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Reliable, automatic, multifunctional, and high-throughput phenotypic technologies are
increasingly considered important tools for rapid advancement of genetic gain in
breeding programs. With the rapid development in high-throughput phenotyping
technologies, research in this area is entering a new era called ‘phenomics.’ The
crop phenotyping community not only needs to build a multi-domain, multi-level, and
multi-scale crop phenotyping big database, but also to research technical systems for
phenotypic traits identification and develop bioinformatics technologies for information
extraction from the overwhelming amounts of omics data. Here, we provide an overview
of crop phenomics research, focusing on two parts, from phenotypic data collection
through various sensors to phenomics analysis. Finally, we discussed the challenges
and prospective of crop phenomics in order to provide suggestions to develop new
methods of mining genes associated with important agronomic traits, and propose new
intelligent solutions for precision breeding.

Keywords: crop phenomics, phenotyping extraction, data storage, functional–structural plant modeling,
phenotype–genotype association analysis

INTRODUCTION

Persistent food and feed supply needs, resources shortages, climate change and energy use are some
of the challenges we face in our dependence on plants. Until 2050, crop production will have to
double to meet the projected production demands of the global population (Ray et al., 2013).
Demand for crop production is expected to grow 2.4% a year, but the average rate of increase in crop
yield is only 1.3%. Moreover, production yields have stagnated in up to 40% of land under cereal
production (Fischer and Edmeades, 2010). Genetic improvements in crop performance remain the
key role in improving crop productivity, but the current rate of improvement cannot meet the needs
of sustainability and food security.

Molecular breeding strategies pay more attention to selections based on genotypic information,
but phenotypic data are still needed (Jannick et al., 2010; Araus and Cairns, 2014). Phenotyping
is necessary to improve the selection efficiency and reproducibility of results in transgenic studies
(Gaudin et al., 2013; Yang et al., 2014; Feng et al., 2017) (Table 1). Considering that molecular

Frontiers in Plant Science | www.frontiersin.org 1 June 2019 | Volume 10 | Article 714

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.00714
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2019.00714
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.00714&domain=pdf&date_stamp=2019-06-03
https://www.frontiersin.org/articles/10.3389/fpls.2019.00714/full
http://loop.frontiersin.org/people/619277/overview
http://loop.frontiersin.org/people/573523/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00714 June 3, 2019 Time: 11:25 # 2

Zhao et al. Crop Phenomics Review

breeding populations can include a range from at least 200
to at most 10,000 lines, the ability to accurately and high-
throughput characterize hundreds of lines at the same time is
still challenging (Lorenz et al., 2011; Araus and Cairns, 2014).
Apparently, compared with the vast genetic information, there is
a phenotyping bottleneck hampering progress in understanding
the genetic basis of complex traits. To break this bottleneck
and improve the efficiency of molecular breeding, reliable,
automatic, and high-throughput phenotypic technologies were
urgently needed to provide breeding scientists with new insights
in selecting new species to adapt to the resources shortages and
global climate change.

During the past decade, plant phenomics has evolved from
an emerging niche to a thriving research field, which was
defined as the gathering of multi-dimensional phenotypic
data at multiple levels from cell level, organ level, plant
level to population level (Houle et al., 2010; Dhondt et al.,
2013; Lobos et al., 2017). Crop phenotypes are extremely
complicated because they are the result of interaction between
genotypes (G) and a multitude of envirotypes (E) (Xu,
2016). This interaction influences not only the growth and
development process of crops measured by the structural
traits on cellular, tissue, organ and plant level, but also the
plant functioning measured by the physiological traits. These
internal phenotypes in turn determine crop external phenotypes
such as morphology, biomass and yield performance (Houle
et al., 2010; Dhondt et al., 2013) (Figure 1). Crop phenomics
research integrates agronomy, life sciences, information science,
math and engineering sciences, and combines high-performance
computing and artificial intelligence technology to explore
multifarious phenotypic information of crop growth in a
complex environment, of which the ultimate goal is to
construct an effective technical system able to phenotype crops
in a high-throughput, multi-dimensional, big-data, intelligent
and automatically measuring manner, and create a tool
comprehensively integrating big data achieved from a multi-
modality, multi-scale, phenotypic + environmental + genotypic
condition, in order to develop new methods of mining genes
associated with important agronomic traits, and propose new
intelligent solutions for precision breeding.

Here, we provide an overview of crop phenomics research,
focusing on two parts, from phenotypic data collection through
various sensors to phenomics analysis. We systematically
introduced the crop phenotyping approaches from cellular,
tissue, organ, and plant level to field level, discussing application
and practical problems in research. Based on overwhelming
amounts of phenotypic data, we then discussed the phenotyping
extraction, phenotype information analysis and knowledge
storage. We emphasize Phenomics is entering the big-data era
with multi-domain, multi-level, and multi-scale characteristics.
We highlight necessity and importance of building multi-
scale, multi-dimensional and trans-regional crop phenotyping
big database, researching E-trait depth analysis schemas and
technical systems for precise identification of crop phenotypes,
realizing functional-structural plant modeling based on
phenomics, and developing bioinformatics technologies that
integrate genomes and phenotypes.

CROP PHENOTYPIC DATA
COLLECTION: VARIOUS PHENOTYPING
APPROACHES FOR CROP
MORPHOLOGY, STRUCTURE, AND
PHYSIOLOGICAL DATA FROM CELL TO
WHOLE-PLANT

Currently, the plant phenotyping community seems some-what
divided between high-throughput, low-resolution phenotyping
and in-depth phenotyping at lower throughput and higher
resolution (Dhondt et al., 2013). Phenotyping systems and
tools applied in different scales are focused on different
key characteristics –automated phenotyping platforms in
controllable environment and high-throughput methodologies
in field environment highlights high-throughput, while
phenotyping covering the organ, tissue and cellular level
emphasizes in-depth phenotyping and higher resolution. In
this part, we systematically introduced the crop phenotyping
approaches covering from cellular and tissue level to field level,
and discussed the application and practical problems of which
technologies in crop researches.

Alleviating the Micro-Phenotyping
Bottleneck
Compared with the whole-plant phenotying technologies,
phenotyping at higher spatial and temporal resolutions of tissue
and cellar scales is more difficult (Hall et al., 2016). To reveal
crop micro-phenotypes, the pre-treatment of plant or organ is
usually destructive when sampled in a cumbersome and involves
multi-step procedure, and the high resolution imaging of samples
is also inefficient in view of the output in micron level. More
challenging, automated image analysis techniques are urgently
needed to quantify cell and tissue traits of crop from the larger
high qualified image. In recent years, many emerging algorithms
and tools have been proposed to handle with microscopic
images from hand-cutting slices, micro-CT, fluorescent, laser, and
paraffin sections imaging (Table 2).

