides and promote the
disassembly of the complex cell wall structure required for fruit
softening. The identification and characterization of isoforms for
these enzymes increase the complexity of the process nevertheless
the use of new tools can give clues on the time of fruit
development and ripening of their participation.

REGULATION OF RIPENING

It is of most relevance the understanding of how the different
molecular events related to ripening are coordinated in non-
climacteric fruit, as so far it is still a mystery. Moreover, it seems
clear now that a wide signaling network should be integrated
at hormonal level, metabolic adaptations and transcriptional
switches in order to coordinate this complex process. Recently,
some regulatory networks based on transcription factors (TF)
have been shown to play a central role in fruit development and
ripening, as these TFs are able to coordinate the simultaneous
expression of a complex network of genes. Understanding how
these regulators can modulate development and ripening of
fleshy fruits is of utmost importance.

HORMONES INVOLVED IN
FRUIT RIPENING

Hormones play essential roles in fruit development and ripening.
In climacteric fruit ethylene is the regulator that induces
and coordinates almost the entire ripening process; however,
in non-climacteric fruit the role of several hormones is an
active research area.

In this regard, F. × ananassa fruit has become a model
species of non-climacteric fruit. A complete hormonal profile
of F. × ananassa fruit was reported by Symons et al. (2012)
indicating that the levels of auxins and gibberellins (GA) rise
early during fruit development, and drop to low levels before
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color accumulation takes place in the receptacle. The report
also confirms previous information that indicated that free and
conjugated indole-3-acetic acid (IAA) reach a maximum level
at the green fruit stage and subsequently decline (Archbold
and Dennis, 1984). On the other hand, abscisic acid (ABA)
levels are low at anthesis and gradually rise throughout
development and ripening, reaching the highest level at the
ripe fruit stage (Symons et al., 2012). Importantly, the first
signs of ABA increments coincide with the drop in auxins. In
addition, low levels of brassinosteroids are determined during
ripening development.

The hormonal profile of auxins indicates a gradual declination
in the supply from achenes at the latter stages of growth, which
has been implicated long time ago as the basis of fruit ripening
(Given et al., 1988). More recently, RNA-seq strategy was used
to describe the expression profile of auxins biosynthesis and
signaling during development and ripening of F. × ananassa
(Estrada-Johnson et al., 2017). The content of auxins drops by
50% in the receptacle, but remains constant during ripening
in a dry weight basis, supporting the idea that auxins could
be involved in the ripening of strawberry fruit at later stages
(Estrada-Johnson et al., 2017).

It has been shown that auxins delay ripening by modifying
the expression of many ripening-associated genes (Given et al.,
1988). Most of strawberry ripening-related genes are negatively
regulated by auxins, although few auxins up-regulated genes have
also been described as summarized in Table 1. Studies performed
in several F. × ananassa cultivars highlighted important
hormonal effects on the expression of cell wall genes. No effect
on the expression level of FaPG and FaEXP2 was observed
after the treatment of strawberries with auxins (Medina-Escobar
et al., 1997). The expression levels of FaRGL1 and FaβGal1
were negatively regulated by the application of auxins (Trainotti
et al., 2001; Molina-Hidalgo et al., 2013). Genes encoding
FaPL and FaEGase were activated at the onset of strawberry
ripening and their expression were reduced by exogenous auxins
treatments (Medina-Escobar et al., 1997; Harpster et al., 1998;
Civello et al., 1999; Aharoni and O’Connell, 2002). On the
contrary, the expression of FaXTH1 and FaXTH2 were induced
by auxins treatment (Nardi et al., 2014). Indications of gene
expression regulation for some of these genes were confirmed
by identifying auxin responsive elements in their promoters,
such as the case of FaXTH1 (Nardi et al., 2014). Functional
analysis of the promoter fragments of FaEG1 and FaEG3 confirm
that auxin treatment reduces the expression of GUS as reporter
gene (Spolaore et al., 2003). Several recent evidences support
the role of ABA as a promoter of strawberry ripening (Jia
et al., 2011). The decrease in ABA levels due to the inhibition
of NCED1 (9-cis-epoxycarotenoid dioxygenase), a key enzyme
in ABA biosynthesis, by fluoridone or by RNAi technology,
promoted the arrest of F. × ananassa development (uncoloured
fruit phenotype). This phenotype was rescued by ABA treatment.
On the other hand, ABA perception was also evaluated in RNAi
fruit of CHLH/ABAR (a putative ABA receptor) obtaining the
same uncoloured phenotype, although it was not reversed by
exogenous ABA (Jia et al., 2011). Similarly, the down-regulation
of another ABA receptor (PYR1) by RNAi delayed the ripening

of strawberry fruits, which was not rescued by exogenous ABA
(Chai et al., 2011). Collectively these evidences indicate that
ABA biosynthesis and its perception are required for ripening of
strawberry fruit.

