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The C-REPEAT BINDING FACTOR signaling pathway is strictly modulated by numerous 
factors and is essential in the cold response of plants. Here, we show that the DUF793 
family gene BYPASS1-LIKE modulates freezing tolerance through the CBFs in Arabidopsis. 
The expression of B1L was rapidly induced under cold treatment. Comparing to wild type, 
B1L knockout mutants were more sensitive to freezing treatment, whereas 
B1L-overexpressing lines were more tolerant. The expression of CBFs and CBF target 
genes was significantly decreased in b1l mutant. Using yeast two-hybrid screening system, 
14-3-3λ was identified as one of proteins interacting with B1L. The interaction was 
confirmed with bimolecular fluorescence complementation assay and co-immunoprecipitation 
assay. Biochemical assays revealed that b1l mutation promoted the degradation of CBF3 
compared to wild type, whereas 14-3-3κλ mutant and b1l 14-3-3κλ mutant suppressed 
the degradation of CBF3. Consistently, 14-3-3κλ and b1l 14-3-3κλ mutants showed 
enhanced freezing tolerance compared to wild type. These results indicate that B1L 
enhances the freezing tolerance of plants, at least partly through stabilizing CBF. Our 
findings improve our understanding of the regulation of CBF in response to cold stress.

Keywords: 14-3-3 proteins, Arabidopsis, CBF pathway, cold stress, DUF793, protein degradation

INTRODUCTION

Temperature is one of the most important environmental factors that affect the survival, growth, 
and reproduction of plants. Plants adapt to freezing stress through multiple physiological and 
biochemical processes. After exposure to low temperatures above freezing, temperate plants 
acquire freezing tolerance, a process that is termed cold acclimation (Guy, 1990; Thomashow, 
1999). The expression of a class of APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) 
transcription factor, C-REPEAT BINDING FACTOR/DROUGHT RESPONSE ELEMENT BINDING 
FACTOR 1B (CBF/DREB1), is rapidly induced under cold stress, playing a central role in the 
cold acclimation of Arabidopsis (Stockinger et  al., 1997; Liu et  al., 1998; Thomashow, 1999). 
CBFs bind to the CRT/DRE element of COLD-REGULATED (COR) genes, inducing their 
expression and conferring an enhanced freezing tolerance (Yamaguchi-Shinozaki and Shinozaki, 1994; 
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Stockinger et  al., 1997; Gilmour et  al., 1998; Liu et  al., 1998; 
Thomashow, 1999).

The expression of CBFs is regulated by numerous transcription 
factors. Using CBF3-LUC transgenic plants, Chinnusamy et  al. 
identified a basic helix-loop-helix (bHLH) transcription factor 
named INDUCER OF CBF EXPRESSION 1 (ICE1; Chinnusamy 
et  al., 2003). ICE1 promotes the expression of CBF3 through 
the binding to MYC cis-elements within the promoter region 
of CBF3 (Chinnusamy et  al., 2003). BRASSINAZOLE-
RESISTANT 1 (BZR1), LATE ELONGATED HYPOCOTYL 
(LHY), and CALMODULIN-BINDING TRANSCRIPTION 
ACTIVATOR 3 (CAMTA3) were also found to positively regulate 
the expression of CBFs (Doherty et  al., 2009; Dong et  al., 
2011; Li et al., 2017a,b). On the other hand, MYB15, ETHYLENE-
INSENSITIVE 3 (EIN3), and PHYTOCHROME-INTERACTING 
FACTOR 3 (PIF3) repress CBF expression (Agarwal et al., 2006; 
Shi et  al., 2012; Jiang et  al., 2017).

The posttranslational regulation of CBF is also involved in 
the plant response to cold stress (Liu et  al., 2017; Ding et  al., 
2018). In this process, 14-3-3 proteins are phosphorylated by 
COLD-RESPONSIVE PROTEIN KINASE 1 (CRPK1) and 
translocated from the cytoplasm to the nucleus, where 14-3-3 
proteins can interact with CBFs and trigger the degradation 
of CBFs through the 26S proteasome pathway (Liu et al., 2017). 
By contrast, BTF3-LIKE (BTF3L) inhibits the degradation of 
CBFs by interacting with CBF proteins (Ding et  al., 2018). 
However, the proteins that negatively modulate the 
14-3-3λ-mediated degradation of CBF remain unknown.

In Arabidopsis, at least 12 proteins contain a conserved 
DUF793 domain, but only few members have been functionally 
characterized. BYPASS1 (BPS1) is required to produce a root-
sourced signal that moves to the shoot and arrests growth of 
shoot, through modification of cytokinin signaling (Van Norman 
et  al., 2004, 2011; Lee et  al., 2016). ROH1 interacts with the 
exocyst subunit EXO70A1 and is involved in the localized 
deposition of seed coat pectin (Kulich et  al., 2010). At1g74450 
gene affects the plant height, pollen development, and 
composition of the inner seed coat mucilage layer (Visscher 
et  al., 2015). AT1G18740, which we  named as BYPASS1-LIKE 
(B1L), and AT1G74450 are both responsive to multiple abiotic 
stresses (Ma and Bohnert, 2007). However, more insight into 
the molecular function of the DUF793 proteins is in need.

