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Improvement of plant iron nutrition as a consequence of metal complexation by
humic substances (HS) extracted from different sources has been widely reported. The
presence of humified fractions of the organic matter in soil sediments and solutions
would contribute, depending on the solubility and the molecular size of HS, to build up
a reservoir of Fe available for plants which exude metal ligands and to provide Fe-HS
complexes directly usable by plant Fe uptake mechanisms. It has also been shown that
HS can promote the physiological mechanisms involved in Fe acquisition acting at the
transcriptional and post-transcriptional level. Furthermore, the distribution and allocation
of Fe within the plant could be modified when plants were supplied with water soluble
Fe-HS complexes as compared with other natural or synthetic chelates. These effects
are in line with previous observations showing that treatments with HS were able to
induce changes in root morphology and modulate plant membrane activities related
to nutrient acquisition, pathways of primary and secondary metabolism, hormonal and
reactive oxygen balance. The multifaceted action of HS indicates that soluble Fe-HS
complexes, either naturally present in the soil or exogenously supplied to the plants,
can promote Fe acquisition in a complex way by providing a readily available iron
form in the rhizosphere and by directly affecting plant physiology. Furthermore, the
possibility to use Fe-HS of different sources, size and solubility may be considered as
an environmental-friendly tool for Fe fertilization of crops.

Keywords: Fe complex, Fe chelates, fulvic acids, root uptake, strategy I, strategy II, water-extractable humic
substances (WEHS)

Abbreviations: ABA, abscisic acid; CK, cytokinins; DOM, dissolved organic matter; ET, ethylene; FA, fluvic acids; FRO, ferric
chelate reductase; GA, gibberellic acid; HA, humic acids; HS, humic substances; IAA, indole-3-acetic acids; IHS, insoluble HS;
IRT, iron transporter; NO, nitric oxide; NRAMP, natural resistance-associated macrophage proteins; PS, phytosiderophores;
ROS, reactive oxygen species; TCA, tricarboxylic acid; WEHS, water extractable humic substances.
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INTRODUCTION

Soil HS are generally considered as the result of the
partial degradation and re-synthesis of organic material,
especially of plant residues. They originate from
polymerization/polycondensation of phenolic compounds,
mainly deriving from microbial lignin degradation. As a
consequence, soil HS have a strong aromatic nature; nonetheless,
during the condensation process a number of organic molecules
including aliphatic chains, peptides, amino acids, fatty acids
and sugars can be incorporated, thus forming substances from
medium to high molecular weight (Stevenson, 1994). Soil HS
could also originate from associations of relatively small humic
molecules linked together by hydrophobic interactions and
hydrogen bonds (Piccolo, 2002). Humic molecules of different
molecular masses can bind together forming a supramolecular
humic network; the degree of aggregation may depend on the
pH, ionic strength and mineral composition of the solution
(Garcia-Mina, 2007; Esfahani et al., 2015).

These processes imply that HS of different molecular size and
solubility are present in the soil. Some fractions are present in the
soil solution, thus being able to directly interact with plant roots
(Chen and Schnitzer, 1978; Gerke, 1997). These latter soluble HS
are considered as part of the DOM (Bolan et al., 2011).

Humic substances are routinely extracted from the soil with
alkaline solutions and then can be operationally fractionated,
based on their different water solubility, into humic (HA) and
fluvic (FA) acids (Stevenson, 1994).

Due to their heterogeneity, the molecular structure of soil
HS cannot be unequivocally identified. Nevertheless, it has been
clearly defined that the presence of some functional groups
within their structure are responsible for the observed indirect
and direct effects on plant growth and nutrition (Nebbioso
and Piccolo, 2011; Muscolo et al., 2013; García et al., 2016a).
Indirect effects refer to changes in the chemical and physical
properties of soil and rhizosphere, while direct ones indicate
actions on plasma membrane (PM)-bound activities and plant
metabolic pathways (Varanini and Pinton, 2001; Nardi et al.,
2002; Zandonadi et al., 2013; Canellas and Olivares, 2014; Rose
et al., 2014; Olaetxea et al., 2018).

