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Plant specialized metabolism emerged from the land colonization by ancient plants, 
becoming diversified along with plant evolution. To date, more than 1 million metabolites 
have been predicted to exist in the plant kingdom, and their metabolic processes have 
been revealed on the molecular level. Previous studies have reported that rates of evolution 
are greater for genes involved in plant specialized metabolism than in primary metabolism. 
This perspective introduces topics on the enigmatic molecular evolution of some plant 
specialized metabolic processes. Two transferase families, BAHD acyltransferases and 
aromatic prenyltransferases, which are involved in the biosynthesis of paclitaxel and 
meroterpenes, respectively, have shown apparent expansion. The latter family has been 
shown to be involved in the biosynthesis of a variety of aromatic substances, including 
prenylated coumarins in citrus plants and shikonin in Lithospermum erythrorhizon. These 
genes have evolved in the development of each special subfamily within the plant lineage. 
The broadness of substrate specificity and the exon-intron structure of their genes may 
provide hints to explain the evolutionary process underlying chemodiversity in plants.

Keywords: prenyltransferase, acyltransferase, BAHD, Citrus, gene family, molecular evolution, specialized 
metabolism, Lithospermum, Taxus

INTRODUCTION

Since land plant colonization 500 million years ago, plant specialized metabolic processes 
have expanded considerably, resulting in the development of diverse traits within the plant 
kingdom (Weng et  al., 2012). The chemical diversity of those natural products provides 
various metabolites beneficial for human life, including compounds associated with flavor, 
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color, taste, and medicine. A comparative genome analysis 
strongly suggested that gene duplications played a major role 
in the evolution of divergent metabolic pathways (Fani and 
Fondi, 2009). The increase in the number of gene copies 
may have allowed promiscuous diversity of the encoded 
enzymes, resulting in the synthesis of new metabolites and 
providing organismal fitness that enhances the establishment 
of biosynthetic pathways in the plant lineage. The expansion 
of plant specialized metabolism has been observed in the 
genome of Selaginella moellendorffii, a plant that diverged 
shortly after the establishment of vascular tissues in plant 
evolution (Banks et  al., 2011). A representative example of 
these expanded gene families is cytochrome P450-dependent 
monooxygenases, which constitute 1% of the predicted proteome 
in Selaginella. The genome of liverwort, Marchantia polymorpha, 
also encodes many terpenoid biosynthetic enzymes sharing 
a common isoprenoid pathway, a derivative designated taxadiene 
for the synthesis of plant hormones like gibberellin (Bowman 
et al., 2017). In Physcomitrella patens, a diterpene ent-kaurene 
is converted to gibberellin-type diterpenes, which act as 
regulators of protonema differentiation (Hayashi et al., 2010).

Species of the gymnosperm Taxus synthesize unique diterpene 
compounds called “taxoids,” which include an important 
anticancer drug, paclitaxel, a derivative designated taxadiene 
(Guerra-Bubb et  al., 2012). Over 350 taxoid compounds were 
identified by 1999, with these compounds having variable side 
residues at the C1, C2, C4, C5, C7, C9, C10, C13, and C14 
positions of the core taxadiene skeleton (Baloglu and Kingston, 
1999). Except for a partial biosynthetic route (Croteau et  al., 
2006), knowledge about the biosynthetic pathway of taxoids 
that contribute to the chemodiversity in Taxus is limited.

Because of their fine-tuned genome data resources, angiosperm 
species provide good model systems to study molecular 
mechanisms underlying the chemodiversity of plant metabolites 
(Kroymann, 2011). For example, meroterpenes, including 
furanocoumarin derivatives (Bourgaud et al., 2006) and shikonin 
derivatives that are lipophilic red naphthoquinone (Yazaki, 
2017), are specialized metabolites synthesized through branched 
routes from a metabolic pathway common to the general 
phenylpropanoid and isoprenoid biosynthetic pathways (Yazaki 
et al., 2017). The term “primary metabolism” indicates processes 
required to sustain life, such as energy acquisition from glucose. 
These processes include, for example, the biosynthesis of 
ubiquinone, a component of the respiratory chain in 
mitochondria. The biosynthesis of shikonin derivatives involves 
steps common to those involved in ubiquinone biosynthesis. 
To avoid confusion in distinguishing between primary and 
specialized (secondary) metabolism, this article uses the term 
“common metabolism” rather than “primary metabolism” to 
indicate biosynthetic pathways conserved in a broad variety 
of organisms.