In this study, we  found that B1L, which is rapidly induced 
under cold treatment, modulates freezing tolerance through 
the CBFs in Arabidopsis. To be  specific, B1L reduces the 
degradation of CBFs through the interaction with 14-3-3λ. 
Our results indicate that B1L positively modulates plant freezing 
tolerance, at least partly through stabilizing CBFs.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
Arabidopsis thaliana Col-0 was used as the wild type. The 
mutant and transgenic lines that were used in this study were 
as follows: b1l (SALK_019913), 14-3-3λ (SALK_075219) (Zhou 
et  al., 2014; Liu et  al., 2017), 14-3-3κ (SALK_148929) 

(Van Kleeff et  al., 2014), cbfs (Jia et  al., 2016), b1l 14-3-3λ, 
14-3-3κλ, b1l 14-3-3κλ, b1l cbfs, Super:CBF3-MYC (Liu et  al., 
2017), Super:CBF3-MYC/b1l, B1L b1l #1, B1L b1l #2, B1L-OE 
#1, B1L-OE#2, ProB1L:B1L-GFP #1, and ProB1L:GUS.

b1l was obtained from ABRC. 14-3-3κλ was generated by 
crossing 14-3-3λ and 14-3-3κ. 14-3-3λ, 14-3-3κ, and 14-3-3κλ 
were kindly provided by the Li Jia laboratory of Lanzhou 
University. cbfs and Super:CBF3-MYC were kindly provided by 
the Shu-Hua Yang laboratory from the China Agricultural 
University. b1l 14-3-3κλ, Super:CBF3-MYC/b1l, and b1l cbfs 
were generated through genetic crossing.

The ProB1L:B1L-3×FLAG fusion and the b1l restored plants 
(B1L b1l #1 and #2) were obtained via amplifying the B1L 
genomic region, including the 2000-bp promoter fragment, and 
cloning the resulting PCR product into the pMDC302 Gateway 
binary vector. The ProB1L:B1L-GFP transgenic plants 
(ProB1L:B1L-GFP #1) were obtained by amplifying the same 
genomic region and cloning it into the pMDC107 Gateway 
binary vector. The ProB1L:GUS transgenic plants were obtained 
by amplifying the ProB1L fragment and cloning it into the 
pBIB-GUS vector. The 35S:YFP-B1L fusion and the 
B1L-overexpressing transgenic lines (B1L-OE #1 and #2) were 
obtained by amplifying B1L cDNA and cloning the resulting 
PCR product into the pEarlygate104 Gateway binary vector.

Plants were grown at 22°C under long-day conditions (16 h 
light/8  h dark) in soil or agar plates (1/2 MS, 1% sucrose, 
and 0.8% agar).

All primer sequences that were used in this study are listed 
in Supplementary Table S1.

Plant Freezing Assay
The plant freezing assays were performed as previously described 
(Zhu et  al., 2004; Miura et  al., 2007) with modifications. Plants 
were grown in soil at 21°C under long-day (LD) conditions 
for 3  weeks before the treatments were performed. For each 
line, the plant freezing assay was performed with four pots of 
16 plants. For the treatments without cold acclimation, the pots 
with different plants were alternately placed in a controlled-
temperature chamber (MIR-254; SANYO) for approximately 
30  min at 0°C and then for 1  h at 0°C before the temperature 
was decreased by 1°C/h. The final desired sub-zero temperature was 
maintained for the indicated period before the temperature was 
again increased to 4°C. The plants were then kept at 4°C for 
12  h before they were returned to 21°C. Survival was scored 
5 days later, and those plants able to maintain a green color 
at the shoot apex were counted as survivors. For the cold 
acclimation experiments, 3-week-old plants were acclimated to 
4°C in the light for 3 days. The freezing treatment was then 
performed in the same manner as that for the non-acclimated 
plants, with the final desired freezing temperature maintained 
for the indicated period. The experiments were conducted with 
three independent biological replicates.

Electrolyte Leakage Assay
Electrolyte leakage of detached leaves from 3-week-old plants 
was measured as previously described (Zhao et  al., 2017)  
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with modifications. Plants were grown in soil at 21°C in LD 
conditions, and the fifth oldest leaf was used. The leaves were 
placed in tubes containing 100  μl of deionized water. Ice chips 
were added to the tubes, and the tubes were kept at 0°C for 
30  min, followed by a temperature decrease of 1°C/h. The 
samples were removed at the indicated temperature points and 
immediately placed on ice. Ten milliliters of deionized water 
were added to each tube, and the samples were incubated for 
1 h at 21°C under gentle shaking, after which the conductivity 
of the solution was determined via a conductivity meter (DDSJ-
308A; INESA). The tubes were then autoclaved at 120°C for 
30  min, and the conductivity of the solution was measured 
again after the samples were cooled to 21°C. Electrolyte leakage 
was quantified as a percentage of the conductivity after the 
treatment relative to total conductivity. The experiments were 
conducted with three independent biological replicates.

qRT-PCR and RT-PCR Assays
Total RNA was extracted with a RNAprep pure plant kit 
(TIANGEN) and treated with DNaseI to digest the DNA. First-
strand cDNA was synthesized from 1  μg of RNA using the 
RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) 
according to the manufacturer’s instructions.