The occurrence of HS in soils, as representative of natural
organic matter evolution, has been questioned; rather it has been
proposed that they are the result of the alkali-based extraction
procedure (Lehmann and Kleber, 2015). While this aspect is still
under debate (Gerke, 2018; Olk et al., 2019), it is noteworthy that
humic-like molecules have been extracted from soils treated with
mild extractants (Hayes, 2006), found in aquatic environments
(Alberts and Takács, 2004), peat water extracts and soil leachates
(Pinton et al., 1997; Vujinovic et al., 2013).

Despite being the chemical nature of HS still controversial, it
has been unequivocally demonstrated that organic materials of
different origin can provide available Fe to plants as a results of Fe
complexation by humic molecules (Chen et al., 2004a; Bocanegra
et al., 2006; Kovács et al., 2013; Cieschi et al., 2017). Furthermore,
soluble Fe-HS complexes could be formed and directly used
by the plants (Pandeya et al., 1998; Pinton et al., 1999). The
capacity of HS to complex metals and affect the mechanisms of

nutrient acquisition and plant metabolism provide evidence for a
multifaceted role of these organic fractions on Fe nutrition.

In the present work, we will summarize recent reports on
the role of HS in plant Fe nutrition that can be attributed to
their chelating and biostimulant effect, with a special emphasis
on effects exerted by the water-soluble fractions.

EFFECTS OF HUMIC SUBSTANCES ON
IRON AVAILABILITY

Humic substances are able to form stable complexes with metal
micronutrients, due to the presence in their structure of oxygen-,
nitrogen- and sulfur-containing functional groups. This, in turn,
would help maintaining micronutrients in solution and/or in
bioavailable forms at pH values found in most soils (Senesi, 1992;
Tipping, 2002). In the case of Fe, highly stable HS complexes
mainly involve O-containing groups (carboxylic and phenolic
groups) (Senesi, 1992; Tipping, 2002). More recently it was shown
that carboxylic acids in aliphatic domains are also involved in
Fe(III)-HS complexation (Fuentes et al., 2013).

The stability order of the complexes formed between metals
and humic acids has been determined through potentiometric
titration and follows the Irving-Williams series. Evaluation of
stability constants for metal-HS complexes (Garcia-Mina et al.,
2004) showed values somewhat lower than those observed for
complexes between Fe and synthetic chelating agents (e.g., EDTA,
EDDHA; Lucena, 2003) or organic compounds of biological
origin (e.g., organic acids, siderophores, PS, phenols) (von Wirén
et al., 2000; Crowley, 2001; Ryan et al., 2001; Mimmo et al., 2014).

Stability and solubility of the complexes are both affected by
pH and molar ratio between micronutrients and HS (Chen et al.,
2004a; Garcia-Mina, 2006). A high stability would be favored
in the 5–9 pH range by a low metal:HS ratio, while a high
solubility would be favored by alkaline pH and a low metal:HS
ratio. This implies that plants growing in calcareous soils with
limited Fe availability could benefit from the formation of stable
and soluble Fe-HS complexes (Cieschi and Lucena, 2018), as
well as of insoluble complexes with high molecular weight HS
(Colombo et al., 2014).

Humic substances can affect Fe availability also through the
stabilization of amorphous Fe oxides by high molecular weight
humic fractions (Schwertmann, 1991). The poorly crystalline Fe
phases, co-precipitated with insoluble HS (IHS) and maintained
for a long period in this form, can represent a reservoir of
iron suitable, via ligand mobilization, for plant Fe nutrition
(Colombo et al., 2012, 2014).

The ability of HS to complex Fe can also be important for
phosphorous nutrition, since phosphate can be bound to HS by
Fe bridges (Gerke, 2010; Urrutia et al., 2013). This process would
increase phosphate availability; in fact, complexation of Fe by
ligands released by plant roots could promote uptake of both
nutrients (Gerke, 1993; Urrutia et al., 2014).