Root anatomical traits have important effects on plant
function, including acquisition of nutrients and water from
the soil and transportation to the aboveground part. Over
the last years, novel micro-image acquisition technologies
and computer vision have been introduced to improve our
understanding of anatomical structure and function of roots.
In 2011, computer-aided calculation of wheat root vascular
bundle phenotypic information extraction were introduced based
on sequence images of paraffin sections (Wu et al., 2011).
Burton et al. (2012) (Penn State College of Agricultural Sciences
Roots Lab) have developed a high-throughput, high-resolution
phenotyping platform, which combines laser optics and serial
imaging with three-dimensional (3D) image reconstruction
(RootSlice) and quantification to understand root anatomy by
semi-auto RootScan (Chimungu et al., 2015). Chopin et al.
(2015) developed a fully automated RootAnalyzer software
for root microscopic phenotypic information extraction to
further improve image segmentation efficiency and ensure high
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TABLE 1 | The history of crop phenomics based on major advancement.

The major advancements References

Germination stage: the
Concept formation period of
phenotype and phenomics.

The concept of phenotype was first proposed by Danish geneticist Johannsen in 1911. Johannsen, 2014

The concept of phenomics corresponding to genomics was first proposed by Nicholas
Schork in 1997 in disease research.

Schork, 1997

Tuberosa proposed the concept that ‘phenotyping was king and heritability was queen’,
in 2012.

Tuberosa, 2012

Thriving development stage:
from late 20th century, plant
phenotypic research teams and
commercial organizations were
established successively, and a
series of high-throughput,
high-precision, automated or
semi-automated phenotyping
tools were developed to obtain
high-quality, repeatable plant
phenotype data.

In 1998, Belgium CropDesign was the first company to develop a high-throughput
phenotyping platform for large-scale plant character evaluation.

http://www.cropdesign.com; Reuzeau
et al., 2005, 2006; Reuzeau, 2007

The first research center, named by phenomics-the Australian Plant Phenomics Facility,
was established in 2007.

https://www.plantphenomics.org.au

In 2016, Germany Lemna Tec developed the first field high-throughput plant phenotype
platform-Scanalyzer Field, which indicated that plant phenotype technology was
formally moving toward the field measurement.

http://www.lemnatec.com; Virlet et al.,
2016

Alleviating the micro-phenotyping bottleneck: in recent years, many emerging
algorithms and tools have been proposed to handle with microscopic traits of root, stalk
and seed, such as RootAnalyzer, VesselParser, etc.

Burton et al., 2012; Du et al., 2016

Systematic development stage:
is entering a new era called
’phenomics’, which provides
big data and decision support
for revealing the molecular
mechanism and gene functions
of plants.

In 2011, the challenge-phenotyping bottleneck was pointed out by Furbank from the
Australian Plant Phenomics Facility, discussing the bottleneck of phenotypic research
and the problems need to be solved.

Furbank and Tester, 2011

The European Plant Phenotyping Network (EPPN) was originated from 2012, which
successfully completed the first EPPN joint research project from 2012 to 2015, and
continued with the EPPN2020 and European Infrastructure for Multi-scale Plant
Phenomics and Simulation (EMPHASIS) programs.

https://eppn2020.plant-phenotyping.eu;
https://emphasis.plant-phenotyping.eu

In 2013, the concept of next-generation phenotyping was proposed by Mccoueh,
suggesting that phenomics should be closely linked to technologies, such as
high-resolution linkage mapping, genome-wide association studies and genomic
selection models, etc.

Cobb et al., 2013

The International Plant Phenotyping Network (IPPN) was registered in 2016,
representing the world’s major plant phenotyping centers. Over the last decade, a
number of national and regional Plant Phenotyping Networks (PPNs) have been
organized, such as FPPN. PPA, NAPPN, CPPN, etc., and the communication and
cooperation among various PPNs became more and more close.

https://www.plant-phenotyping.org/;
Carrolla et al., 2019

In 2017, Francois Tardieu and Malcolm Bennett presented strategies for multi-scale
phenomics. Phenomics research not only needed to build a multi-domain, and
multi-scale phenotypic big database, but also to research technical systems for
phenotypic traits identification and develop bioinformatics technologies for information
extraction from the overwhelming amounts of omics data.

Tardieu et al., 2017

accuracy. Pan et al. (2018) (Beijing Key Laboratory of Digital
Plant) introduced X-ray micro-CT into 3D imaging of maize root
tissues and developed an image processing scheme for the 3D
segmentation of metaxylem vessels. Compared with traditional
manual measurement of vascular bundles of maize roots, the
proposed protocols significantly improved the efficiency and
accuracy of the micron-scale phenotypic quantification.

Different from the root system, crop stalks have a more
complex microstructure. The complexity and diversity
in microscopic image data poses greater challenges for
developing suitable data analysis workflows in the detection
and identification of microscopic phenotypes of stalk tissue.
Zhang et al. (2013) and Legland et al. (2017) presented semi-
automated and automated analysis method for the stained
microscopic images of stalk sections. Legland et al. (2014) and
Heckwolf et al. (2015) created an image analysis tool that could
operate on images of hand-cut stalk transections to measure
anatomical features in high throughput. Those tools have
significantly improved the measurement efficiency of vascular
bundle, but the anatomical traits corresponding to the rind

and the detection accuracy remained a challenge. Du et al.
(2016) (Beijing Key Laboratory of Digital Plant) introduced
micro-computed tomography (CT) technology for stalk imaging
and developed the VesselParser 1.0 algorithm, which made it
possible to automatically and accurately analyze phenotypic
traits of vascular bundles within entire maize stalk cross-sections.
So far, Beijing Key Laboratory of Digital Plant has built a novel
method to improve the X-ray absorption contrast of maize tissue
suitable for ordinary micro-CT scanning. Based on CT images,
they introduced a set of image processing workflows for maize
root, stalk and leaf to effectively extract microscopic phenotypes
of vascular bundles (Zhang et al., 2018).

Phenotyping at tissue and cellar scales still requires complex
procedures. The need to simplify the sample preparation process
and explore advanced imaging techniques is crucial to accelerate
microscopic phenotyping studies. Moreover, image processing is
another major bottleneck in micro-phenotyping researches. Due
to the specific crop organ and cell phenotypic characteristics of
the huge differences, most micro-image analysis algorithms have
been developed for specific biological assays currently.
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FIGURE 1 | The schematic diagram of genotype–phenotype–envirotype (G-P-E) interactions.