For the qRT-PCR assay, 12-day-old seedlings were grown 
on agar plates and treated at 4°C in the light, and the plant 
material was collected in a time-course manner. qRT-PCRs 
were performed with the SsoFast EvaGreen Supermix (Bio-
Rad) using the CFX96 Real-Time System (Bio-Rad). Actin2/8 
was used for the normalization of the results (Shi et  al., 2012; 
Liu et  al., 2017; Li et  al., 2017a). qRT-PCRs were typically 
performed with at least three independent biological samples, 
and each was measured with at least three technical repeats. 
The statistical significance of the differences between two samples 
was assessed using a Student’s t test.

For the RT-PCR analysis, the roots and whole seedlings 
were collected from 12-day-old seedlings; the leaves and stems 
were collected from 5-week-old plants; and the flowers and 
siliques were collected from 8-week-old plants. β-TUBULIN 
was used as an internal control. Ethidium bromide staining 
was used to detect the PCR products.

Confocal Microscopic Analysis
B1L cDNA was amplified and cloned into the pEarleygate104 
Gateway binary vector. The plasmid was introduced into 
Agrobacterium tumefaciens GV3101 and transiently expressed 
in N. benthamiana leaves. Two days after infiltration, the YFP 
fluorescence signal was detected with a confocal microscope 
(Leica SP8). The 5-day-old ProB1L:B1L-GFP and B1L-OE with 
YFP tag seedlings were also used for a subcellular 
localization assay.

Histochemical GUS Reporter Gene 
Expression Analysis
The GUS staining assay was performed as previously described 
(Chen et  al., 2016) with T3 ProB1L:GUS transgenic plants of 
1-day-old seedlings, 2-day-old seedlings, 10-day-old seedlings, 

and 8-week-old mature plants. After staining, the samples were 
rinsed with acetic acid/methanol [1:3 (v/v)]. The images were 
collected on a stereomicroscope (Nikon SMZ800).

Y2H Screening and Assay
AH109 was used as a host strain. B1L cDNA was subcloned 
into the pGBKT7 Gateway binary vector. The transcriptional 
activation of B1L-pGBKT7 was detected, and B1L-pGBKT7 
was used as bait to screen an Arabidopsis thaliana cDNA library. 
The transformation was performed according to the Clontech 
Yeast Protocols Handbook (PT3024), with selection on media 
lacking leucine (Leu), tryptophan (Trp), histidine (His), and 
adenine (Ade). The positive clones were isolated and sequenced. 
To determine the interaction between B1L and 14-3-3λ in 
yeast, B1L-N terminal, B1L-C terminal, B1LS213A, and B1LS213D 
were amplified and cloned into the pGBKT7 Gateway binary 
vector. The coding sequence of 14-3-3λ was amplified and 
cloned into the pGADT7 Gateway binary vector. The coding 
sequence of 14-3-3ψ was also amplified and cloned into the 
pGADT7 Gateway binary vector to analyze the interaction 
between B1L and 14-3-3ψ. The yeast transformation and growth 
assays were performed as described above.

BiFC Assay
To determine the interaction between B1L and 14-3-3λ, B1L 
cDNA, B1LS213A, and B1LS213D were amplified and cloned into 
PNYFP-X, and 14-3-3λ cDNA was amplified and cloned into 
the PCCFP-X Gateway binary vector. Plasmids containing 
YFPN-B1L and YFPC-14-3-3λ, YFPN-B1L and YFPC, YFPN and 
YFPC-14-3-3λ, YFPN-B1LS213D and YFPC-14-3-3λ, or YFPN-B1LS213A 
and YFPC-14-3-3λ were introduced into A. tumefaciens GV3101 
and transformed to N. benthamiana leaves. Two days after 
infiltration, the YFP fluorescence signal was detected using a 
Leica SP8 confocal microscope.

CoIP Assay
35S:B1L-FLAG/35S:14-3-3λ-MYC or 35S:FLAG/35S:14-3-3λ-MYC 
were co-expressed into N. benthamiana leaves. Total protein 
was subsequently extracted in IP buffer containing 50  mM 
Tris–HCl, pH 7.6; 150 mM NaCl; 10% glycerol; and 1× Cocktail. 
The cell debris were removed via two 12-min centrifugations 
at 16,000 g at 4°C. The supernatant was collected and incubated 
with anti-FLAG agarose (Abmart) overnight at 4°C. After 
washing with IP buffer five times, the co-immunoprecipitated 
products were separated by SDS-PAGE and detected with 
anti-MYC (1:5,000, Abcam) and anti-FLAG (1:10,000, Abmart) 
antibodies.