Humic substances are known to be redox reactive and capable
of chemically reducing metals including Fe3+ (Skogerboe and
Wilson, 1981; Struyk and Sposito, 2001). Reduction of Fe3+

occurs at significant levels at pH values lower than 4; at higher pH
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values reduction is limited by formation of complexes between
Fe3+ and humic molecules. It has been shown that dissolved
and solid-phase HS can accelerate Fe(III)-oxide reduction in
sediments (Nevin and Lovley, 2002; Roden et al., 2010) and
bioreduction of Fe(III) minerals in soils (Rakshit et al., 2009), by
shuttling electrons from bacteria to oxide surfaces.

ROLE OF HUMIC SUBSTANCES AS
NATURAL CHELATES

Besides delaying the Fe crystallization processes, HS can
contribute to Fe nutrition via formation of water-soluble Fe-
HS complexes, which can move in the soil and reach the roots
(Pandeya et al., 1998; Garcia-Mina et al., 2004; Chen et al., 2004b).
These complexes would act as natural Fe-chelates interacting
with plant uptake mechanisms. Using a water-extractable humic
fraction (WEHS), purified from a water extract of sphagnum peat,
it was demonstrated that a Fe-WEHS complex could be obtained
by interaction between the humic fraction and a poorly soluble
Fe form (Cesco et al., 2000). Fe-WEHS complex could, in turn,
be used by Fe-deficient Strategy-I and Strategy-II plants. Uptake
by Strategy-I plants could occur via the Fe(III) reduction-based
mechanism (Pinton et al., 1999), while in Strategy-II plants, a
ligand exchange between WEHS and PS was conceivably involved
(Cesco et al., 2002). Uptake of 59Fe from 59Fe-WEHS complex
was measured even at pH values compatible with those found
in calcareous soils (Cesco et al., 2002; Tomasi et al., 2013) and
the same held true for root Fe(III) reduction in Strategy-I plants
(Tomasi et al., 2013; Zamboni et al., 2016). The recovery of
Fe-deficient plants following the treatment with Fe-WEHS was
paralleled by a stimulation of the acidification capacity of roots,
a component of the Fe-deficiency response in Strategy-I plants
(Pinton et al., 1999; Tomasi et al., 2013).

Iron from 59Fe-WEHS complex appeared to be accumulated
in higher amount within the plant as compared with other natural
chelates, such as 59Fe-citrate or 59Fe-PS (Tomasi et al., 2013;
Zamboni et al., 2016). Furthermore, a higher translocation of
Fe to the leaves was observed in Fe-deficient Strategy-I plants
supplied with 59Fe-WEHS (Tomasi et al., 2009; Zanin et al.,
2015) as compared with the other two natural Fe-chelates. This
behavior was accompanied by an increase of Fe content in the
xylem sap (Tomasi et al., 2009). In 59Fe-WEHS-treated cucumber
plants Fe was more rapidly allocated into the leaf veins and
transferred to interveinal cells (Zanin et al., 2015). Similar effects
were reported by Bocanegra et al. (2006) who observed a rapid
translocation of Fe from roots to leaves of plants treated with a
low molecular weight humic fraction. These results indicate that
HS could affect Fe nutrition not only by increasing the metal
availability in the soil and in the rhizosphere, but also acting
on the mechanisms involved in its uptake and its translocation
within the plant.

Supply of HS or Fe-HS complexes has also been shown to
affect expression of genes related to Fe-uptake mechanisms.
Providing a Fe-WEHS complex to Fe-deficient tomato plants
induced an up-regulation of root Fe(III)-chelate reductase
(LeFRO1) and Fe transporter genes, LeIRT1 and LeIRT2

(Tomasi et al., 2013). The increase in transcript abundance was
faster and reached a higher level than when Fe-citrate or Fe-
PS were used. Aguirre et al. (2009) showed that the treatment
of cucumber plants with HS purified from leonardite induced a
transient up-regulation of genes involved in the Strategy-I uptake
mechanism, that is CsHA2, CsFRO1 and CsIRT1, in cucumber
roots. These effects were associated with an increase of the root
Fe(III) chelate-reductase activity. Billard et al. (2013) showed
that a humic fraction isolated from black peat could induce the
up-regulation of the IRT1 gene in both the roots and leaves of
rapeseed plants. These results were correlated to a significant
increase of the Fe concentration in leaves.