This perspective focuses on two enzyme families as examples 
of molecular evolutionary events: the aromatic substrate 
prenyltransferase family, which plays a key role in the diversification 
of phenolics, and the BAHD (BEAT-AHCT-HCBT-DAT; initials 
of representative members) acyltransferase family, which is 
responsible for the derivatization of a core metabolite.

EVOLUTION OF THE CITRUS 
PRENYLTRANSFERASE GENE FAMILY

Among prenyltransferase superfamily including prenyl chain 
elogation enzymes, aromatic prenyltransferases represent a family 
responsible for the prenylation of aromatic substances. An aromatic 
prenyltransferase of Citrus limon, ClPT1, is responsible for the 
biosynthesis of 8-geranylumbelliferone, a coumarin derivative of 
a plant specialized metabolite (Munakata et  al., 2014). The 
chemical diversity of coumarin derivatives is greatly increased 
by the involvement of aromatic prenyltransferases, which have 
been identified in many plant lineages during the last decade 
(Karamat et  al., 2014; Munakata et  al., 2014). Phylogenetic 
analysis has suggested that the diverse prenyltransferases developed 
independently in each plant family rather than developing from 
a common ancestor within the prenyltransferase gene family 
(Munakata et  al., 2016). The plant prenyltransferase gene family 
contains conserved subfamilies responsible for the ubiquinone, 
plastoquinone, and vitamin E biosynthesis pathways (Li, 2016).

An outline of the evolutionary development of plant aromatic 
prenyltransferases in Citrus species was revealed by a phylogenetic 
analysis of previously characterized prenyltransferases and 
prenyltransferases of the model species P. patens, S. moellendorffii, 
Arabidopsis thaliana, Glycine max, and Lithospermum erythrorhizon 
(see below), in addition to Citrus sinensis (Figure  1A). 
Phylogenetically, these intrinsic membrane proteins can be grouped 
into three major subfamilies, i.e., those involved in the biosynthesis 
of vitamin E, plastoquinone, and ubiquinone (shown as yellow 
and gray backgrounds and as the black triangle, respectively in 
Figure  1A, with the black triangle expanded in Figure 1B). The 
biochemical functions of AtVTE2-1 (Savidge et al., 2002), AtVTE2–2 
(Venkatesh et  al., 2006), and OsPPT1 (Ohara et  al., 2006) have 
been described. As expected from their fundamental roles, all 
model plant species had one or more proteins in each subfamily. 
In contrast, a search of the C. sinensis database revealed nine 
prenyltransferase-like proteins, forming a Citrus-specific subfamily 
within the vitamin E clade (shown in red in Figure 1A). A similar 
result was obtained by searching Citrus clementina genome sequences. 
These results suggest that Citrus species have developed a unique, 
expanded gene subfamily for specialized metabolism, with ClPT1 
being biochemically characterized. This analysis also identified a 
similar unique subfamily expansion in G. max (shown in blue 
in Figure 1A). The first flavonoid-specific prenyltransferase SfN8DT1 
from a legume species Sophora flavescens (Sasaki et  al., 2008) is 
in this group, suggesting that flavonoid prenyltransferases in soybeans 
were derived from a vitamin E biosynthetic enzyme. Other, later 
detected flavonoid prenyltransferases were all classified in this 
subgroup (Akashi et  al., 2009; Yoneyama et  al., 2016). Most of 
these enzymes involved in specialized metabolism show strict 
substrate specificity in relation to a particular prenyl diphosphate.

Prenyltransferases involved in common metabolism show broad 
specificity in relation to substrates of different side chain lengths; 
i.e., they accept various prenyl diphosphates of different chain 
lengths (Sadre et al., 2010). For example, the ubiquinone biosynthesis 
pathway in rice can be  modified by introducing a decaprenyl 
diphosphate synthase, resulting in the production of non-native 
UQ10 rather than native UQ9 (Ohara et  al., 2006; Takahashi 
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et al., 2006). These expanded gene families and the broad substrate 
specificity of prenyltransferases may provide the opportunity for 
neo-functionalization of new enzymes in plant evolutionary history.