Protein Degradation Assay
Protein degradation assays were performed as previously 
described (Wang et al., 2009; Liu et al., 2010) with modifications. 
Arabidopsis seedlings were harvested and ground to a fine 
powder in liquid nitrogen. Total protein was subsequently 
extracted in degradation buffer containing 25  mM Tris-HCl, 
pH 7.5; 10  mM NaCl; 10  mM MgCl2; 5  mM DTT; and 1× 
Cocktail, and the protein concentration was determined.
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For the cell-free degradation assay, 100 μg purified MBP-CBF3 
recombinant proteins were incubated with the total proteins 
that were extracted from wild type, b1l, B1L-OE #1, 14-3-3κλ, 
or b1l 14-3-3κλ plants in the presence of 1  mM ATP (Sigma) 
at 25°C for different time courses, and the CBF3-MBP proteins 
were detected via immunoblotting with an anti-MBP antibody 
(1:10,000; Abcam). MG132 (Sigma) was added to the various 
degradation assays, as indicated.

Software Availability
Band intensity quantifications of CBF3 were performed using 
the ImageJ1. The motifs within B1L protein that are likely to 
be phosphorylated and bound by 14-3-3 proteins were predicted 
with Scansite 42. The diagram for the B1L protein was performed 
using the IBS3.

ACCESSION NUMBERS

Sequence data from this article can be found in the Arabidopsis 
Genome Initiative or GenBank/EMBL/Swiss-Prot databases under 
the following accession numbers: B1L (AT1G18740), CBF1 
(AT4G25490), CBF2 (AT4G25470), CBF3 (AT4G25480), COR15a 
(AT2G42540), COR15b (AT2G42530), COR47 (AT1G20440), 
RD29A (AT5G52310), ERF4(AT3G15210), ERF11(AT1G28370), 
14-3-3λ (AT5G10450), 14-3-3κ (AT5G65430), and 14-3-3ψ 
(AT5G38480).

RESULTS

Cold Induces the Expression of  
B1L, Which Positively Modulates  
Freezing Tolerance
To investigate the function of B1L in plant freezing tolerance, 
a T-DNA insertion mutant (b1l) was obtained from the Arabidopsis 
Biological Resource Center (ABRC), and the complete disruption 
of B1L expression in the b1l mutant was verified (Supplementary 
Figure S1A). Three-week-old plants showing similar growth and 
development in wild type and b1l were used to examine the 
freezing tolerance (Supplementary Figure  S1B). The b1l mutant 
was more sensitive to freezing treatment than wild type under 
cold-acclimated (CA) conditions (Figures  1A,B). ProB1L:B1L-
3×FLAG was then transformed to b1l mutant, and the 
complementation lines (B1L b1l) fully restored the freezing 
sensitivity of b1l (Supplementary Figure  S2). Transgenic plants 
overexpressing B1L-YFP (B1L-OE) were also used to examine 
the role of B1L (Supplementary  Figure  S3). B1L-OE #1 and 
#2 plants were more freezing tolerant compared to wild type, 
particularly under non-acclimated (NA) conditions (Figures 1C–F). 
Consistently, ion leakage in the b1l mutant was higher than that 
in wild type after freezing treatment (Figure 1G), whereas the 
ion leakage of the B1L-OE #1 and #2 plants was lower than 

1 https://imagej.nih.gov/ij/
2 http://scansite4.mit.edu
3 http://ibs.biocuckoo.org/download.php

that of wild type after freezing treatment (Figure 1H). A quantitative 
real-time PCR (qRT-PCR) assay was used to investigate the 
expression of B1L under cold treatment (4°C). The expression 
of B1L quickly increased after 1  h and reached a peak after 6  h 
(Figure 1I). These data indicate that B1L acts as a positive 
regulator of freezing tolerance in Arabidopsis.

B1L Was Shown to Modulate the 
Expression of Genes in the CBF Pathway
To examine whether B1L participates in plant cold acclimation, 
the expression of CBF pathway genes that perform important 
roles in cold acclimation was examined through qRT-PCR. 
The qRT-PCR results showed that both the CBFs and CBF 
target genes were dramatically reduced in the b1l mutants 
compared to wild type (Figure 2). These results indicate that 
B1L positively regulates the expression of CBF pathway genes.

B1L Is Expressed in Most Tissues and B1L 
Protein Localizes to the Cytoplasm and 
the Nucleus
To analyze the expression pattern of B1L, the total RNA from 
different tissues of wild type was collected and tested. Semi-
quantitative RT-PCR results showed that B1L was expressed in 
most tissues; the mRNA from b1l seedlings was used as a 
negative control (Figure 3A). GUS staining assay using 
ProB1L:GUS transgenic plants revealed that B1L was predominately 
expressed in the roots, leaves, and flowers (Figures  3B–F).