Three-Dimensional Phenotyping at the
Organ Level
Most plant phenotyping platforms concentrated the high-
throughput of individual plants (Chaivivatrakul et al., 2014;
Cabrera-Bosquet et al., 2016). Hence the phenotypic accuracy of
organs on the plants was always compromised (Dhondt et al.,
2013). The most frequently used phenotyping index, such as
leaf length, leaf area, and fruit volume, could be obtained in
phenotyping platforms simply (Klukas et al., 2014; Zhang et al.,
2017). The smartphone app platform was developed for field
phenotyping by taking pictures and image analysis at organ level
(Confalonieri et al., 2017). It is very convenient to acquire leaf
angles and leaf length using the app in a 2D view. The plants
do not need to be destructively sampled indoors. 2D cameras
are low cost and were integrated into most of the phenotyping
platforms, which provided effective phenotypic solution for
branch structured plants, especially for tracking the dynamic
growth of organs on plants (Brichet et al., 2017). However, 2D
images lost another dimension data in 3D space, and some of
the estimated morphological traits still need to be calibrated
(Zhang et al., 2017). Multi-view stereo (MVS) approach (Duan
et al., 2016; Vazquez-Arellano et al., 2016; He et al., 2017; Hui
et al., 2018) is another popular low-cost alternative for organ
level phenotyping. 3D point clouds were reconstructed using
multi-view images through structure from motion techniques
(Wu, 2011), and then phenotypic traits were extracted through
segmented organs of individual plants (Thapa et al., 2018). This
cost-effective 3D reconstruction method depicts an alternative to
an expensive laser scanner in the studied scenarios with potential

for automated procedures (Rose et al., 2015; Yin et al., 2016; Gibbs
et al., 2018). There are significant differences between these organ
traits within various cultivars, thus tiny errors could be ignored in
large scale omics analysis (Yang et al., 2014; Zhang et al., 2017).

However, besides these measured length, area, and volume
phenotypic parameters, there are lots of obvious differences that
can be observed by humans of plant organs, such as blade profiles,
blade folds, vein curves, and leaf colors, of which are difficult to
obtain the morphological data and quantitatively describe their
differences. A series of mathematical approaches (Li et al., 2018)
need to be developed to quantitatively describe these differences
in order to discover more detailed phenotyping traits with high
precision phenotyping data of organ level. Researchers use high
resolution 3D scanners to acquire the morphological structure
of plant organs (Rist et al., 2018). High resolution 3D scanners
are relatively expensive while the acquired morphological data
are more accurate than MVS reconstructed organs, especially
for non-planner surface plants. 2D LiDAR scanners (Thapa
et al., 2018) and depth sensors (Hu et al., 2018) were also used,
combined with turn table and translation devices to estimate
phenotypic traits through 3D recovery of point clouds. Most 2D
or 3D imaging could solve the 3D organ scale phenotyping data
acquisition problems, except for tall plants for which it is difficult
due to a limited field of vision. High resolution 3D point clouds
of plant organs are quite complicated in order to extract more
phenotypic traits, thus computer graphics algorithms, such as
skeleton extraction (Huang et al., 2013), surface reconstruction
(Yin et al., 2016; Gibbs et al., 2017), and feature-preserving
remeshing (Wen et al., 2018), need to be applied to process
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TABLE 2 | Commonly used and developing approaches for crop micro-phenotypic traits analysis.

Organ type Image source Software Parameters Remarks References

Root Laser Ablation Tomography
(LAT)

RootScan
RootScan2

Root cross-section, cortex, and
stele 3 categories of phenotype
indicators

Maize roots Burton et al., 2012

Laser dissection
microscope

RootAnalyzer Whole root, tissue regions
(cortex, stele, endodermis,
metaxylem), stele phenotype
indicators

Wheat and maize root Chopin et al., 2015

Laser Ablation Tomography
(LAT)

RootSlice Focus on root cortex, including
variation in cell size, number of
cell files in the radial direction,
percentage of aerenchyma, cell
wall thickness, amount of
cytoplasm and vacuole size.

Maize roots https://plantscience.psu.edu/
research/labs/roots/projects

Micro-CT images Simpeware
(Commercial software)

Not only the two-dimensional
(2D) phenotypic parameters,
but also the quantitative
analysis of three-dimensional
(3D) phenotypic parameters,
such as volume and surface
area of metaxylem vessels.

Maize roots Pan et al., 2018

Stalk Hand-cut stalk transections
and color images of which
were acquired using a flat
scanner

‘Matgeom’, a library for
geometric computing
with Matlab

Average spatial organization of
vascular bundles within maize
stalks.

The anatomical traits
corresponding to the rind
remained a challenge.

http:
//matgeom.sourceforge.net/

Hand-cut stalk transections
and color images of which
were acquired using a flat
scanner

The tool, written in the
Matlab computer
language

Stalk diameter, rind thickness,
vascular bundle density, and
vascular bundle size.

Maize, sorghum, and
Miscanthus stalk. The
anatomical traits
corresponding to the rind
and the detection accuracy
of vascular bundle
remained a challenge

http://phytomorph.wisc.edu/
download/
HeckwolfPlantMethods2015/

Colored with FASGA
staining and digitalised with
whole microscopy slide
scanners

The whole image
processing workflow
was developed within
the ImageJ/Fiji platform

Morphometry (bundle number,
rind fraction, etc.) and
colorimetry (rind mean red,
lignified mean blue, etc.), 2
categories of 19 phenotype
indicators

Maize stalk Zhang et al., 2013

Micro-CT images VesselParser 3.0 Stalk diameter, vascular bundle
density, vascular bundle size,
etc.

This is the first time that
quantitative analysis for
phenotypic traits of
vascular bundles within
entire maize stalk
cross-section.

Du et al., 2016; Zhang et al.,
2018

the high-resolution morphological data for 3D phenotypic trait
extraction. Because of the difficulty and complexity of detailed
organ data acquisition and analysis, Wen et al. (2017) proposed a
data acquisition standard and constructed a resource database of
plant organs using measured in situmorphological data, to realize
the integration and sharing of high quality data of plant organs.

Automated Phenotyping Platforms in
Controllable Environment
Automation and robotics, new sensors, and imaging technologies
(hardware and software) have provided an opportunity for high-
throughput plant phenotyping platforms (HTPPs) development
(Gennaro et al., 2017). In the past 10 years, great improvements
have been made in researching and developing HTPPs (Furbank
and Tester, 2011; Fiorani and Schurr, 2013; Virlet et al., 2016).