On the other hand, several evidences support that ABA is
inducing transcriptional changes in cell wall degrading enzymes.
The expression of FaRGL1 was demonstrated to be positively
regulated by ABA (Molina-Hidalgo et al., 2013). Similarly, the
expression level of FaXyl1 increased when ABA was applied,
and in contrast FaXyl1 expression decreased after treatment with
ethylene, auxins or gibberellic acid (Bustamante et al., 2006a).
The expression of FaXTH1 is up-regulated in F. × ananassa
fruit in response to ABA and GA treatments, and after achenes
removal (Nardi et al., 2014). Recently, Nardi et al. (2016)
demonstrates that the promoter sequence of FaEXP2 drives the
expression of a reporter gene toward the receptacle and along
ripening. Moreover, FaEXP2 promoter contains ABA responsive
elements, as well as, GA responsive elements.

It has been proposed that ethylene could play a role at early
stages of fruit ripening, considering that the level of transcripts
for ethylene receptors is high throughout ripening, although
the level of ethylene is low (Trainotti et al., 2005). Initially
it was reported the increment in the accumulation of FaPG1
transcripts in response to ethylene (Villarreal et al., 2010),
and more recently, several other genes involved in cell wall
modification were up regulated by ethylene application such
as FaPG1, FaGal1 and FaGal2 (Villarreal et al., 2016). On the
contrary, genes such as FaPME1, FaXyl1, FaXTH1 and FaARA1
were down regulated in response to ethylene, meanwhile FaPLa
did not show any change at all (Villarreal et al., 2016). Others
reported the down regulation of FaPG2 and FaPLa, the up-
regulation of FaPE1, and no changes in FaPG1 in ethylene treated
strawberry (Merchante et al., 2013). Additionally, all three FaβGal
genes were down regulated in response to ethylene treatment
(Trainotti et al., 2001). Interestingly, three putative ethylene-
responsive elements were found in the promoter region of FaPE1
(Castillejo et al., 2004).

Little is presently known about the hormonal control of
F. chiloensis fruit. The application of auxins induces the
expression of FcPME and FcXTH1 (Opazo et al., 2013).
Meanwhile auxins strongly repress the expression of FcEXP1
and FcEXP2, and have a minor repression effect on FcEXP5
(Figueroa et al., 2009). Furthermore, the removal of achenes (the
endogenous source of auxins) promotes the increase in FcEXP2
expression in F. chiloensis (Figueroa et al., 2009), in agreement
with a recent report in F. × ananassa (Nardi et al., 2016).
This suggests a negative effect of auxin on EXP2 expression.
On the other hand, the treatment of F. chiloensis fruit with
ABA and GA has an activator effect on the transcription of
FcXTH1 (Opazo et al., 2013). The analysis of FcXTH1 promoter
sequence reveals different regulatory elements responding to
hormones, which could explain the accumulation of transcript
pattern (Opazo et al., 2013). In the case of jasmonic acid
little information is available, but recently it was reported
that the accumulation of FcXTH1 and FcEG1 transcripts
increased after the application of methyl jasmonate (Concha
et al., 2013). Finally, the blockage of ethylene perception by
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1-methylcyclopropene (1-MCP) repressed the expression of
FcXTH1 in F. chiloensis fruit, and in concordance with that,
ethylene responsive elements are present in FcXTH1 promoter
(Opazo et al., 2013).

Although the knowledge concerning the hormonal regulation
of strawberry fruit is growing, it is still limited. So far, it is clear
that the levels of auxins and ABA in the receptacle, or even more
precisely the relation ABA/AUX, may have an important role in
the coordination of fruit development and ripening in strawberry
fruit (Figure 1) as it has been suggested by Medina-Puche et al.
(2016). In the case of softening of strawberry fruit, key genes are
regulated by ABA, which tells us that this hormone could be the
main modulator of gene expression during ripening of this non
climacteric fruit.

TRANSCRIPTION FACTORS
AND FRUIT RIPENING

If little is known regarding the interactions between different
hormones on fruit ripening and softening in strawberry fruit,
the role of transcription factors (TF) in this process is still
in its infancy. It is clear that TFs mediate changes in the
expression of genes responsible for the complete program of
cellular events required for the development and ripening, but
one of the problems to be solved during the study is that
many TFs belong to a family of proteins, and therefore it
is difficult to clarify the role of a single TF. In addition to
that, several TFs from different families interact forming active
transcriptional complexes that complicate even more the study.
Even though, notable results have been obtained within the
synthesis of flavonoids in strawberry fruit, where three TFs
(MYB, WD40 and bHLH) interact in the transcriptional control
of anthocyanins biosynthesis (Schaart et al., 2012; Salvatierra
et al., 2013). Interestingly, even if the description of FaGAMYB
was mainly focus in secondary compounds, the results indicated
that FaPE, FaPG and FaPL were down-regulated in FaGAMYB
silenced strawberry (Vallarino et al., 2015), suggesting also a role
of FaGAMYB in the remodeling of cell wall.