EVOLUTION OF THE  
P-HYDROXYBENZOIC ACID 
GERANYLTRANSFERASE GENE FOR 
SHIKONIN BIOSYNTHESIS

A boraginaceaeous medicinal plant, L. erythrorhizon, possesses 
a unique subfamily of p-hydroxybenzoic acid geranyltransferases 
(PGTs) (Figure 1B) that are specifically involved in shikonin 
biosynthesis (Yazaki et al., 2002). An overview of the evolutionary 
history of PGT was attained by assessing genome sequences 
and transcriptomes of L. erythrorhizon from the GenBank 
datasets SRP108575 and SRP141330, respectively, as well as 
by reassembling our original data (Takanashi et  al., 2019). The 

hypothetical PGT-like proteins were found to be closely related 
to the ubiquinone prenyltransferase subfamily involved in 
common metabolism (magenta in Figure 1B), which was closer 
to these hypothetical PGT-like proteins than the specialized 
citrus prenyltransferases (Figure  1A). Most PGT-like proteins 
are encoded by genes with a single exon, whereas general 
ubiquinone biosynthetic polyprenyltransferases (PPTs) are 
encoded by genes containing multiple exons (Figure 1C). It 
is of interest to determine how the single exon structure was 
generated during the evolution of plant specialized metabolism.

MISSING UBIQUINONE 
PRENYLTRANSFERASE IN  
L. ERYTHRORHIZON

Although ubiquinone is a common metabolite in all eukaryotes, 
and the genes encoding PPTs are essential for the survival of 
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FIGURE 1 | Phylogenetic analysis of the prenyltransferase family in citrus species and Lithospermum erythrorhizon as well as in model plants. (A) Grouping of plant 
prenyltransferases into three major clades: a clade represented by the Arabidopsis homogentisate phytyltransferase AtVTE2-1 involved in vitamin E biosynthesis 
(indicated by “Vitamin E” and a yellow background), a clade represented by Arabidopsis AtVTE2-2 for plastoquinone biosynthesis (indicated by “Plastoquinone” and 
a gray background), and a clade represented by the rice polyprenyltransferase OsPPT1 for ubiquinone biosynthesis (indicated by “Ubiquinone” and a compressed 
black triangle). Biochemically characterized proteins are indicated by a white background. The Citrus and legume proteins are shown in red and blue letters, 
respectively, and the lineage-specific clades are indicated by brackets with the same colors. (B) Details of the phylogenetic tree of polyprenyltransferases for 
ubiquinone in panel (A). L. erythrorhizon proteins are shown in magenta letters. The brackets indicate subclades of polyprenyltransferases involved in ubiquinone 
biosynthesis (PPT subfamily), LePGT-like proteins (LePGT subfamily), and unclassified subclade proteins (unclassified). The proteins from other organisms are shown 
in black letters. The asterisk indicates the putative PPT-like protein of L. erythrorhizon. The phylogenetic tree was drawn using the MEGA7 neighbor-joining method 
with 1,000 bootstrap replicates for alignment of polyprenyltransferase-related proteins, which were calculated with the MUSCLE algorithm. The accession numbers 
are shown next to the name of the organism. Biochemically characterized proteins are indicated by a yellow background. The scale bar represents 0.1 amino acid 
substitutions per site. (C) LePGT gene is encoded by a single exon gene in the L. erythrorhizon genome, whereas LePPT-like proteins are encoded by genes with 
inserted introns, at positions similar to those of the authorized OsPPT gene and the closest tobacco homolog, NtPPT-like gene (gene = LOC107804153). The first 
intron insertion site into the coding region is shown. Scale bar, 1 kb of DNA sequence. Blue boxes represent coding exons.
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a broad range of organisms, no orthologous ubiquinone PPT 
gene was found in the L. erythrorhizon transcriptome. 
Experiments in yeast showed that LePGT cannot synthesize 
ubiquinone (Yazaki et  al., 2002), and LePGT heterologously 
expressed in E. coli was found to inhibit ubiquinone biosynthesis 
(Wu et  al., 2015). Genomic sequencing identified a contig 
fragment that could code for PPT-like proteins (asterisk in 
Figure 1B) and that its amino acid sequence was moderately 
similar to that of OsPPT1, which is responsible for ubiquinone 
biosynthesis in rice. In addition, there were three contigs that 
we  could not classify, which are labeled “unclassified genes” 
(“unclassified” in Figure  1B). In contrast to the particular 
PGT that catalyzes shikonin biosynthesis, an intron insertion 
was found in the hypothetical gene, at the same position as 
in the PGTs of Nicotiana tabacum and Oryza sativa (Figure 1C). 
This conserved exon-intron organization was also observed in 
the PPT genes from Arabidopsis and rice (Ohara et  al., 2006). 
This gene product is a strong candidate for a ubiquinone 
prenyltransferase in L. erythrorhizon, and its biochemical 
characterization is expected in the future.