Depending on the overall design, HTPPs in a growth chamber or
greenhouse can generally be classified as sensor-to-plant or plant-
to-sensor based on whether the plants occupy a fixed position
during a measurement routine and an imaging setup moves to
each of those positions or the plants are transported to an imaging
station, respectively. Collectively, the techniques used in HTPPs
in the growth chamber or greenhouse mainly include (Table 3):

(1) RGB imaging, which obtains the phenotypes of plant
morphology, color, and texture.

(2) Chlorophyll fluorescence imaging, which obtains
photosynthetic phenotypes.

(3) Hyperspectral imaging, which obtains phenotypes such as
pigment composition, biochemical composition, nitrogen
content, and moisture content.

Frontiers in Plant Science | www.frontiersin.org 5 June 2019 | Volume 10 | Article 714

https://plantscience.psu.edu/research/labs/roots/projects
https://plantscience.psu.edu/research/labs/roots/projects
http://matgeom.sourceforge.net/
http://matgeom.sourceforge.net/
http://phytomorph.wisc.edu/download/HeckwolfPlantMethods2015/
http://phytomorph.wisc.edu/download/HeckwolfPlantMethods2015/
http://phytomorph.wisc.edu/download/HeckwolfPlantMethods2015/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00714 June 3, 2019 Time: 11:25 # 6

Zhao et al. Crop Phenomics Review

TABLE 3 | Summary of imaging techniques in high-throughput plant phenotyping platforms (HTPPs).

Imaging
technology

Sensors Raw data Parameters Applications

Visible light
imaging

Visible light camera Gray or color value
images (RGB channels)

Whole organs or organ parts, time series
(minutes to days)

Morphologic traits, digital biomass, height, etc.
Assess plant growth status, nutritional status,
and accumulated biomass.

Fluorescence
imaging

Fluorescence
cameras

Pixel-based map of
emitted fluorescence in
the red and far-red region

Multiple chlorophyll fluorescence parameters
and multi-spectral fluorescence parameters

Photosynthetic status/quantum yield/seedling
structure/leaf disease, etc.

Infrared
imaging

Thermal imaging,
Near-infrared
cameras

Pixel-based map of
surface temperature in
the infrared region

Leaf area index, surface temperature, canopy
and leaf water status, seed composition, time
series (minutes to days)

Measurements of leaf and canopy transpiration,
heat dissipation, stomatal conductance
differences, etc.

Spectral
imaging

Spectrometers,
hyperspectral
cameras

Continuous or discrete
spectra

Water content, seed composition, etc. indoor
time series experiment

Disease severity assessment/leaf and canopy
growth potential.

3D imaging Stereo camera/TOF
camera systems

RGB/IR/Depth images Plant or organ morphology, structure, and color
parameters, time series at various resolutions

Shoot structure, leaf angle, canopy structure,
etc.

Laser scanning Laser scanning
instruments

Depth maps, 3D point
clouds

Plant or organ morphology, structure
parameters, time series at various resolutions

Shoot structure, leaf angle, canopy structure,
etc.

MRI Magnetic
resonance imagers

Water (1H) mapping Water content, morphology parameters
(200–500 µm), 1–600 s

Morphometric parameters/water content.

PET Positron emission
detectors

Radiotracer mapping and
co-registration with
positron emission signals

Transport partitioning, sectorality, flow velocity,
1–2 mm, 10 s– 20 min

Visualize the metabolic distribution and
transport of radionuclides.

CT X-ray tomography Voxels/tissue slices Morphometric parameters in 3D (1–100 µm),
minutes- hours

Tissue density, tiller number, seed quality, and
tissue 3D reconstruction.

(4) Thermal imaging, which obtains the plant surface
temperature distribution, stomatal conductance and
transpiration phenotype.

(5) Lidar, which obtains the three-dimensional structure
phenotype of plants.

Moreover, other advanced imaging techniques widely used in
medicine, such as MRI, PET, and CT, have also been introduced
into HTPPs in the growth chamber or greenhouse. The following
table lists the major imaging techniques used in the HTPPs in the
growth chamber or greenhouse.

After integration of information technology, digital
technology and platform equipment with plant phenotyping,
several HTPPs in growth chamber or greenhouse have been
listed in Table 4. Such high-throughput phenotyping platforms
are characterized by automation, high-throughput, and high
precision, which greatly improve plant data collection efficiency
and accuracy, in order to improve the efficiency of crop breeding.

However, most HTPPs still have high construction, operating,
and maintenance costs, and most academic and research
institutions do not have access to these techniques as a result
(Kolukisaoglu and Thurow, 2010). For example, the number of
fully automatic and high-throughput phenotyping platforms is
limited in China: one was developed by the Crop Phenotyping
Center (CPC), http://plantphenomics.hzau.edu.cn/, and the
others were introduced by LemnaTec, such as http://bri.caas.
net.cn/, http://www.kenfeng.com/, and http://www.zealquest.
com/. Because of this, there has been increased research into
developing affordable, small-scale plant phenotyping platforms
and technology. In fact, affordable phenotypic acquisition
techniques or platforms are constantly being updated, such as

the imaging system developed by Tsaftaris and Noutsos (2009)
that uses wireless-connected consumer digital cameras, and
the low-cost Glyph phenotyping platform (Pereyra-Irujo et al.,
2012). Lowering the cost of these platforms could, therefore,
significantly increase the scope of phenotypic research and
advance the rapid expansion of phenotypic–genotypes analysis
for complex traits.

High-Throughput Methodologies for
Crop Phenotyping in Field Environment
Field-based phenotyping (FBP) is a critical component of crop
improvement through genetics, as it is the ultimate expression
of the relative effects of genetic factors, environmental factors,
and their interaction on critical production traits, such as yield
potential and tolerance to abiotic/biotic stresses (Araus and
Cairns, 2014; Neilson et al., 2015). Currently, the most commonly
field-based phenotyping platforms (FBPPs) use ground wheeled,
rigid motorized gantry or aerial vehicles, combined with a wide
range of cameras, sensors and high-performance computing, to
capture deep phenotyping data in time (throughout the crop
cycle) and space (at the canopy level) in field environments
(Fritsche-Neto and Borém, 2015) (Table 5). It cannot be denied
that the efficiency of ground wheeled phenotyping system is
quite low if the plot area is too large (White et al., 2012;
Zhang and Kovacs, 2012). In 2016, FIELD SCANALYZERS, with
rigid motorized gantry supporting a weather proof measuring
platform that incorporates a wide range of cameras, sensors and
illumination systems, were developed. The facility, equipped with
high-resolution visible, chlorophyll fluorescence and thermal
infrared camera, hyperspectral imager, and 3D laser scanner.