FaDOF2 is another TF, which is expressed preferentially in
the receptacle of strawberry during ripening and senescence,
but low level of transcripts were detected at early stages of
fruit development (Molina-Hidalgo et al., 2017). Moreover,
it was shown that ABA induces the expression of FaDOF2
meanwhile auxins repress it. Strawberry fruit were transformed
with interfering FaDOF2 mRNA, and changes in gene expression
were studied using the microarray FraGenomics 35K. Albeit
the limitations of using the array, several genes modified
their transcriptional levels in FaDOF2 silenced strawberry.
Transcription factors like MYB, NAC, MADS and GRAS
showed altered gene expression. Most interestingly, several genes
associated to cell wall modification also showed up or down
regulation, like: PE, PME, XTH, PG1, PG2, EXP, β-Glu and PL
(Molina-Hidalgo et al., 2017). Clearly, FaDOF is acting at the late
stage of ripening and senescence and modulates the expression
of several genes, but further analysis should give clues about TF
partners or if it is directly involved in softening.

MADS-box is a large family of TFs associated to floral
development, as well as, to fruit development and ripening (Shore
and Sharrocks, 1995; Ito et al., 2008; Díaz-Riquelme et al., 2009;
Gramzow and Theissen, 2010; Seymour et al., 2011; Ireland
et al., 2013). In F. × ananassa the suppression of FaMADS9
expression (homologous to SEPALLATA1/2) produces defects
in petal formation, as well as, in achenes and the receptacle
(Seymour et al., 2011). Albeit, MADS-box TFs are able to change
the anthocyanin content and color of the fruit (Seymour et al.,
2011), the series of genes regulated by MADS-box TFs are still
unrevealed. Interestingly, FaMADS1a is expressed with delayed
ripening phenotype, and its expression is induced by auxin and
suppressed by ABA, concomitantly speeding up the ripening
process (Lu et al., 2018). In F. chiloensis two MADS-box genes
(FcMADS1 and FcMADS2) have been identified, and both genes
are expressed during fruit ripening, but also highly expressed in
flower tissues (Pimentel et al., 2010).

NAC is another TF expressed during strawberry ripening.
A large number of NACs were recently identified in
F. × ananassa, six of them expressed during fruit development
and ripening (Moyano et al., 2018). ABA positively regulates the
expression of FaNAC, meanwhile auxins inhibit the expression
of this TF (Moyano et al., 2018). In the case of F. chiloensis
fruit, a NAC transcription factor has been identified and
analyzed. FcNAC1 is expressed during fruit ripening and its
expression is suppressed after the addition of auxins (Carrasco-
Orellana et al., 2018). Moreover a fast accumulation of FcNAC1
transcripts are observed after ABA treatment, although this
increment was promptly reduced (Carrasco-Orellana et al.,
2018). More interestingly, FcNAC1 promoter region showed
response elements for several plant hormones, including ABA,
MeJa, auxin and gibberellic acid (Carrasco-Orellana et al.,
2018). Additionally, the isolated promoter region of FcPL was
transactivated by FcNAC1 in a luciferase assay, and on the
contrary, the promoter region of FcEXP2 was not transactivated
by FcNAC1. This suggests that FcNAC1 could play an important
role in the transcriptional regulation of cell wall degrading genes.

CONCLUSION

Thus, fruit softening is an extremely complex process that
requires the contribution of multiple enzymes and proteins that
sequentially and in a coordinated way modify the structure of the
cell wall. As many proteins are required and each of them needs
to get into action at a particular time during fruit development,
the precise organization of the entire process is unquestionably.
Hormones like ABA and auxins, and more precisely the relation
ABA/AUX, have a crucial role in the coordination of softening
events in F. × ananassa and F. chiloensis fruit. The coordination
of hormones regulates the expression of many cell wall degrading
enzymes and the massive transcriptional change that takes place
involves several TFs. We predict that the entire process is even
more complex than expected, many more players are about to be
identified and therefore more efforts are needed to fill the gaps.
Even though, we don’t know with certainty how the ripening of
strawberry fruit is regulated, the entire process is still under active
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research especially for the great impact of texture on fruit quality
and their high impact on fruit shelf life.
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