To examine the subcellular localization of B1L, A 
ProB1L:B1L-GFP construct was generated and transformed to 
b1l mutant plants (ProB1L:B1L-GFP #1). Under microscope, 
GFP fluorescence signal was detected in both the cytoplasm 
and nucleus (Figure 3G). The transient expression of 35S:YFP-B1L 
in Nicotiana benthamiana and the stable expression of 35S:YFP-B1L 
in Arabidopsis were also used to show that B1L localizes to 
the cytoplasm and nucleus (Supplementary Figure S4).

B1L Directly Interacts With 14-3-3λ Both in 
vitro and in vivo
To further investigate B1L function in the freezing tolerance 
of plants, a yeast two-hybrid (Y2H) screening system was used. 
A 14-3-3 family protein, 14-3-3λ, was identified. A bimolecular 
fluorescence complementation (BiFC) assay was used to confirm 
the interaction, and the results showed that B1L interacts with 
14-3-3λ under both cold treatment (4°C, 6  h) and normal 
conditions (Figure 4A). A co-immunoprecipitation (coIP) assay 
using co-expressed B1L-FLAG and 14-3-3λ-MYC was also 
performed and the result verified that B1L directly interacts 
with 14-3-3λ in vivo (Figure 4B).

The 14-3-3 proteins are well-known to bind to many proteins 
that are phosphorylated by recognizing phosphoserine or 
phosphothreonine within their conserved binding motifs  
(Jaspert et  al., 2011; Wang et  al., 2011; Yoon and Kieber, 2013; 
Zhou et  al., 2014; Huang et  al., 2018). To search for 14-3-3 
motifs in B1L sequence, the Scansite 44 was used to predict 

4 https://scansite4.mit.edu/4.0/
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the candidate site, and Serine 213  in the N-terminal of B1L 
was identified (Figure 4C). This site was then mutated to 
alanine (B1LS213A) and aspartic acid (B1LS213D) to mimic 
nonphosphorylation and autophosphorylation, respectively.  

The Y2H assays showed that both B1LS213A and B1LS213D could 
interact with 14-3-3λ (Figure 4D). The BiFC assay was also 
performed and showed the same results (Supplementary 
Figure  S5). These results suggest that B1LS213A and B1LS213D 

A B

C D

E F

G IH

FIGURE 1 | B1L positively modulates freezing tolerance in Arabidopsis. (A–F) Freezing tolerance (A,C,E) and survival rates (B,D,F) of wild type (WT), b1l mutant, and 
B1L-overexpressing plants under non-acclimated (NA) or cold-acclimated (CA) conditions. The 3-week-old plants were treated at −7 or −10°C for 1 h (NA) or were 
pretreated at 4°C for 3 days and then treated at −10°C for 1 or 3 h (CA). For each line, the survival rate assay was performed with four pots of 16 plants and scored 5 days 
later. The photos presented one pot of each line. The data are shown as means of three independent biological replicates ± SD. Asterisks indicate significant differences 
(*p < 0.05, and **p < 0.01) from wild type. (G,H) Ion leakage of wild type, b1l mutant, and B1L-overexpressing plants in (A,C,E) after exposure to the temperature 
indicated. Data are means ±SD. n = 4 leaves, each from a different plant. Asterisks indicate significant differences (*p < 0.05 and **p < 0.01) from wild type. (I) Expression 
of B1L in wild type under cold treatment. Total RNA was extracted from 12-day-old seedlings treated at 4°C for 0, 1, 3, 6, 12, 24 h and then subjected to qRT-PCR. 
Actin2/8 was used as a control. The expression of B1L in untreated wild type was set to 1. The data are shown as means of three independent biological replicates ± SD.
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may not be  sufficient to affect the interaction between B1L 
and 14-3-3λ. Then, the N-terminal (amino acids 1-238) and 
the C-terminal (amino acids 262-382) of B1L were used to 
identify the binding domain of B1L that interacts with 14-3-3λ. 
The Y2H assays showed that the N-terminal of B1L, but not 
the C-terminal of B1L, is sufficient for the interaction (Figure 4E).

B1L Regulates Freezing Tolerance, 
Possibly Through a 14-3-3λ-Dependent 
Pathway
To understand the genetic interaction between B1L and 14-3-3λ, 
the b1l 14-3-3λ double mutant was generated. The 14-3-3λ 
mutant displayed freezing tolerance similar to wild type 

A B C

D E F

FIGURE 2 | B1L is a positive regulator of CBF pathway genes. The expression of CBF1, CBF2, and CBF3 (A–C) and CBF target genes COR15b, COR47, and 
RD29A (D–F) in wild type and b1l seedlings was determined via qRT-PCR analyses. Total RNA was extracted from 12-day-old seedlings treated at 4°C for 0, 3, 6 h 
for CBFs and 0, 12, 24 h for CBF target genes and then subjected to qRT-PCR. The data are shown as means of three independent biological replicates ± SD. 
Asterisks indicate significant differences (*p < 0.05) from wild type.