Frontiers in Plant Science | www.frontiersin.org 6 June 2019 | Volume 10 | Article 714

http://plantphenomics.hzau.edu.cn/
http://bri.caas.net.cn/
http://bri.caas.net.cn/
http://www.kenfeng.com/
http://www.zealquest.com/
http://www.zealquest.com/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00714
June

3,2019
Tim

e:11:25
#

7

Zhao
etal.

C
rop

P
henom

ics
R

eview

TABLE 4 | Exhaustive list of digital technologies and platform equipments for crop phenotyping in controllable environment.

HTPPs Sensor options Functions Application examples References

WPScan Conveyor RGB sensor The world’s first high-throughput
phenotyping.

Maize morphologic traits, digital biomass,
height, et al.

http://www.wps.eu/en

Trait Mill RGB sensor TraitMill is the first platform that
combines genes on rice phenotypes.

The TraitMill is a highly versatile tool for
testing the effect of genes and gene
combinations on plant phenotype.
Focusing on japonica rice, but does some
work on maize.

http://www.cropdesign.com; Reuzeau,
2007; Reuzeau et al., 2010

Scanalyzer Plant-to-Sensor RGB Visible; PS2
Fluorescence;
Fluorescence; Near
Infrared.

Hosting different sensors to capture
multiple data points per plant;
Ranging from small versions for few
plants up to large installations for
several hundreds of plants.

Corn leaf segment; graph to object
converter; HSI TO GRAY converter, etc.

Golzarian et al., 2011; Chen D. et al.,
2014; Neilson et al., 2015; Amanda
et al., 2016; Arend et al., 2016b; Cai
et al., 2016; Guo et al., 2017; Liang
et al., 2017; Majewsky et al., 2017;
Meng et al., 2017; Neumann et al.,
2017; Pandey et al., 2017; Parlati et al.,
2017; Tomé et al., 2017; van de Velde
et al., 2017

Sensor-to-Plant Visible light camera;
Chlorophyll
fluorescence camera;
Infrared camera;
Hyperspectral cameras;
3D Laser scanner.

Do not to move the plants to avoid
mechanical stress;
Motorized gantry can be fitted inside
the greenhouse to transport sensors
above the plants.

Ground cover
Canopy height
Plant geometry
Growth and biomass
Counting features
Growth stages
Vegetation indices
Chlorophyll fluorescence parameters

http://www.lemnatec.com

KeyGene digital
phenotyping

PhenoFab R© RGB sensor A greenhouse phenotyping platform;
The capacity: 1.400 plants.

Seed treatments in sugar beet;
Investigate the physiological effects of corn.

http://www.keygene.com

Plant Screen PlantScreen
Modular System

Multiple imaging
sensors

Integrated robotic solution for
high-precision digital plant phenotyping
and plant cultivation of mid-scale size
up to large plants in greenhouse or
semi-controlled environment.

High-throughput screening
Morphology and growth assessment
Nutrient management
Photosynthetic performance
Abiotic stress
Pathogen interaction
Trait identification
Chemical screening
Nutrient effects
Arabidopsis.

http://www.psi.cz/;
Silsbe et al., 2015

(Continued)

Frontiers
in

P
lantS

cience
|w

w
w

.frontiersin.org
7

June
2019

|Volum
e

10
|A

rticle
714

http://www.wps.eu/en
http://www.cropdesign.com
http://www.lemnatec.com
http://www.keygene.com
http://www.psi.cz/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00714
June

3,2019
Tim

e:11:25
#

8

Zhao
etal.

C
rop

P
henom

ics
R

eview

TABLE 4 | Continued

HTPPs Sensor options Functions Application examples References

PHENOSPEX PlantEye F500 3D Laser, multispectral
camera

Multispectral 3D Scanner for plants Compute automatically a wide variety of
morphological parameters such as: plant
height, 3D leaf area, projected leaf area,
digital biomass, leaf inclination, leaf area
index, light penetration depth and leaf
coverage.
Typical applications like germination assays,
drug screening, experimental control,
documentation, quality control or
phenotyping.

http://phenospex.com;
Vadez et al., 2015

DroughtSpotter Automated gravimetric
sensors

Drought research and breeding

MobileDevice PlantEye
F400/PlantEye F500

For lab and greenhouse automation

Rice automatic phenotyping
platform (RAP)

Color imaging device,
linear X-ray computed
tomography (CT), etc.

A phenotyping facility for
high-throughput and automatic
phenotypic screening of rice
germplasm resources and populations
throughout the growth period and after
harvest.

Combination of the multifunctional
phenotyping tools RAP and GWAS to
investigate the genetic control of rice and
maize growth and development.

http://plantphenomics.hzau.edu.cn/;
Yang et al., 2015; Zhang et al., 2017

SCREEN House PlantScreen
Self-Contained (SC)
Systems/
PlantScreen
Compact System

RGB digital color
imaging,
Kinetic, chlorophyll
fluorescence Imaging,
Hyperspectral Imaging,
Thermal Imaging,
3D Scanning, etc.

The system is designed for digital
phenotyping of small and mid-sized
plants up to 50 cm in height.

Arabidopsis, strawberries, turf grass,
soybean, tobacco, corn seedlings, etc.
Morphology and growth assessment
Nutrient management
Photosynthetic performance
Abiotic stress
Pathogen interaction
Trait identification
Chemical screening
Nutrient effects

http://qubitphenomics.com;
Berger et al., 2007

SCREEN House RGB camera Monitoring plant water status; shoot
structure of plant.

This system is used for screening of the
shoot structure and function of different
plant species (e.g., canola, maize, tomato,
cereals) in a greenhouse;
Continuous monitoring of plant water status
and the environmental conditions

Nakhforoosh et al., 2016

PHENOPSIS RGB camera, infrared
camera.

Automated phenotyping platform
allowing a culture of approximately
200–500 Arabidopsis plants in
individual pots with automatic watering
and imaging system

Rosette area or leaf area measurements
through image analysis;
Photosynthesis and stomatal conductance
measurements.

http://bioweb.supagro.inra.fr/phenopsis;
Granier et al., 2006
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Crops within a 10–20 m × 110–200 m area can be monitored,
which realizes the continuous, automatic, and high-throughput
detection of crop phenotyping detection in field (Virlet et al.,
2016; Sadeghi-Tehran et al., 2017). Meanwhile, the cable-
suspended field phenotyping platform covering an area of ∼1 ha
was also developed for rapid and non-destructive monitoring
of crop traits (Kirchgessner et al., 2016). However, these
large ground-based field phenotyping platforms also have high
construction, operating, and maintenance costs, and it has to
be located at certain sites limiting the scale at which it can
be used. Furthermore, the ground-based FBPPs are not very
suitable for large crops, such as maize, except in the early stages
(Montes et al., 2011).

