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Phenotypic measurements under controlled cultivation conditions are essential to gain
a mechanistic understanding of plant responses to environmental impacts and thus
for knowledge-based improvement of their performance under natural field conditions.
Twenty maize inbred lines (ILs) were phenotyped in response to two levels of water and
nitrogen supply (control and stress) and combined nitrogen and water deficit. Over a
course of 5 weeks (from about 4-leaf stage to the beginning of the reproductive stage),
maize phenology and growth were monitored by using a high-throughput phenotyping
platform for daily acquisition of images in different spectral ranges. The focus of the
present study is on the measurements taken at the time of maximum water stress (for
traits that reflect plant physiological properties) and at the end of the experiment (for
traits that reflect plant architectural and biomass-related traits). Twenty-five phenotypic
traits extracted from the digital image data that support biological interpretation of
plant growth were selected for their predictive value for mid-season shoot biomass
accumulation. Measured fresh and dry weights after harvest were used to calculate
various indices (water-use efficiency, physiological nitrogen-use efficiency, specific plant
weight) and to establish correlations with image-derived phenotypic features. Also, score
indices based on dry weight were used to identify contrasting ILs in terms of productivity
and tolerance to stress, and their means for image-derived and manually measured traits
were compared. Color-related traits appear to be indicative of plant performance and
photosystem II operating efficiency might be an importance physiological parameter
of biomass accumulation, particularly under severe stress conditions. Also, genotypes
showing greater leaf area may be better adapted to abiotic stress conditions.

Keywords: maize genotypes, high-throughput phenotyping, vegetative biomass, nitrogen deficiency, water
stress, variable selection, stress indices

INTRODUCTION

Nitrogen and water, separately or in combination, are two of the most critical factors in maize
production worldwide. Nitrogen is a major growth and yield-determining plant nutrient and its
major uptake by maize plants is often referred to start at the stage of six fully expanded leaves when
rapid growth begins, and to continue into the reproductive stage. Twelve and seventeen percent
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yield reduction, respectively, has been reported to be attributed
to irreversible effects of delayed nitrogen application at the
6- and 10-leaf stages (Binder et al., 2000; Walsh et al., 2012).
Nitrogen accumulated in vegetative organs prior to silking is
remobilized by plants to grains as new nitrogen taken up during
reproductive development is not sufficient for maize grain filling
(Mueller and Vyn, 2016). Maize water requirement is highest
in the reproductive stage (Kranz et al., 2008), however water
shortage during vegetative growth can also significantly reduce
grain yield. Short-term water deficits during rapid vegetative
growth caused up to 40% grain yield losses which was explained
by a decline in plant extension growth and a reduction of leaf
size (Çakir, 2004). The responses of plants to a combination
of water and nitrogen stress may even cause further effects
beyond the individual impacts, and hence cannot be directly
extrapolated from conclusions obtained from the different
stresses applied individually (Humbert et al., 2013). Several
studies showed that it was possible to improve maize germplasm
for simultaneous expression of tolerance to mid-season drought
and nitrogen stress through recurrent selection (Bänziger et al.,
2002; Zaidi et al., 2004).

Many efforts have been made to improve the mechanistic
understanding of plants tolerance to abiotic stresses. The
development of high-throughput phenotyping platforms, with
a variety of imaging methodologies, provide a new prospect
for dissecting complex plant traits such as stress tolerance
into functionally relevant components (Tardieu and Tuberosa,
2010; Chen et al., 2014; Li et al., 2014; Rahaman et al., 2015).
Although high-throughput automated imaging is not without its
limitations (Li et al., 2014) this technology is becoming more
advanced and popular, due to the capability to non-destructively
capture various traits at regular time intervals throughout the
life cycle of the plant (Rahaman et al., 2015; Muraya et al.,
2017). Numerous studies in different crop species including
maize reported high correlations between image-derived traits
and traits recorded by traditional metrics thus validating digital
imaging as a reliable tool for phenotyping (Nagel et al., 2012;
Honsdorf et al., 2014; Humplík et al., 2015; Neilson et al., 2015;
Neumann et al., 2015; Arend et al., 2016; Ge et al., 2016).
Moreover, Zhang et al. (2017) suggested that projected plant area
acquired from side imaging can replace dry weight in quantitave
trait locus (QTL) analysis in maize according to the matches
of QTLs affecting dry weight and projected plant area. Recent
studies suggested that high-throughput phenotyping offers a
powerful entry into dissecting genetic components underlying
plant biomass accumulation (Muraya et al., 2017; Zhang et al.,
2017; Chen et al., 2018).

The identification of stress resistance of different genotypes is
an important goal in crop breeding programs. A stress resistant
genotype can be defined as one which gives a significantly
higher yield than average under conditions where crop resources
availability are limited by some aspect of the environment
(Quarrie et al., 1999). To differentiate stress adaptation levels
of genotypes, several selection indices have been suggested on
the basis of yield or biomass performance of a given genotype
under stress and non-stress conditions (Rosielle and Hamblin,
1981; Fernandez, 1992) or in comparison with the average yield

(Fischer and Maurer, 1978; Fernandez, 1992). More recently,
to overcome limitations of using various indices per se Thiry
et al. (2016) proposed a new method based on a scoring
scale involving a combination of previously developed stress
indices. This new method offers a simple way to identify
best or worst crop genotypes within a population, in terms
of resilience of stress and production capacity. In addition,
identified contrasting genotypes are essential prerequisites for
investigations of the possible roles of specific traits in genotypic
responses to stress conditions.