A B C D

E

G

F

FIGURE 3 | The expression of B1L in different tissues and the subcellular localization of B1L. (A) RT-PCR analysis of B1L transcripts in the different tissues of wild 
type. The B1L transcript in the b1l mutant seedlings was used as a negative control. β-TUBULIN was used as a loading control. (B–F) Histochemical analysis of 
the GUS reporter gene expression driven by the B1L promoter. The GUS signal was detected in 1-day-old seedlings (B), 2-day-old-seedlings (C), 10-day-old 
seedlings (D), and 8-week-old mature plants (E,F). (G) Localization of B1L in transgenic plants expressing B1L-GFP driven by its native promoter 
(ProB1L:B1L-GFP #1). The signals in the root tips of 5-day-old plants were visualized. Bar = 50 μm.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chen et al. B1L Positively Regulates Freezing Tolerance

Frontiers in Plant Science | www.frontiersin.org 7 June 2019 | Volume 10 | Article 807

(Supplementary Figures S6A,B), consistent with a previous 
report (Liu et  al., 2017). The b1l 14-3-3λ mutant displayed a 
similar freezing sensitivity to b1l (Supplementary Figures S6C,D). 
14-3-3κ is a close homologue to 14-3-3λ, and the 14-3-3κλ 
double mutant showed enhanced freezing tolerance in the previous 

report (Liu et al., 2017), as well as in our study (Figures 5A,B). 
A b1l 14-3-3κλ triple mutant was then generated, and this 
mutant showed enhanced freezing tolerance compared to that 
in wild type (Figures 5C,D). Consistently, the expression of 
COR genes was higher in 14-3-3κλ and b1l 14-3-3κλ plants 

A B

C

D E

FIGURE 4 | B1L interacts with 14-3-3λ, and serine 214 in the N-terminal of B1L modulates the interaction between B1L and 14-3-3λ. (A) BiFC analysis in  
N. benthamiana showing the interaction between B1L and 14-3-3λ. The plants were pretreated with or without 4°C for 6 h, and then, the YFP signals were 
detected. Bar = 50 μm. (B) CoIP assay showing the interaction between B1L and 14-3-3λ in plants. Total proteins were extracted from transformed 
N. benthamiana leaves, immunoprecipitated with an anti-FLAG antibody, and detected with an anti-MYC antibody and an anti-FLAG antibody. (C) Diagram of B1L-
truncated proteins and B1L-mutated proteins used for the Y2H assays. Serine 213 in the N-terminal of B1L was a candidate phosphorylated site that can 
be recognized by 14-3-3 proteins. This site was mutated to alanine (B1LS213A) and aspartic acid (B1LS213D) to mimic nonphosphorylation and autophosphorylation of 
B1L, respectively. The N-terminal (amino acids 1-238) and the C-terminal (amino acids 262-382) of B1L were used to identify the binding domain of B1L that 
interacts with 14-3-3λ. (D,E) Y2H analysis of the interaction between 14-3-3λ and B1L native protein, B1L-mutated proteins or B1L-truncated proteins. Panels 
show yeast serial decimal dilutions.
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than in wild type (Figures 6A–C). Intriguingly, the expression 
of CBF3 was significantly higher in 14-3-3κλ plants than in 
wild type (Figure 6F), which is consistent with the results from 
a previous study (Liu et  al., 2017). qPCR results also showed 
that the reduced expression of all three CBF genes in the b1l 
mutants was rescued in b1l 14-3-3κλ plants (Figures 6D–F), 
indicating that B1L and 14-3-3 proteins may also participate 
in modulating the expression of CBFs. These results reveal that 
B1L regulates freezing tolerance possibly through 14-3-3λ.

B1L Suppresses the Ubiquitin-Mediated 
Degradation of CBF3 via 14-3-3λ
The 14-3-3 proteins were shown to interact with and destabilize 
CBFs in the ubiquitin/26S proteasome pathway under cold 
stress (Liu et  al., 2017). To verify whether B1L affects the 
degradation of CBFs, several CBF3 degradation assays 
were performed.

First, an in vitro cell-free degradation assay was performed 
using purified CBF3-MBP proteins that were expressed in 

A B C
t

D E F

FIGURE 6 | The expression of CBFs and COR genes in 14-3-3kλ and b1l 14-3-3kλ under cold treatment. The expression of the CBF target genes COR15a, 
COR15b, and COR47 (A–C) and CBF genes (D–F) in wild type, b1l, 14-3-3kλ, and b1l 14-3-3kλ seedlings was determined by qRT-PCR analyses. The data are 
shown as means of three independent biological replicates ± SD. Significant differences (p < 0.05) are indicated by different lowercase letters.