In recent years, manned aircraft and unmanned aerial vehicle
remote sensing platforms (UAV-RSPs) are becoming a high-
throughput tool for crop phenotyping in the field environment
(Berni et al., 2009; Liebisch et al., 2015), which meet the
demands of spatial, spectral, and temporal resolutions (Yang
et al., 2017) (Table 5). For example, thermal sensors fitted
to manned aircraft were used to measure canopy temperature
(Deery et al., 2016; Rutkoski et al., 2016). The sensors that UAV-
RSPs carried typically included digital cameras, infrared thermal
imagers, light detection and ranging (LIDAR), multispectral
cameras, and hyperspectral sensors, which are applied to:
canopy surface modeling and crop biomass estimation based
on visible imaging; crop physiological status monitor, such
as chlorophyll fluorescence and N levels, based on visible–
near-infrared spectroscopy and high-resolution hyperspectral
imaging; plant water status detection based on thermal imaging;
and crop fine-scale geometric traits analysis based on LIDAR
point clouds (Sugiura et al., 2005; Overgaard et al., 2010; Swain
et al., 2010; Wallace et al., 2012; Gonzalez-Dugo et al., 2013,
2014, 2015; Mathews and Jensen, 2013; Diaz-Varela et al., 2014;
Nigon et al., 2015; Gómez-Candón et al., 2016; Camino et al.,
2018; Roitsch et al., 2019). There are definite advantages for UAV-
RSPs, including portable, high monitoring efficiency, low-cost,
and suitability for field environments. On the other hand, some
limiting factors for UAV-RSPs also exist, including the lack of
methods for fast and automatic data processing and modeling,
the strict airspace regulations, and vulnerable to different weather
conditions. Recently, combining ground-based platforms and
aerial platforms for phenotyping offers flexibility. For example,
the tractor-based proximal crop-sensing platform, combined
with UAV-based platform, was used to target complex traits
such as growth and RUE in sorghum (Potgieter et al., 2018;
Furbank et al., 2019).

CROP PHENOMICS: FROM
PHENOTYPING EXTRACTION, DATA
STORAGE TO KNOWLEDGE ANALYSIS

Phenomic experiments are not directly reproducible because
of the multi-model of sensors (structure, morphology, color,
and physiology information), multi-scales phenotypic data (from
cellular to population level), and variability of environmental
conditions. Crop phenotypic data collection is only the first step

in Phenomic research. How to extract phenotypic traits from raw
data? How to realize phenotype data standardization and storage?
How to make cross-scale, cross-dimensionality meta-analyses?
Finally, based on the phenotypic big data, how to realize the
model-assisted phenotyping and phenotypic-genomic selection?
Hereby this part focuses on hot topics in crop phenomics
analysis raised above. We then suggest that research in this
area is entering a new stage of development using artificial
intelligence technology, such as deep learning methods, in
which can help researchers transform large numbers of omic-
data into knowledge.

Phenotype Extraction
Image-based phenotyping, as an important and all-purpose
technique, has been applied to measure and quantify vision-
based and model-based traits of plant in the laboratory,
greenhouse and field environments. So far, lots of image
analysis methods and softwares have been developed to perform
image-based plant phenotyping (Fahlgren et al., 2015b). From
image analysis perspective, phenotypic traits of plant can be
classified into 4 categories, i.e., quantity, geometry, color and
texture, and are also classified into linear and non-linear
features related to the pixel representation. Moreover, some
valuable agronomic and physiological traits can be derived
from image features. Generally, image techniques are specially
designed according to specific crop varieties and phenotypic
traits of interest, and always require with prior knowledge
of research objects, as well as more or less man-machine
interaction. Under highly controlled conditions, the classic
image processing pipeline can provide acceptable phenotyping
results, such as biomass (Leister et al., 1999), NDVI (Walter
et al., 2015), chlorophyll responses (Walter et al., 2015), and
compactness (Vylder et al., 2012) etc. However, the simple
image processing pipeline is still very difficult to handle
with non-linear, non-geometric phenotyping tasks (Pape and
Klukas, 2015). Facing species and environment diversities,
fully automated and intelligent image analysis will remain a
long-term challenge.

Machine learning techniques, such as support vector
machines, clustering algorithms, and neural networks, have
been widely utilized to image-based phenotyping, which not
only improve the robustness of image analysis tasks, also
relieve tedious manual intervention (Singh et al., 2016). There
is no doubt that machine learning techniques will have a
prominent role in breaking through the bottlenecks of plant
phenotyping (Tsaftaris et al., 2016). In a broad category of
machine learning techniques (Ubbens and Stavness, 2017),
deep learning demonstrates impressive advantages in many
image-based tasks, such as object detection and localization,
semantic segmentation, image classification, and others (Lecun
et al., 2015). In essence, deep convolutional neural networks
(CNNs) are well suited to many vision-based computer
problems, e.g., recognition (Lecun, 1990), classification (He
et al., 2015), and instance detection and segmentation (Girshick,
2015). Compared with the traditional image analysis methods,
CNNs are simultaneously trained from end to end without
image feature description and extraction procedures. As far
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TABLE 5 | Exhaustive list of characteristics and application of field phenotypic platforms.

Field-based phenotyping
platforms (FBPPs)

Sensor options Functions Application examples References

Ground-based
field
phenotyping
platforms

Field
Scanalyzers

Visible light; Infrared
imaging; Hyperspectral
imaging; PS2
Fluorescence; Laser
Scanners;
environmental sensors.

Capture deep phenotyping
data from crops and other
plants growing in field
environments.

Ground cover, Canopy height, Plant
geometry, Growth and biomass,
Counting features, Growth stages,
Vegetation indices, Chlorophyll
fluorescence parameters.

Virlet et al., 2016;
Sadeghi-Tehran et al.,
2017

FieldScan PlantEye sensors For ultra-high-throughput
plant phenotyping under
field- or semi-field
conditions with throughputs
of 5,000 plants or higher
per hour.

Automatically compute a wide
variety of morphological parameters
such as: Plant height, 3D leaf area,
Projected leaf area, Digital biomass,
Leaf inclination, Leaf area index,
Light penetration depth, Leaf
coverage.

http://phenospex.com;
Vadez et al., 2015

PlantScreen
Field Systems

Hyperspectral imaging;
Fluorescent imaging;
Thermal imaging

An autonomous drive pivot
tower contains multiple
sensor nodes mounted on
an XZ– robotic arm.

Plant height evaluation and leaf
overlap detection, rapid
non-invasive measurement of
photosystem II activity, analysis of
plant’s responses to heat load and
water deprivation, and 3D plant
reconstruction

http:
//qubitphenomics.com

ETH Field
Phenotyping
Platform (FIP)

DSLR; laser scanner;
thermal camera.

