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As any living organisms, plants must respond to a wide variety of environmental stimuli.
Plant hormones regulate almost all aspects of plant growth and development. Among
all the plant hormones, ethylene is the only gaseous plant hormone that plays pleiotropic
roles in plant growth, plant development and stress responses. Transcription regulation
is one main mechanism by which a cell orchestrates gene activity. This control allows
the cell or organism to respond to a variety of intra- and extracellular signals and
thus mount a response. Here we review the progress of transcription regulation in the
ethylene response.
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TRANSCRIPTIONAL REGULATION IN THE ETHYLENE
RESPONSE

Like all living organisms, plants must respond to a wide variety of environmental stimuli. Plant
hormones, produced in response to environmental stimuli, regulate almost all aspects of plant
growth and development. Ethylene is a gaseous plant hormone that plays pleiotropic roles in
plant growth, plant development, and stress responses. Histone acetylation, which is modulated
through ethylene-mediated signaling, regulates dynamic changes in chromatin structure that result
in transcriptional regulation in responses to ethylene.

Ethylene is perceived by a family of receptors bound to the endoplasmic reticulum (ER)
membrane (Chang et al., 1993; Bleecker et al., 1998; Hua and Meyerowitz, 1998; Hua et al., 1998;
Sakai et al., 1998). Each receptor binds ethylene via a copper cofactor that is provided by the copper
transporter RESPONSIVE-TO-ANTAGONIST 1 (RAN1)(Hirayama et al., 1999). In the absence of
ethylene, ethylene receptor ETHYLENE RECEPTOR 1 (ETR1) interacts with CONSTITUTIVE
TRIPLE RESPONSE 1 (CTR1), a downstream negative regulator of ethylene signaling (Chang
et al., 1993; Kieber et al., 1993; Gao et al., 2003; Shakeel et al., 2015). CTR1 is a protein kinase that
phosphorylates ETHYLENE INSENSITIVE 2 (EIN2), a key positive regulator of ethylene signaling
(Alonso et al., 1999; Ju et al., 2012), preventing the ethylene response. In addition, in the absence of
ethylene, EIN2 protein levels are regulated by EIN2 TARGETING PROTEIN 1 and 2 (ETP1/2) via
ubiquitin/proteasome-mediated degradation (Qiao et al., 2009).

In the presence of ethylene both ethylene receptors and CTR1 are inactivated, and the
C-terminal end of EIN2 is dephosphorylated and cleaved by unknown mechanisms. The cleaved
C-terminal end of EIN2 translocates to the nucleus (Qiao et al., 2012; Wen et al., 2012; Ju
et al., 2015) where it facilitates the acetylation of histone 3 at K14 and K23 (H3K14 and H3K23,
respectively) to regulate ETHYLENE INSENSITIVE 3 (EIN3) and ETHYLENE INSENSITIVE 3
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LIKE1 (EIL1) – dependent transcriptional regulation (Zhang
et al., 2016). The cleaved EIN2 C-terminal end also translocates
into the P-body through associating with 3′UTRs of EIN3
BINDING F-BOX1 (EBF1) and EBF2, further repressing their
translation (Guo and Ecker, 2003). EBF1 and EBF2 in turn
stabilize EIN3 and EIL1, resulting in activation of EIN3- and
EIL1-dependent transcription and the activation of an ethylene
response (Li et al., 2015; Merchante et al., 2015).

Both genetic and molecular studies have demonstrated
that EIN3 and EIL1 are positive regulators that are necessary
and sufficient for the ethylene response (Chao et al., 1997;
Guo and Ecker, 2003; Chang et al., 2013). The EIN3 gene
encodes a nuclear-localized protein that is essential to the
response to ethylene (Chao et al., 1997). In the absence
of EIN3, plants are partially insensitive to ethylene both
at the morphological and molecular levels (Chao et al.,
1997; Guo and Ecker, 2003). The EIN3 binding motif
was identified after analysis of the promoters of the genes
that are highly up-regulated by ethylene and followed by
validation using an electrophoresis mobility shift assay
(EMSA) (Ohme-Takagi and Shinshi, 1990; Eyal et al., 1993;
Meller et al., 1993; Sessa et al., 1995; Shinshi et al., 1995;
Sato et al., 1996; Solano et al., 1998). Using the EMSA
assay, EIN3 was shown to form a homodimer in the
presence of DNA in vitro (Solano et al., 1998). However,
whether the homodimer is formed in vivo and whether the
homodimer is required for EIN3 to function in the ethylene
signaling are unknown. A number of transcription factors
are known to form homodimers or heterodimers, which
have different specificities and affinities for certain DNA
motifs (Funnell and Crossley, 2012). Finding out whether the
dimerization is necessary for EIN3′s function in vivo will be
an interesting question in the transcriptional regulation of the
ethylene response.