A B

C D

FIGURE 5 | B1L regulates freezing tolerance via a 14-3-3λ-dependent way. Freezing tolerance (A,C) and survival rates (B,D) of 14-3-3kλ mutants and b1l 14-3-
3kλ mutants under NA or CA conditions. The assays were performed as in Figure 1. The data are shown as means of three independent biological replicates ± SD. 
Asterisks indicate significant differences (*p < 0.05, and **p < 0.01) from wild type.
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Escherichia coli. Western blotting results showed that the 
degradation of the CBF3-MBP increased when it was treated 
with the b1l mutant total proteins; however, that the degradation 
of the CBF3-MBP was suppressed when it was treated with 
B1L-OE #1 total proteins (Figures 7A,B). The degradation 

could be  inhibited by MG132 (an inhibitor of 26S proteasome 
degradation) (Figures 7C,D). These results indicate that the 
stability of CBF3 is mediated by B1L.

Then, the protein level of CBF3 in vivo was examined. 
Super:CBF3-MYC transgenic plants (Liu et  al., 2017) were  

A C

B D

E F

G H

FIGURE 7 | B1L inhibits the ubiquitin-mediated degradation of CBF3 via a 14-3-3λ-dependent way. (A–D) In vitro cell-free degradation assay showing that B1L 
inhibits the degradation of CBF3. The recombinant purified CBF3-MBP proteins were incubated with the total proteins extracted from wild type, b1l or B1L-OE #1 
seedlings in the presence of ATP. These total proteins were pretreated with or without 50 μM MG132 (an inhibitor of 26S proteasome degradation) for 3 h. Typical 
immunoblotting results were shown (A,C), along with quantification (B,D). Actin was used as a control. The ratio of the band intensity of CBF3-MBP to actin without 
the ATP treatment was set to 1. The data are shown as means of three independent biological replicates ± SE. Asterisks indicate significant differences (*p < 0.05, 
and **p < 0.01) from wild type. (E,F) In vivo degradation assay showing that the CBF3 is stabilized by B1L under cold stress. Super:CBF3-MYC transgenic plants 
were crossed with b1l to generate Super:CBF3-MYC/b1l transgenic plants, and then the protein level of CBF3-MYC in both wild type background and b1l 
background was tested after different times of cold treatment. Actin served as a control. The ratio of the band intensity of CBF3 to actin without the cold treatment 
in Super:CBF3-MYC plants was set to 1. The data are shown as means of four independent biological replicates ± SE. Asterisks indicate significant differences 
(*p < 0.05, and ***p < 0.001) from Super:CBF3-MYC plants. (G,H) In vitro cell-free degradation assays showing that B1L inhibits the degradation of CBF3 via  
14-3-3λ. The recombinant purified CBF3-MBP proteins were incubated with the total proteins extracted from wild type, 14-3-3λ or b1l 14-3-3λ seedlings in the 
presence of ATP. PBA1 was used as a control. The ratio of the band intensity of CBF3-MBP to actin without the ATP treatment was set to 1. The data are shown as 
means of three independent biological replicates ± SE. Asterisks indicate significant differences (*p < 0.05) from wild type.
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crossed with b1l, and the protein levels of CBF3-MYC in both 
wild type background and b1l background were analyzed after 
different time of cold treatment. The protein level of CBF3-MYC 

was much lower in b1l mutants than wild type before and after 
cold treatment (4°C) (Figures 7E,F). These results further reveal 
that the stability of CBF3 is mediated by B1L.

To explore the role of 14-3-3 proteins in the B1L-mediated 
degradation of CBFs, the purified CBF3-MBP proteins were 
used to test the stability of CBF3  in 14-3-3κλ and b1l 14-3-
3κλ mutants. Western blotting results showed that the 14-3-3κλ 
mutant suppressed the degradation of CBF3-MBP compared 
to wild type (Figures 7G,H), as previously reported (Liu et al., 
2017), and that the b1l 14-3-3κλ mutant also inhibited the 
degradation of the CBF3 (Figures 7G,H). These results show 
that B1L regulates CBF3 degradation via 14-3-3λ.

B1L Acts Upstream of CBFs, Positively 
Regulating Plant Freezing Tolerance
To further examine the relationship between B1L and CBFs, 
b1l mutant was crossed with cbfs triple mutant (Jia et  al., 
2016). The cbfs mutant was more sensitive to freezing treatment 
than wild type (Figures 8A,B), consistent with previous studies 
(Jia et  al., 2016; Liu et  al., 2017). The b1l cbfs quadruple 
mutant did not aggravate the freezing sensitivity of cbfs 
(Figures 8C,D). These results further indicate that B1L positively 
regulating plant freezing tolerance via CBF proteins.

DISCUSSION

CBF signaling pathway has important roles in cold acclimation. 
The expression of CBFs is regulated by numerous transcription 
factors. However, studies about the posttranslational regulation 
of CBFs are limited. Here, we  show that B1L participates in 
regulating freezing tolerance partly through repressing the 
degradation of CBFs (Figure 9). Several lines of evidence were 
provided: (1) B1L promotes the expression of CBF pathway 

A B

C D

FIGURE 8 | B1L acts upstream of CBFs to regulate cold signaling. Freezing tolerance (A,C) and survival rates (B,D) of cbfs mutants and b1l cbfs mutants under 
NA or CA conditions. The assays were performed as in Figure 1. The data are shown as means of three independent biological replicates ± SD. Asterisks indicate 
significant differences (*p < 0.05) from wild type.