Interestingly, also genes involved in Fe uptake in leaves
(CsFRO1, CsIRT1, CsNRAMP) were up-regulated following Fe-
WEHS supply to Fe-deficient cucumber plants, as compared with
Fe-PS-fed plants (Zanin et al., 2015). The localization of CsFRO1,
CsIRT1 transcripts was evident next to the midveins, while
CsNRAMP expression was detected in the overall mesophyll
region, supporting a role of this later gene in the Fe distribution
within the whole leaf tissue.

Genome-wide transcriptional analysis revealed that the early
response to Fe supply of Fe-deficient tomato plants was strongly
influenced by the nature of the chelating agent (Zamboni et al.,
2016). In fact, Fe-citrate and Fe-PS modulated, respectively the
expression of 728 and 408 genes, showing a fast down-regulation
of molecular mechanisms induced by Fe deficiency. On the other
hand, Fe-WEHS did not determine relevant changes in the root
transcriptome with respect to the Fe-deficient plants, suggesting
that roots did not sense the restored cellular Fe accumulation.
This behavior would account for the higher Fe accumulation in
Fe-WEHS treated plants.

EFFECTS OF HUMIC SUBSTANCES ON
ROOT GROWTH AND FUNCTIONS

Treatments of plants with HS have been shown to induce
changes in root morphology and modulate plant membrane
activities related to nutrient acquisition, pathways of primary and
secondary metabolism, hormonal and reactive oxygen balance
(Varanini and Pinton, 2001; Nardi et al., 2002; Canellas and
Olivares, 2014; Olaetxea et al., 2018; Figure 1). These effects,
which vary depending on the origin, molecular size and chemical
characteristics of HS, suggest an action of these organic fractions
on growth promotion and stress resistance in plants.

Many authors observed that plants treated with HS of different
origin were able to induce proliferation of lateral roots and root
hairs (Canellas et al., 2002; Nardi et al., 2002). This behavior has
been related to the activation of signaling pathways involving
phytohormones, especially auxin, nitric oxide, Ca2+ and ROS
(Trevisan et al., 2010; Zandonadi et al., 2010; Mora et al., 2012;
Ramos et al., 2015; García et al., 2016b,c). Up-regulation of auxin-
regulated genes (Trevisan et al., 2011) and modulation of genes
coding for enzymes involved in hormone metabolisms (Zanin
et al., 2018) suggest that HS might influence the steady-state
equilibrium of different plant hormones. However, stimulation
of root growth was observed also independently of hormonal
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FIGURE 1 | Physiological and molecular plant responses induced by HS (in the upper part) and role of Fe-HS complexes on Fe plant nutrition (in the lower part).
Schematic drawings of Strategy-I and Strategy-II components on PM of root cells are shown (for Strategy I: a proton pump, a ligand efflux transporter, an Fe
transporter and an FeIII-chelate reductase are depicted in the left; for Strategy II: a ligand efflux transporter and an Fe-chelate transporter are depicted in the right).
ABA, abscisic acid; CK, cytokinin; ET, ethylene; GA, gibberellic acid; IAA, indole-3-acetic acids; IHS, insoluble HS; NO, nitric oxide; PS, phytosiderophores; ROS,
reactive oxygen species; TCA, tricarboxylic acid; PM, plasma membrane; GS/GOGAT, glutamine synthase/glutamine oxoglutarate aminotransferase).

changes (Schmidt et al., 2007; Mora et al., 2012), suggesting
that other signals might be involved in the morphological
modifications elicited by HS.