Here, we used an automated high-throughput plant
phenotyping facilities to investigate maize morpho-physiological
responses to optimal, limited nitrogen supply, limited water
supply and combined nitrogen and water stress during vegetative
growth (before tasseling). In this study we focused on the
measurements done at the phase of maximal water stress and at
the end of the cultivation period with two main objectives: (i)
to identify reliable and useful image-based traits for mid-season
biomass accumulation in each treatment and (ii) to identify
contrasting genotypes in a terms of biomass productivity for each
stress type with image-derived and manually measured traits
contributing to stress tolerance.

MATERIALS AND METHODS

Plant Material
Twenty temperate maize inbred lines (ILs) were selected for
the experiment. The selection of the 20 ILs was done so as to
represent a set of public and commercial lines with variation
in terms of tolerance to abiotic (mainly drought) stresses. ILs
B73 (IL1), A632 (IL2), and Mo17 (IL3) have been chosen as
some of the most famous representatives of public sector inbreds.
These historical inbreds are widely recognized as sensitive to
drought. V-273 (IL4) is a commercial line developed at the Maize
Research Institute Zemun Polje (MRIZP), Serbia and represents
a prolific (multi-ear) version of B73 inbred. The IL4 is still
being used as a female parent in several MRIZP hybrids and
under heat and/or drought stress firing of leaves and lower
yield potential may be expected. V-395/31 (IL5) is a public
IL that has been used as a female parent in several MRIZP
hybrids grown in Serbia during the 1970s. It has been developed
from an old Yugoslavian population Vukovar and according to
our knowledge is susceptible to drought. L 375/25-7 (IL6), L
325/75-2 (IL7), and L 335/99 (IL18) are most recently developed
MRIZP elite ILs that are being used both as female and male
parental components in several widely grown hybrids in Serbia
and abroad. They show good general combining abilities and are
known to be tolerant to drought during critical growth stages for
water requirement. Genotypes TVA1415-1 (IL8), 727574 (IL9),
TVA912-1 (IL10), PZS61 (IL11), ČK674/78-2 (IL12), TVA810-1
(IL13), RC109 (IL14), Vir44 PEP (IL15), UČ23 (IL16), S49 (IL17),
TVA1736-1 (IL19), and TVA303-1 (IL20) are introduced ILs from
the MRIZP Gene bank collection used for broadening genetic
diversity of the elite MRIZP breeding material. They belong to a
drought tolerant mini core collection that was established after
screening of entire MRIZP Gene bank accessions for drought
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tolerance for 2 years (Vančetovć et al., 2010; Babić et al., 2011).
Additionally, unique SNP mutations in the ZmMYBE1 gene,
involved in the regulation of growth rate, plant height and
photoperiod in maize (Jia et al., 2009), were found in inbreds
IL9, IL11, IL12, IL13, and IL14 (Assenov et al., 2013). Further
information on ILs used in this study such as maturity group,
developmental or collection origin, and the germplasm pools they
belong to is given in Table 1. All seeds used in this study were
multiplied at MRIZP in a single year under non-stress conditions.

Experimental Set-Up and Phenotyping
The experiment was performed in a climate controlled glasshouse
of the Leibniz Institute of Plant Genetics and Crop Plant Research
(IPK), Gatersleben, Germany. The automated phenotyping
platform for large plants (Junker et al., 2015) was used to
characterize 20 diverse maize ILs for their responses to nitrogen
deficiency (N) and water stress (W), as well as combined nitrogen
and water stress (N +W) imposed mainly during the vegetative
developmental phase. Control treatment (C) involved adequate
water and nitrogen supply. In each treatment, eight plants per
IL were tested, which resulted in a total of 640 plants. To
ensure phenological synchronization across ILs at the targeted
stage when nitrogen and water stress were to be imposed
(starting from around 6-leaf stage), a pre-study was performed
to determine the phenology of ILs in greenhouse conditions.

TABLE 1 | List of the inbred lines used in this study and information of their
maturity groups, the developmental origins, the sector/ownership and the
germplasm pools they belong to.