Cable-suspended field
phenotyping platform
covering an area of ∼1 ha

Monitoring canopy cover, canopy
height and traits related to thermal
and multi-spectral imaging of
selected examples from winter
wheat, maize and soybean.

Kirchgessner et al.,
2016

Phenomobile
Lite

LiDAR; RGB camera;
hyperspectral camera;
thermal camera.

A variety of crops less than
1.5 m in height. Can be
adapted for row/vine crops

Non-destructive field phenotyping
of both wheat and rice yielding
estimates of canopy height,
fractional ground cover, greenness
vertical distribution, leaf area, plant
counts, visual assessments.

https:
//www.plantphenomics.
org.au/;
Jimenez-Berni et al.,
2018

UAV platform Airborn LiDAR; Hyperspectral
camera

Plant height estimation, LAI
estimation, Biomass
estimation, Leaf N
concentration detection

Maize and wheat Plant height, LAI,
aboveground
Biomass;
Potato leaf N concentration

Li et al., 2014; Nigon
et al., 2015; Tattaris
et al., 2016

Multi-rotor UAV RGB camera;
multispectral camera;
hyperspectral camera;
thermal camera.

Physiological conditions
assessment, crop growth
monitoring, green canopy
cover and LAI estimation,
Plant height and biomass
estimation, Vegetation
monitoring.

Barley, soybean, maize, sunflower,
wheat, rice, onion, citrus, vineyard
phenotypic analysis.

Zarco-Tejada et al.,
2014; Yang et al.,
2017; etc.

Fixed-wing UAV RGB camera;
multispectral camera;
hyperspectral camera;
thermal camera.

Lodging estimation, weed
detection, estimation of net
photosynthesis, grain yield
prediction, stress detection.

Maize, citrus, vineyard, peach
phenotypic analysis.

Overgaard et al., 2010;
Li et al., 2014; Yang
et al., 2017

Flying wing Multispectral camera Agricultural surveillance and
decision support.

Cherries mature ratio. Herwitz et al., 2004

Helicopter RGB camera;
multispectral camera.

Ground cover estimation;
yield prediction, biomass
estimation, LAI and
Chlorophyll estimation.

Sorghum, rice, corn, olive
phenotyping detection.

Berni et al., 2009;
Swain et al., 2010;
Chapman et al., 2014

as plant phenotyping, CNNs have been effectively applied
to detect and diagnosis (Mohanty et al., 2016), classify fruits
and flowers (Pawara et al., 2017), and count leaf number
(Ubbens and Stavness, 2017). It is worth noting that those
vision-based phenotyping tasks were driven by the massive
captured and annotation plant images. From the view of machine
vision perspective, deep learning has been a fundamental

technique framework in image-based plant phenotyping
(Tsaftaris et al., 2016).

Phenotype Data Standardization and
Storage
A huge amount of complex data and the integration of a
wide range of image, spectral and environmental data can be
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generated through by the above phenotypic technologies, usually
up to GB or even petabytes, unstructured “Big Data.” Thus,
the efficient storage, management and retrieval of phenotypic
data have become the important issues to be considered
(Wilkinson et al., 2016). The current universally accepted
principle of information standardization includes three aspects:
(i) the ‘minimum information’ (MI) approach is recommended
to define the content of the data set, (ii) ontology terms is
applied for the unique and repeatable annotation of data, and
in the form of data sharing and meta-analyses (Krajewski et al.,
2015; Coppens et al., 2017), (iii) and proper data formats,
such as CSV, XML, RDF, MAGE-TAB, etc., are chosen for
the construction of data sets. Up until now, a number of
phenotyping resources have been built ranging from phenotypic
data of one species to multi-data types (Coppens et al.,
2017). In 2010, PODD was developed for capturing, managing,
annotating and distributing the data to support both Australian
and international biological research communities (Li et al.,
2010); Fabre et al. (2011) built a PHENOPSIS DB information
system for Arabidopsis thaliana phenotypic data acquired by
the PHENOPSIS phenotyping platform; Bisque is the first web
based, cross-platform, developed into a repository to store,
visualize, organize and analyze images in the cloud (Kvilekval
Das et al., 2010; Goff et al., 2011). In 2014, ClearedLeaves
DB, an on open online database, was built to store, manage
and access leaf images and phenotypic data (Das et al., 2014);
AraPheno1 was the first comprehensive, central repository
of population-scale phenotypes (it integrated more than 250
publicly available phenotypes from six independent studies)
for A. thaliana inbred lines (Seren et al., 2017); PhenoFront
was a publicly available dataset of above-ground plant tissue
to the LemnaTec Phenotyper platform (Fahlgren et al., 2015a);
in 2016, the plant genomics and phenomics research data
repository (PGP) were developed by the Leibniz institute
of plant genetics and crop plant research and the German
plant phenotyping network to comprehensively publish plant
phenotypic and genotypic data (Arend et al., 2016a). Obviously,
from the perspective of database data standardization and
storage, the storage scheme based on “cloud technology” is
becoming the trend for the development of plant phenotype data
storage. Cloud storage system can optimize the design of the
system architecture, file structure, high-speed cache, etc., for the
plant phenotype platform. At present, all kinds of phenotypic
data collection platforms are still relatively independent, and
have not been established at the level of regions, countries
or continents. Through the advanced technology of artificial
intelligence, establishing a typical crop phenotype database
based on the multi-layer phenotypic information, for example
GDB Human Genome Database, will of interest to a range
of stakeholders.

Model-Assisted Phenotyping:
Functional–Structural Plant Modeling
Plants are highly plastic to genotypes, environment and
management via changing morphological traits and adjusting

1https://arapheno.1001genomes.org

their physiological behavior. Complex interactions between
genotypes, environment and managements at different scales
determine the development of plants, but their separate
contribution to the phenotype remains unclear. Dynamic
models have been proven to be an efficient tool in dissection
of abiotic and biotic effects on plant phenotypes (Tardieu
and Tuberosa, 2010). Functional–structural plant (FSP) (Vos
et al., 2010) models simulate plant growth and development
in time and three-dimension (3D) space, and quantify
complex interactions between architecture and physiological
processes. The combination of FSP modeling and phenotyping
have been used as a facile technique to address research
questions in two ways.