A recognized target of HS action is the root PM H+-
ATPase (Zandonadi et al., 2016). Evidence for activation of the
PM proton pump has been observed both at transcriptional
and post-transcriptional level and related to proton extrusion
(Varanini et al., 1993; Canellas et al., 2002) and uptake of
ions, such as nitrate (Pinton et al., 1999; Quaggiotti et al.,
2004; Tavares et al., 2017), phosphate (Jindo et al., 2016) and

sulfate (Jannin et al., 2012). Besides ion uptake, HS have been
shown to promote nitrogen assimilation (Mora et al., 2010;
Jannin et al., 2012; Vaccaro et al., 2015; Zanin et al., 2018),
carbon metabolism (glycolysis and Krebs cycle; Nardi et al., 2007;
Trevisan et al., 2011) and synthesis of secondary metabolites, such
as phenylpropanoids (Schiavon et al., 2010; Jannin et al., 2012;
García et al., 2016c).

In addition to the stimulation of proton release, HS have been
shown to affect rhizodeposition. Humic acids promoted release
of anionic species close to region of root acidification [apolar
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TABLE 1 | Reports focusing on the role of humic substances in iron plant nutrition.

Humic substances Crop HS Treatment Objectives Actions References

Source Fraction/
Size

Species Organ

Humate (from
leaf compost)

N/A Solanum
lycopersicum

Shoots,
Roots

supply of humates
(100 mg L−1 dm3)

Influence of sodium
humate on the uptake
or some ions by tomato
seedlings

Facilitated the Fe
transport from roots to
shoots and stimulated
the root uptake of K+,
Rb+, Mg2+ and
PO4

3−, while strongly
inhibited the Cl− uptake

Gumiński
et al., 1983

FA (from
sphagnum
peat)

WEHS Cucumis
sativus,
Hordeum
vulgaris

Plants supply of 59Fe-WEHS
(1 µM Fe; 5 mg Corg

L−1 WEHS) up to
3 days

Strategy-I and
Strategy-II plant
capabilities to use Fe
complexed by WEHS

cucumber plants
(Strategy I) utilize
Fe-WEHS, presumably
via reduction of
Fe(III)-WEHS by PM Fe
reductases, while
barley plants (Strategy
II) use an indirect
mechanism involving
ligand exchange
between WEHS and PS

Cesco et al.,
2002

HA (from
mollisol)

N/A Helianthus
annuus,
Hordeum
vulgare

Plants 59Fe-HA complex and
EDTA or DTPA
(0.1 mM) for 1, 4, or
14 days

Study the release and
diffusion of Fe from
Fe-HA chelates and its
availability to growing
plants

EDTA and DTPA
attracted and chelated
substantial amounts of
the 59Fe bonded by the
HA, presumably by a
ligand exchange
process

Bocanegra
et al., 2004

HA (from
mollisol)

HA100,000

(>100 KDa);
HA10,000

(<10 kDa)

Helianthus
annuus

Plants supply of 59Fe-HA
(50–100 mg L−1) for
15 days

Plant uptake of iron
chelated by humic
acids of different size

Rapid translocation of
Fe to the leaves; the
small size HA10,000
and EDTA were the
most efficient in
affecting transport of Fe
from root to leaf tissue

Bocanegra
et al., 2006

HA (from
leonardite)

Cucumis
sativus

Roots supply of HA (2, 5, 100,
and 250 mg Corg L−1

up to 92 h; 40 µM of
Fe were added as
Fe-EDTA

Dose effect of HA on
Fe-deficient response in
cucumber plants

HA treatments
transiently up-regulated
in roots CsFRO1,
CsIRT1 and CsHA2
expression and
increased the Fe(III)
chelate-reductase and
PM H+-ATPase activity

Aguirre
et al., 2009

FA (from
sphagnum
peat)

WEHS Solanum
lycopersicum

Leaves supply of Fe-WEHS
(1 µM Fe; 5 mg Corg

L−1 WEHS) up to 24 h

study on mechanisms
induced by Fe-WEHS
at the leaf level

efficient use of Fe
complexed by WEHS,
at least in part, also the
activation of
Fe-acquisition
mechanisms operating
at the leaf level
(upregulation of
LeFRO1, LeIRT1 and
Ferritin2 genes)

Tomasi et al.,
2009

Insoluble HS
(from
Leonardite) and
FA (from
sphagnum
peat)