EVOLUTION OF THE TAXUS 
ACYLTRANSFERASE GENE FAMILY

Acyltransferases also substantially contribute to the diversification 
of specialized metabolites,  in which BAHD and SCPL (serine 
carboxypeptidase-like) are representatives. Taxoids such as 
paclitaxel present in Taxus species are specialized metabolites 
and highly acylated compounds. Five known taxoid 
acyltransferases are closely related to each other, with all grouped 
in clade V of the BAHD acyltransferase family (D’Auria, 2006). 
These Taxus proteins differ in substrate specificities for both 
acyl donors and acceptors; i.e., they can utilize acetyl-CoA, 
benzoyl-CoA or phenylalanoyl-CoA for O- and N-acylation 
of various taxoid molecules (D’Auria, 2006).

To understand the evolutionary development of the  
Taxus BAHD acyltransferase family, BAHD clade V was  
analyzed phylogenetically in detail (yellow background in 
Figure 2A). The amino acid sequences of Taxus BAHD members 
were obtained from the transcriptome data of Taxus x media 
cultured cells (Yukimune et al., 1996). Phylogenetic analysis showed 
that the Taxus BAHD proteins form a Taxus-specific clade (red 
bracket in Figure 2A), containing all five characterized 
acyltransferases (white background in the Taxus-specific clade), 
as well as other Taxus proteins of unknown function (asterisk 
in Figure 2A). Within this clade of the BAHD family, O. sativa 
and A. thaliana each form a unique clade, suggesting that lineage-
specific subfamily expansion of the BAHD acyltransferases plays 
a major role in plant evolution (Fani and Fondi, 2009). In addition 
to this Taxus-specific subgroup, other Taxus BAHD proteins have 
been identified, with these classified with other model plant BAHD 
members (Supplementary Figure S1), suggesting that Taxus species 
possess genes encoding general BAHD clade V proteins that are 
conserved among a broad range of plant species.

It can be  hypothesized that neo-functionalization is induced 
by the acquisition of promiscuous enzymatic activity during 

plant evolution. We  have examined the enzymatic activity of 
recombinant proteins prepared from seven isolated cDNAs 
encoding BAHD members of the Taxus-specific subfamily (dagger 
in Figure 2A). Each crude recombinant enzyme was prepared 
using pET22a and OrigamiB as a host-vector system (Novagen), 
without a periplasmic signal sequence, according to the 
conventional method. Each enzyme was reacted with acetyl-CoA 
and 10-deacetyl baccatin III (10-DAB) as substrates, and the 
reaction products were analyzed using an UPLC–MS/MS system 
equipped with a BEH C18 column (Waters). The clone encoding 
5-hydroxytaxadiene 5-O-acetyltransferase (TAT) had 10-DAB:10-
O-acetyltransferase (DBAT) activity (Walker et  al., 2000), as 
well as the canonical enzyme DBAT (Figures  2B,C; Walker 
and Croteau, 2000). The amount of the product formed by 
the substrate was 1.4  mol% for TAT and 10.4% for DBAT, 
suggesting that the activity of TAT was 13.2% that of DBAT. 
This promiscuity of enzymatic activity may represent the 
evolutionary footprint of a biosynthetic enzyme that acquires 
a new functionality through the alteration of substrate and 
product specificities, resulting in the production of a unique 
specialized metabolite.

CONCLUSIONS AND PERSPECTIVES

Using two transferase subfamilies as examples, we  have shown 
the “heritage” of expansion of a gene family, which is relevant for 
the development of plant specialized metabolic pathways. A protein 
in the specific BAHD subfamily of Taxus species showed promiscuous 
enzymatic activity for noncanonical substrates containing side chains 
at a noncanonical carbon position. These observations fit the general 
context of developmental molecular evolution that explains the 
development and establishment of new canonical enzymatic activity 
(Weng et  al., 2012). The generation in L. erythrorhizon of a PGT 
gene subfamily, each containing a single exon and involved in 
shikonin biosynthesis, suggests the putative involvement of the 
reverse transcription of mature mRNA. If this surmise is valid 
for other enzyme families, single exon genes may provide clues 
to identifying missing proteins responsible for biosynthetic pathways 
for other valuable plant specialized metabolites.