Firstly, FSP models offer a tool to dissect phenotype governed
by a set of mechanisms. For example, Zhu et al. (2015) used
a FSP model to dissect net biodiversity effect into the effect
induced by interspecific trait differences, and the effect induced
by phenotypic plasticity by simulating whole-vegetation light
capture for scenarios with and without phenotypic plasticity
based on experimental plant trait data. The separate effect of
each architectural trait (leaf angle, leaf curvature and internode
length etc.) on dry mass production and light interception
was quantified by simulating canopy growth using a dynamic
FSP model for tomato (Chen T.W. et al., 2014). Radiation
interception and radiation use efficiency were dissected into an
environmental and a genetic term via conducting virtual multi-
genotype canopies, in which the FSP model for maize was applied
to calculate light interception for each plant (Chen et al., 2018).
FSP modeling has proven to be highly effective for disentangling
the relative contribution of each underlying process.

Secondly, high-throughput phenotyping techniques facilitate
the automate and precise calibration of FSP models. Image-
based analysis was performed daily to reconstruct individual
maize architecture, in order to calculate light interception using a
FSP model and to estimate leaf area and the fresh plant weight
of individual plants (Cabrera-Bosquet et al., 2016). Terrestrial
LiDAR scanning was used to reconstruct complex tree canopy
for predicting three-dimensional distribution of microclimate-
related quantities in terms of net radiation, surface temperature
and evapotranspiration (Bailey et al., 2016). OPENSIMROOT
integrated a root model that can simulate growth of a root
system with 3D phenotyping techniques, such as magnetic
resonance imaging (MRI) and X-ray computed tomography (CT)
(Postma et al., 2017). Phenotyping techniques not only provide an
efficient method to evaluate the ability of the model to simulate
plant architecture and geometry but also help researchers to
understand functional responses based on images.

Phenotype–Genotype Association
Analysis
Although genomic data has a major role in crop genetic
improvements and breeding programs, with the advent of the
era of omics, considerable gain can only be achieved by tightly
coupling genomic discovery to plant phenomics (Cobb et al.,
2013; Bolger et al., 2017). In recent years, phenomic researches
that combine genomic data with data on quantitative variation
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in phenotypes have been initiated in many species, which
rapidly decoded the function of a mass of unknown genes and
improved understanding the G-P map (Campbell et al., 2015,
2017; Neumann et al., 2017).

Many agronomic traits are complex and controlled by many
genes, each with a small effect. Identifying the molecular basis
of such complex traits requires genotyping and phenotyping
of suitable mapping populations, enabling quantitative trait
locus (QTL) mapping and genome-wide association studies
(GWAS), which have been widely carried out in crop plants
(Salvi and Tuberosa, 2015; Muraya et al., 2017). Busemeyer et al.
(2013) associated phenotypic traits of small grain cereals with
genome information to dissect the genetic architecture of biomass
accumulation. In 2014, based on 13 traditional agronomic traits
and 2 newly defined traits of rice, Yang et al. (2014) identified
141 associated loci by GWAS. In 2015, Combining GWAS with
29 leaf traits at three growth stages using high-throughput leaf
scoring (HLS), 73 new loci with leaf size, 123 of leaf color,
and 177 of leaf shape were detected (Yang et al., 2015). In
2017, large-scale quantitative trait locus (QTL) mapping was
performed, combined with 106 agronomic traits of maize inbred
line from seedling to tasselling stage, and a total of 988 QTLs were
identified (Zhang et al., 2017). Also, plant sizes of 252 diverse
maize inbred lines were monitored at 11 different developmental
time points, and 12 main-effect marker-trait associations were
identified (Muraya et al., 2017).

Obviously, combining the high-throughput phenotyping
technology and large-scale QTL or GWAS analysis not
only greatly expanded our knowledge of the crop dynamic
development process but also provided a novel tool for studies of
crop genomics, gene characterization and breeding. We believe
that with a complete system of genetic information, combined
with crop high-throughput phenotyping technology, phenotypic-
genomic analysis will revolutionize how we deal with complex
traits and underpin a new era of crop improvement.

FUTURE CHALLENGES AND
PROSPECTS

Phenomics is entering the era of ‘Big Data,’ thus the crop
science community need to combine artificial intelligence
technology and collaborative research at the national and
international levels, to build a new theory for analyzing crop
phenotypic information, construct an effective technical
system able to phenotype crops in a high-throughput,
multi-dimensional, big-data, intelligent and automatically
measuring manner, and create a tool comprehensively
integrating big data achieved from a multi-modality, multi-
scale, phenotypic + environmental + genotypic condition.
There is no denying that there are many challenges that crop
phenomics need to address in the next 5–10 years, such as:

(1) Phenomics is entering the big-data era with high-
throughput, multi-dimensionality, and multi-scale. We
emphasize various phenotyping approaches for crop
morphology, structure, and physiological data with

three multi- characteristics: multi-domain (phenomics,
genomics etc.), multi-level (traditional small to medium
scale up to large-scale omics), and multi-scale (crop
morphology, structure, and physiological data from cell
to whole-plant). The single and individual phenotypic
information cannot satisfy the association analysis in
the new era called ‘-omics,’ and the systematic and
complete phenomics information will be the foundation of
future research.

(2) In response to emerging challenges, new methods
and techniques based on artificial intelligence shall be
introduced to advance image-based phenotyping. An
automated phenotyping system and platform result in
lots of digital features, which need to prove their values
throughout large sample statistics and relationship analysis
with traditional agronomic traits. How to precisely and
efficiently evaluate, understand and interpret these digital
image-based features, and dig out valuable quantitative
traits for functional genomes are key problems in the
development and application of plant phenotyping.

(3) With the multi-domain, multi-level, and multi-scale
phenotypic information, we urgently need to make use
of the latest achievements of artificial intelligence in
depth learning, data fusion, hybrid intelligence and swarm
intelligence to develop big-data management producers for
supporting data integration, interoperability, ontologies,
shareability and globality.

(4) Modeling is a powerful tool to understand G × E × M
interactions, identify key traits of interest for target
environments. Nevertheless, several scientific and technical
challenges need to be overcome. For example the
validity and practicality of the models in terms of
modeling processes and their interactions need further
verification, and the interaction and feedbacks of multi-
scale phenotypes between modeling processes also need
to be solved. Only then will we be able to streamline and
speed up the tortuous gene-to-phenotype journey through
modeling to develop the required agricultural outputs and
sustainable environments for everybody.

(5) Crop genotype (G) -phenotype (p) -envirotype (E)
information comprehensive analysis and utilization. In
short, as Coppens et al. (2017) said “the future of
plant phenotyping lies in synergism at the national and
international levels.” We need to seek novel solutions to the
grand challenges of multi-omics data, such as intelligent
data-mining analytics, which offers a powerful tool to
unravel the biological processes governing plant growth
and development, and to advance plant breeding for much-
needed climate-resilient and high-yielding crops.
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