HMW and
WEHS

Cucumis
sativus

Plants supply of Fe-HS
(0.1–10 µM Fe; 5 mg
Corg L−1 HS) up to
11 days

efficiency of Fe-IHS
complexes in alleviating
Fe chlorosis

use of Fe insoluble
high-molecular weight
complexes (Fe-IHS) as
an effective product to
correct the Fe
nutritional disorder

Colombo
et al., 2012

(Continued)
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TABLE 1 | Continued

Humic substances Crop HS Treatment Objectives Actions References

Source Fraction/
Size

Species Organ

high molecular
weight HS (HA7
extract from
black peat)

0.96–68 kDa Brassica napus Leaves,
Roots

supply of HA7 (100 mg
Corg L−1 HA7) up to 1,
3 or 30 days

Effect of HA treatment
on rapeseed nutrition

HA7 incresed the Fe
content in shoots and
induced the
expressionof genes
coding for BnIRT1,
BnCOPT2, BnNRAMP3

Billard et al.,
2013

water soluble
HS (from
Leonardite)

WSHS Cucumis
sativus

Plants supply of Fe-WSHS
(20 µM Fe;
Fe:LN = 1:1.1) for 1 day

study the use of
Fe3+/Fe2+ species in
Fe-LN for plant nutrition

Fe2+-WSHS use
efficiently by plants
under hydroponic
conditions, while
Fe3+-WSHS is used
more effectively under
calcareous soil
conditions

Kovács
et al., 2013

FA (from
sphagnum
peat)

WEHS Solanum
lycopersicum

Roots supply of Fe-WEHS
(1 µM Fe; 5 mg Corg

L−1 WEHS) up to 24 h

Physiology and
molecular response of
Fe-deficient plants

increased the 59Fe
hydroxide solubilization,
the 59Fe root uptake
and gene expression of
LeFRO1 and LeIRT1
and LeIRT2

Tomasi et al.,
2013

FA (from
sphagnum
peat)

WEHS Cucumis
sativus

Leaves,
Roots

supply of Fe-WEHS
(1 µM Fe; 5 mg Corg

L−1 WEHS) up to
5 days

Nutrient allocation in
leaves of Fe-deficient
lants

Increased root uptake
of nitrate, CO2

assimilation while
changed the allocation
of several nutrients from
the vascular system (K,
Cu, and Zn) or
trichomes (Ca and Mn)
to the entire leaf blade.

Tomasi et al.,
2014

FA (from
sphagnum
peat)

WEHS Cucumis
sativus

Leaves supply of Fe-WEHS
(1 µM Fe; 5 mg Corg

L−1 WEHS) up to
5 days

Iron allocation in leaves
of Fe-deficient plants

stimulated the Fe
accumulation and
allocation in leaves, the
upregulation of three
transcripts: CsFRO,
CsIRT (both localized
next to the midveins)
and CsNRAMP (in the
interveinal area)

Zanin et al.,
2015

HA (from
leonardite)

N/A Triticum
aestivum

Shoots,
Roots

Fe–HA (Fe 38.2 mg
L−1; 98 mg L−1 HA)

The effect of Fe-HA on
photosynthesis and
lipid profile in
Fe-deficient plants

Enhanced input of Zn
and lipid content in
Fe-deficient plants,
effect of HAs on the
antioxidant status of
plants and the plant
lipid metabolism

Abros’kin
et al., 2016

FA (from
sphagnum
peat)

WEHS Solanum
lycopersicum

Roots supply of Fe-WEHS
(1 µM Fe; 5 mg Corg

L−1 WEHS) for 1 h

Early transcriptomic
response in Fe deficient
roots

Upregulation of
Strategy I components,
the feedback regulation
of these components
does not occured.