There are yet many missing links, even in actively studied 
shikonin and taxoid biosynthetic pathways. The applicable range 
of the single exon hypothesis may not be  limited only to 
biosynthetic enzymes, but to regulatory factors. The identification 
of regulatory factors will be  essential to understanding the 
production of plant specialized metabolites, including membrane 
transporters. Comparative genomics will enable the assessment 
of the evolutionary footprint of these genes, e.g., the expansion 
of specific subfamilies and the proliferation of single exon 
genes. Further biochemical and molecular genetics studies may 
provide experimental evidence for the involvement of hypothetical 
proteins in plant specialized metabolism.

DATA AVAILABILITY

The datasets generated for this study can be found in GenBank. 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Kusano et al. Evolutional Developments of Specialized Metabolisms

Frontiers in Plant Science | www.frontiersin.org 5 June 2019 | Volume 10 | Article 794

AUTHOR CONTRIBUTIONS

HK and KY wrote the manuscript and performed the phylogenetic 
and biochemical analyses. HL was involved in the assembly 
of genomic contigs and the analysis of the exon-intron structure 
of Lithospermum erythrorhizon genes. HM, YK, and HT were 
responsible for transcriptome analysis of Taxus spp.

FUNDING

This work was supported in part by the New Energy and 
Industrial Technology Development Organization (NEDO, No. 

16100890 to KY). Additional support was provided by the 
Mission Research of RISH, Kyoto University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpls.2019.00794/
full#supplementary-material

FIGURE S1 | Expanded phylogenetic tree of Figure 2A. Phylogenetic analysis 
with hypothetical Taxus BAHD acyltransferase-like proteins and related proteins 
from model plant species. Asterisks indicate Taxus proteins found in this study. 
Functionally identified BAHD proteins are highlighted in yellow background.
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taxadienol 5-acyltransferase. (A) Performance of phylogenetic analysis with hypothetical Taxus BAHD acyltransferase-like proteins and related proteins from model plant 
species. The BAHD family was classified into five clades (D’Auria, 2006), with clade V indicated by a yellow background, and representatives of clade I–IV (Vh3MAT1, 
CER2, BEAT, and ACT, respectively) placed outside the yellow background. Proteins of Taxus, rice, Arabidopsis are shown in red, magenta, and blue letters, respectively, 
and the lineage-specific subclades are indicated by the same colors. The bracket “Taxus specific clade” indicates the Taxus lineage-specific subclade containing the five 
characterized proteins, TAT, DBAT, DBTNBT, DBBT, and BAPT, indicated by a white background. Asterisks indicate Taxus proteins of unknown function, and daggers 
indicate proteins biochemically analyzed in the present study. A representative widely conserved clade in land plants from Physcomitrella to Arabidopsis is indicated by 
brackets, with four other subclades compressed (expanded in Supplementary Figure S1), in addition to the clade conserved in seed plants containing the Taxus 
specific clade. The accession numbers are given next to the organism names. The phylogenetic tree was drawn using the MEGA7 neighbor-joining method with 1,000 
bootstrap replicates for alignment calculated with the MUSCLE algorithm. Scale bar, 0.1 amino acid substitutions per site. (B) LC-MS/MS chromatograms of the enzyme 
reaction products of Taxus acyltransferases DBAT and TAT using acetyl-CoA and 10-DAB as substrates. The red arrow indicates the peak of the noncanonical reaction 
product. The bottom panel shows the chromatogram of standard specimens, 10-DAB and baccatin III. The chromatograms show a trace of representative ions 
m/z = 545.5 [M + H] + and 604.5 [M + NH4] + for the substrate 10-DAB (blue) and the product baccatin III (red), respectively. The vertical axis indicates the value relative 
to 5 million ion counts. (C) Mass spectrum of the in vitro reaction product peaks found at a retention time of 6.951 min of the chromatogram. The vertical axis indicates 
the relative value of ion count of maximum signal at m/z = 604.5. The molecular formulas of 10-DAB and baccatin III are shown in panel (B).
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