To explore the transcription regulation in response to
ethylene, Chang et al characterized the dynamic ethylene
transcriptional response by identifying targets of EIN3, the
master regulator of the ethylene signaling pathway, using
chromatin immunoprecipitation sequencing and transcript
sequencing during a time course of ethylene treatment
(Chang et al., 2013). They found that the number of genes
bound by EIN3 does not change significantly in response
to ethylene. The amount of EIN3 bound increases upon
ethylene treatment, and the expression of most of EIN3-bound
genes is up regulated by ethylene, which is consistent with a
role of EIN3 as a transcriptional activator. Chang et al. also
analyzed the sequences of EIN3-bound regions identified
by ChIP-seq (Ohme-Takagi and Shinshi, 1990; Eyal et al.,
1993; Meller et al., 1993; Sessa et al., 1995; Shinshi et al.,
1995; Sato et al., 1996; Solano et al., 1998). A motif similar
to that previously identified in the promoter regions of
ethylene up-regulated genes was present in EIN3-bound
regions (Ohme-Takagi and Shinshi, 1990; Eyal et al., 1993;
Meller et al., 1993; Sessa et al., 1995; Shinshi et al., 1995;
Sato et al., 1996; Solano et al., 1998). Intriguingly, Chang
et al. also found that ethylene-induced transcription occurs
in temporal waves that were regulated by EIN3 with the

potentially distinct layers of transcriptional control (Chang
et al., 2013). EIN3 binding was found to modulate a multitude
of downstream transcriptional cascades, including a major
feedback regulatory circuitry of the ethylene signaling
pathway, as well as most of the hormone-mediated growth
response pathways, which indicates that network-level
feedback regulation results in overall system control and
homeostasis (Chang et al., 2013). This type of study can
be applied to identify novel components in signaling
pathways (Rosenfeld et al., 2002; Amit et al., 2007; Tsang
et al., 2007; Avraham and Yarden, 2011; Feng et al., 2011;
Yosef and Regev, 2011).

Although the transcriptional activation has been the main
focus in the ethylene response, transcriptome analysis in Chang’s
study clearly showed that nearly 50% of ethylene-altered genes
are down regulated and that a subset of ethylene-repressed genes
are bound by EIN3 (Chang et al., 2013). Notably, most of the
genes are down regulated by ethylene within 1 h of treatment.
This result strongly suggests that transcriptional repression
plays a critical role in early ethylene response. Interestingly,
a recent study from the Qiao lab showed that transcriptional
repression dose plays important roles in ethylene response.
We identified two histone deacetylases (HDACs) SIRTUIN 1
and 2 (SRT1 and SRT2) that regulate ethylene-repressed genes
(Zhang et al., 2018). Notably the study found that SRT2 binds
the target promoter regions to inhibit acetylation of histone
3 at K9 (H3K9Ac), repressing gene expression in response to
ethylene (Figure 1).