FIGURE 9 | Model for the regulation of the CBF signaling pathway by B1L 
under cold stress. The expression of B1L is induced by cold stress. Then, 
B1L interacts with 14-3-3λ to reduce the 14-3-3λ-mediated degradation of 
CBFs. As a result, CBFs induce the expression of their target genes such as 
COR15a, COR47, and RD29A to enhance plant freezing tolerance.
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genes and therefore freezing tolerance in Arabidopsis. (2) B1L 
directly interacts with 14-3-3λ. (3) B1L inhibits the 14-3-3 
protein-mediated degradation of CBFs. (4) The b1l cbfs quadruple 
mutant displayed a freezing sensitivity similar to cbfs.

The 14-3-3 proteins serve important roles in many processes, 
such as stomata movements, phytohormone regulation, biotic 
stress, and abiotic stress (Cotelle et  al., 2000; Gampala et  al., 
2007; Wang et  al., 2011; de Boer et  al., 2013; Catala et  al., 
2014; Kaundal et al., 2017; Keicher et al., 2017; Liu et al., 2017). 
These proteins mostly interact with phosphorylated proteins and 
affect the subcellular localization, protein stability, enzymatic 
activity of target proteins or the interaction between the target 
proteins and other proteins (Jaspert et  al., 2011; Wang et  al., 
2011; Yoon and Kieber, 2013; Zhou et  al., 2014; Huang et  al., 
2018). Our results showed that B1L interacted with 14-3-3λ 
(Figure  4), indicating that B1L may also be  a phosphorylated 
protein. Serine 213  in the N-terminal of B1L is a potential 
phosphorylated site that can be  recognized by 14-3-3 proteins 
(Figure 4C), and the N-terminal of B1L is sufficient for the 
interaction between B1L and 14-3-3λ. However, mutating Serine 
213 to alanine (B1LS213A) did not abolish the interaction between 
B1L and 14-3-3λ, indicating the possible involvement of new 
sites to affect the interaction between B1L and 14-3-3λ (Figure 4D; 
Supplementary Figure S5). The phosphorylated site of B1L 
that affects the interaction between B1L and 14-3-3λ and the 
biological roles of these sites need to be  further investigated.

The 14-3-3 protein 14-3-3ψ (also known as RARE COLD 
INDUCIBLE 1A or GRF3) has also been shown to participate 
in the regulation of freezing tolerance via an ethylene biosynthesis 
pathway (Catala et al., 2014). It interacts with ACS6 and inhibits 
the expression of ethylene-related genes and CBFs, leading to 
decreased freezing tolerance (Catala et  al., 2014). Although the 
expression of CBFs was reduced in b1l mutants under cold 
treatment (Figure 2), the expression of ethylene-related genes 
(ERF4 and ERF11) was not significantly changed in b1l mutants 
compare to wild type (Supplementary Figures S7A,B). The 
interaction between B1L and 14-3-3ψ was also not observed in 
the Y2H system (Supplementary Figure S7C). These results 
indicate that B1L may specifically interact with 14-3-3λ, modulating 
freezing tolerance via an ethylene-independent pathway.

The stability of CBFs has been shown to be  modulated by 
14-3-3 proteins and BTF3L via a ubiquitin/26S proteasome 
pathway (Liu et  al., 2017; Ding et  al., 2018). HOS15, which is 
an E3 ligase, interacts with CBFs, affecting the expression of 
COR genes but does not participate in the regulation of CBF 
degradation (Park et  al., 2018). Therefore, the components of 
the ubiquitin/26S proteasome that participate in degrading CBFs 
are still unknown. More proteins that are involved in the 
ubiquitin/26S proteasome pathway need to be  identified to 
elucidate the mechanism of CBF stability. Our protein degradation 
assay in vivo and in vitro both showed that B1L affects the 
stability of CBF (Figures 7A–D), indicating that B1L is another 
regulator that participate in the regulation of CBF proteins.

The overexpression of CBFs leads to dwarfism and late-flowering 
(Jaglo-Ottosen, 1998; Achard et  al., 2008; Zhou et  al., 2017). 
ICE1 is a positive regulator of CBFs, and its overexpressing 
lines result in late-flowering, due to ICE1 directly binding to 

the promoter of FLC and inducing the expression of the FLC 
(Lee et  al., 2015). Therefore, plants fine-tune CBF signaling 
pathway to avoid harmful effects during their development. 
To be  specific, 14-3-3λ can be  translocated to the nucleus 
under cold conditions, reducing the abundance of CBFs (Liu 
et  al., 2017). Cold treatment induces the expression of B1L 
but does not obviously change the subcellular localization of 
B1L (Supplementary Figure  S8). We  hypothesis that the 
interaction between 14-3-3λ and B1L may lead to a delay in 
the nuclear translocation of 14-3-3λ after cold treatment. This 
translocation delay in turn allows plants to fine-tune the 
abundance of CBFs to adapt to cold stress.
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