Zamboni
et al., 2016

humic fraction
(from
leonardite)

HA, FA Glycine max Plants supply of Fe-HS
(10–100 µmol Fe
pot−1) up to 60 days

Study the Fe-HS use
efficiency in soybean
roots for Fe nutrition
under calcareous
conditions

Show the effect of HS
accumulation on
soybean roots in the
iron transport from root
to shoot and the
Fe-biomineralization to
form jarosite on the
soybean root surface

Cieschi and
Lucena,
2018
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sugars from maize roots (Puglisi et al., 2009), impacting soil
microbial community in the rhizosphere (Puglisi et al., 2013)].
Increase in root growth was accompanied by a greater release
of low molecular weight exudates from maize plants treated
with HS (Canellas et al., 2019). On the other hand, it has been
reported that organic acids, such as those released by the roots,
could disaggregate supramolecular structure of HS releasing low
molecular weight humic fractions (Piccolo et al., 2003), which in
turn might exert their effects on roots. Regarding this point is
noteworthy that accumulation of HS at the root surface and in
the apoplast has been observed (García et al., 2012; Kulikova et al.,
2014). Furthermore, HS fractions obtained from rhizospheric soil
showed different chemical characteristics to those isolated from
bulk soil (D’Orazio and Senesi, 2009).

Effects of HS on root growth (signaling pathways), ion uptake
(primary and secondary membrane transporters), primary
metabolism (nitrogen and carbon), secondary metabolism
(phenylpropanoids) and root exudation might be important for
Fe acquisition and could improve the response of plants to Fe
deprivation (Figure 1).

CONCLUSION AND PERSPECTIVE

Plenty of papers in the last decades have proven the capability of
HS, isolated from different organic sources, to affect plant growth,
nutrition and metabolism.

In natural soils, these substances, due to their heterogeneity
and polydispersity, can be present as co-precipitates with mineral
parts (e.g., Fe-oxides and clays) or in the solution where they
contribute a considerable portion of the DOM.

Low-molecular-weight and water-soluble fractions have been
shown to affect functionality of ion transporters operating
on the PM of root cells, acting both at transcriptional and
post-transcriptional level. This evidence has been achieved
mostly using controlled experimental conditions, such as isolated
HS and hydroponically grown plants. Conceivably, these HS
could directly interact with plant roots, microorganisms and
soil particles in the rhizosphere. Thus, study of structural
and chemical characteristics of HS present in soil solution
and in the rhizosphere are needed to allow the transfer of
knowledge obtained in controlled systems to real soil/rhizosphere
conditions. This would help to shed light on the direct
contribution of HS to plant nutrition and growth and on
their usefulness in the field. Evidence of a relationship between
chemical structural characteristics of HS obtained from different
sources and having variable molecular complexity and the
biological effects they exert on plants has been already provided.

This kind of studies can now be performed using new analytical
techniques thus allowing a full characterization of HS based on
their origin, either natural or anthropogenic.

Concerning Fe nutrition, these aspects would be very useful
considering the dual role that has been attributed to HS,
as chelating compounds and biostimulants (Table 1). The
capability of HS to form stable complexes with Fe and to
directly affect Fe-acquisition mechanisms would account for the
relative contribution of Fe-HS complexes to plant Fe nutrition
as compared to other Fe-complexes naturally occurring in
the rhizosphere.

It is noteworthy that HS induce a “nutrient acquisition
response” even when plants are adequately supplied or during
the recovery from a deficiency status, affecting functionality and
regulation of nutrient uptake mechanisms. The signaling network
at the basis of this behavior starts to be elucidated. Furthermore,
it has been suggested that the cross-interaction between root
exudates and HS might be part of the cross-talk between plant
and soil. These features would favor a prompt adaptation of
plants to a specific environment.

Another point of interest studying the behavior of HS is their
possible use to develop environmentally friendly fertilization
tools, being crucial in terms of circular economy. Although their
chemical structure is not yet fully understood and the direct
transfer of results obtained in controlled conditions to real soil
has been questioned, it is quite clear that HS isolated from
different organic sources, when added to nutrient solution or
to the soil can favor plant nutrition, and especially nitrogen
and Fe accumulation. This implies that humic fractions with
different chemical and biological properties could be used to
tailor HS-based fertilizers with high use efficiency. This tool
could be particularly relevant for precision agriculture aimed
at limiting external inputs and optimizing the use of natural
resources by crops.
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