Transcriptional repression by chromatin modification is one
of the principal mechanisms employed by eukaryotic active
repressors (Thiel et al., 2004; Kagale and Rozwadowski, 2011).
The importance of HDACs in transcriptional repression during
plant growth and development has been well established (Song
et al., 2005; Li et al., 2017). For example, in Arabidopsis, the
EAR motif containing class II ETHYLENE RESPONSIVE
ELEMENT BINDING FACTORS (ERFs), such as ERF3 and
ERF4, which are known to function as active repressors
in vitro and in vivo, have been shown to physically interact
with AtSAP18, which in turn interacts and forms a repression
complex with AtHDA19 (Fujimoto et al., 2000; Ohta et al., 2001;
McGrath et al., 2005; Song and Galbraith, 2006). AtERF7,
another EAR motif-containing class II ERF protein, is
also known to recruit AtHDA19 via a physical interaction
with AtSIN3 (Song et al., 2005). In planta, coexpression
of AtERF3, AtSAP18, and AtHDA19 or AtERF7, AtSIN3,
and AtHDA19 results in greater transcriptional repression
of reporter genes as compared to when these proteins are
expressed alone suggesting a role for AtSAP18, AtSIN3,
and AtHDA19 in ERF-mediated transcriptional repression
possibly via histone deacetylation (Song et al., 2005; Song and
Galbraith, 2006). Yet, whether EAR containing proteins are
also required for SRT1 and SRT2 mediated transcriptional
repression in response to ethylene is unknown (Zhang
et al., 2018). It also remains unclear whether the ethylene
response has a molecular mechanism of transcriptional
repression similar to that induced by other plant hormones.
Exploring the molecular mechanism of transcriptional
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FIGURE 1 | Diagram to illustrate the transcription regulation in ethylene response. Upper panel: in the absence of ethylene, no ethylene regulated transcription
regulation; In the presence of ethylene, accumulated EIN3 interacts with ENAP1 and EIN2 c-terminus, which elevates histone acetylation of H3K14Ac and H3K23Ac
through an interaction with unidentified histone acetyltransferases to activate EIN3 dependent transcriptional activation. Lower panel: In the absence of ethylene,
ethylene down-regulated genes are transcribed; In the presence of ethylene, histone deacetylase SRT1 and SRT2 are recruited to target genes to keep a low level of
H3K9Ac, resulting in the targets for transcriptional repression.

repression will provide more insight into ethylene signaling
and ethylene response.

HISTONE ACETYLATION IN
ETHYLENE-MEDIATED
TRANSCRIPTIONAL REGULATION

In eukaryotes, the binding of transcription factors is mainly
determined by chromatin structure, namely the state of the
genome’s packaging with specific structural proteins, mainly
histones. Chromatin undergoes different dynamics structure
changes, further influences transcription factor binding. Among
all the regulations, histone acetylation results in a switch
between repressive and permissive chromatin. In general,
acetylation neutralizes the positive charges of lysine residues and
decreases the interaction between histone and DNA, leading
to a more relaxed chromatin structure, which is associated
with transcriptional activation. In contrast, deacetylation induces
a compact chromatin structure, which is associated with
transcriptional repression (Fletcher and Hansen, 1996; Steger and
Workman, 1996; Luger and Richmond, 1998).

A Number of studies have shown a tight link between histone
acetylation and plant hormone responses (Zhu, 2010). In the
studies of ethylene signaling, authors found that GENERAL
CONTROL NON-REPRESSED PROTEIN 5 (GCN5), which
belongs to a family of histone acetyl transferases (HATs),
promotes transcriptional activation (Brownell and Allis, 1996;
Grant et al., 1997; Bian et al., 2011; Weake and Workman,
2012; Ryu et al., 2014). The Arabidopsis gcn5 mutant shows
hypersensitivity to ethylene treatment. In the gcn5 mutant, the
histone acetylation at H3K9 and H3K14 in the promoter regions

of ethylene response genes is elevated, and the elevation is
associated with the up-regulation of gene expression (Poulios
and Vlachonasios, 2016). In Arabidopsis, the HAC family,
which are the homologs of CREB-binding protein (CBP)
and p300, the mammalian family of HAT domain containing
transcriptional coactivators, play pleotropic roles in plant growth
and development (Pandey et al., 2002; Li et al., 2014). The
hac1hac5 double mutant was found to have a constitutive triple
response phenotype (Pandey et al., 2002; Li et al., 2014). It
was expected that gene expression would be down regulated in
the hac1hac5 double mutant due to the reduction of histone
acetylation levels; however, similar to that in gcn5 mutant, the
downstream ethylene responsive genes are elevated in hac1hac5
double mutant (Li et al., 2014), suggesting an indirect regulation
of ethylene responsive genes by HAC1 and HAC5.

Expression of two HDACs, HAD6 and HDA19, are specifically
elevated by ethylene treatment. The expression of ethylene
responsive gene ERF1 is anti-correlated with the levels of histone
H3 acetylation in 35S:HDA19 transgenic plants, showing that
HDA19 indirectly influences ERF1 gene expression (Zhou et al.,
2005). It is possible that HDA19 induces ERF1 expression
by preventing binding of an unknown transcription repressor
that regulates ERF1 expression (Zhou et al., 2005). JAZ
proteins recruit HDA6 to deacetylate histones and obstruct
the chromatin binding of EIN3/EIL1, therefore repressing
EIN3/EIL1-dependent transcription and inhibiting jasmonic
acid-mediated signaling (Zhu et al., 2011). This provides evidence
that histone acetylation regulates EIN3 target genes.

H3K14Ac and H3K23Ac, but not H3K9Ac, H3K18Ac, or
H3K27Ac, are elevated by ethylene treatment at the molecular
level (Zhang et al., 2016; Yoon et al., 2017). Interestingly, even
though the levels of H3K9Ac are not regulated by ethylene, the
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levels of H3K9Ac in the promoters of ethylene up-regulated
genes are higher than that in those ethylene down-regulated
genes both with and without ethylene treatments (Zhang et al.,
2016; Yoon et al., 2017). Presumably, H3K9Ac is a pre-existing
mark that labels genes regulated by ethylene, whereas the
elevation of H3K14Ac and H3K23Ac is positively associated
with gene activation. Most importantly, the ethylene-induced
change of histone acetylation is EIN2 dependent. However,
EIN2 is not a histone or a DNA binding protein, and the
biochemical function of EIN2-C remains unknown. Yeast two-
hybrid screening and ChIP-re-ChIP suggests that EIN2-C is
associated with histones at least in part through EIN2 NUCLEAR
ASSOCIATED PROTEIN 1 (ENAP1), which has histone binding
activity (Figure 1; Zhang et al., 2017). It is possible that EIN2-
C is a scaffolding protein that is important for the formation
of HAT-containing protein complexes in response to ethylene.
Identification of HAT or HDAC that functions in cooperation
with EIN2-C would validate this assumption. In contrast to
transcriptional activation, histone acetylation of H3K9Ac was
found to be involved in the transcriptional repression, and the
regulation is partially mediated by histone deacetylase SRT1 and
SRT2 (Figure 1).

Taken together, currently available data suggest that in
the absence of ethylene ENAP1 binds to histones to keep
chromatin in a relaxed state poised for a rapid response to
ethylene (Figure 1). In the presence of ethylene, EIN2-C is
translocated to the nucleus where it interacts with ENAP1
and potentially HATs resulting in histone acetylation. This
causes an uncompacting of chromatin, resulting in more EIN3
binding to target genes and ultimately transcription activation
(Figure 1). It is not known how the histone acetylation targets
are determined in the presence of ethylene. Zhang et al.
showed that EIN3 is partially required for the ethylene-induced
elevation of H3K14Ac and H3K23Ac (Pandey et al., 2002),
suggesting that EIN3 might mark histone acetylation targets.
Multi-protein assemblies have been shown to determine the
substrate specificities and targeting of integral HAT subunits.
The molecular mechanism of how EIN3, ENAP1, and EIN2-C
coordinate to integrate the histone acetylation and transcription
regulation remains to be elucidated. Beside histone acetylation
regulation in transcriptional activation, histone acetylation
has been shown to be involved in transcriptional repression
in ethylene response. As mentioned above, SRT1 and SRT2
mediate transcriptional repression that requires a low level
of H3K9Ac (Yosef and Regev, 2011). How the H3K9Ac
levels are determined in the desired targets in the first
place is an interesting and important question that needs
to be addressed.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Plants must respond accurately and quickly to hormones, and this
necessitates a flexible and rapid way to control gene expression.
The acetylation of histone tails by HATs neutralizes positive
charges on these proteins that would otherwise interact with
negatively charged DNA, facilitating nucleosome unwrapping
for rapid transcription activation. How plants utilize a limited
number of HATs and HDACs to specifically regulate responses
to different hormones is largely unknown. Presumably, the
specificity relies on the partners of HATs and HDACs.
Identification of the HAT- and HDAC-containing complexes
upon ethylene treatment will reveal details of the molecular
mechanisms that underlie the ethylene response. Recent studies
have clearly shown that different tissues respond to plant
hormones differently (Garg et al., 2012; Pattison et al., 2015;
Raines et al., 2016). Most available data on histone acetylation
induced by plant hormones come from analyses of the whole
plant. Studies of histone acetylation in individual tissues and
in different cell types will provide more detailed insight into
how histone acetylation controls responses to plant hormones.
Transcription factor binding in eukaryotes is highly dependent
on the context of binding sites on chromatin, but little is
known about how EIN3 determines histone acetylation sites in
target genes. A more complete understanding of the molecular
mechanism of determination of transcriptional activation and
transcriptional repression during the ethylene response will
facilitate development of methods to improve crop production.
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