Name Code Maturity
group

Gene pool Sector Origin

B-73 IL1 Late Dent Public United States

A-632 IL2 Intermediate Dent Public United States

Mo-17 IL3 Late Dent Public United States

V-273 IL4 Late Semi dent Private Serbia

V-395/31 IL5 Late Dent Public Yugoslavia

L 375/25-7 IL6 Intermediate Dent Private Serbia

L 325/75-2 IL7 Late Dent Private Serbia

TVA1415-1 IL8 Early Dent Public Czechoslovakia†

727574 IL9 Intermediate Semi dent Public United States†

TVA912-1 IL10 Intermediate Flint Public Yugoslavia†

PZS61 IL11 Early Dent Public USSR†

ČK674/78-2 IL12 Intermediate Semi flint Public USSR†

TVA810-1 IL13 Intermediate Dent Public Czechoslovakia†

RC109 IL14 Intermediate Semi dent Public Czechoslovakia†

Vir44 PEP IL15 Intermediate Dent Public USSR†

UÈ23 IL16 Intermediate Dent Public USSR†

S49 IL17 Early Flint Public Poland†

L-335/99 IL18 Late Flint Private Serbia

TVA1736-1 IL19 Intermediate Dent Public Czechoslovakia†

TVA303-1 IL20 Early Dent Public Czechoslovakia†

†Indicates the MRIZP Gene bank accessions for which exact country of
development could not be determined so country of collection was listed instead.
Based on our knowledge or as reported in past studies (see section “Materials and
Methods” for more details) the studied genotypes can be classified as susceptible
(ILs 1-5) or tolerant (ILs 6-20).

Information on the number of days to 6-leaf stage was used as
covariate adjustment to group genotypes into subsets of similar
phenology (early, intermediate and late, Table 1) for sowing
at different times. Sowing of seeds was first done for late ILs,
followed by ILs belong to intermediate and early vegetative
groups at 3-day intervals. Sixty-four seeds per each IL were
sown in small pots (one plant per pot) for germination and
seedlings pre-culture.

On 17, 14, and 11 days after sowing of late, intermediate,
and early vegetative groups, respectively, 32 visually uniform
plants per IL were transplanted into larger pots. At the
time of transplanting, plants had reached approximately the
4-leaf developmental stage. After transplanting, the pots were
transferred into IPK’s automated plant phenotyping (IPK-APP)
system for large plants placed in climate controlled glasshouse
and ILs were grown for further 35 days more. At the time
of stresses impose plants approximately reached 6- to 7-leaf
developmental stage. At the time of maximum water stress
plants were about from 9- to 11-leaf developmental stage in all
treatments. At the end of experiment plants had approximately
reached the 11- to 14- (in W and N + W) leaf developmental
stage and 12-to 16- (in C and N) leaf developmental stage
(see Supplementary Table 1 for leaf stage comparison between
the ILs). Briefly, each genotype was replicated 8 times per
treatment, with replicates arranged in blocks of two plants
(each in an individual pot) and placed onto one carrier on a
conveyor system throughout the glasshouse compartment for
joint movement, imaging, watering and fertilizing. The conveyor
system consists of 12 lanes each storing 33 carriers. To avoid
position effects, carriers were shuffled lane-wise 2–3 times per
week. Carriers were moved to three consecutive imaging boxes
for visible imaging (VIS, 390–750 nm), fluorescence imaging
(FLUO, excitation: 400–500 nm, emission: 520–750 nm) and
near infrared imaging (NIR, 1450–1550 nm), using in each case
top view and side view CCD cameras (with 22◦, 45◦, 112◦,
and 135◦ side views). Additionally, during the experiment the
system was upgraded with a FluorCam device (Photon Systems
Instruments, Brno, Czechia) for kinetic chlorophyll fluorescence
analyses (Tschiersch et al., 2017). The system also incorporates
an automated weighing and watering unit for quantified delivery
of both water and nutrient solutions to the plants throughout
growth/measurement cycles. More details on the IPK-APP
system and image acquisitions are given in Junker et al. (2015).

Growth Conditions
During pre-cultivation, plants were grown in small 9 cm diameter
pots (one plant per pot) filled with IPK soil mixture composed
of 40% (v/v) IPK self-made compost + 40% (v/v) substrate
2 (Klasmann-Deilmann GmbH, Geeste, Germany) + 20%
(v/v) sand (for compost and substrate composition see Junker
et al., 2015). After the seeds were sown, the pots were
kept in a climatized glasshouse chamber and watering was
performed manually to allow optimal germination and seedling
establishment. Plants were transplanted and entered IPK-APP in
5.5 l pots filled with the IPK soil mixture mentioned above.

The temperature regime during the experiment was set
to mimick Zemun Polje vegetative temperature which raised
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stepwise sequentially during the growth period starting
with 20/15◦C day/night during germination and pre-culture
period, then 22/17◦C day/night for 10 days and finally to
25/20◦C day/night temperature for further 25 days. During
the entire cultivation period relative air humidity was set
to a minimum of 65% and the light period was set to 16 h
(06:00–22:00 h). For supplemental illumination SonT Agro
high pressure sodium lamps (Philips, Amsterdam, Netherlands)
were used to achieve an average total illumination of approx.
350 µmol m−2 s−1 PAR.

Plants were fertilized once at the beginning of the experiment
(at 3 days after transplanting (DAT 3)) with a 75 ml solution
containing 0.1% Wuxal R© Super (8% [w/w] nitrogen, 8% [w/w]
P2O5, 6% [w/w] K2O, and micronutrients, MANNA). To realize
two nitrogen levels different fertilizer solutions were applied
once per week in next 4 weeks (at DATs 8, 15, 22, and 29).
For optimal nitrogen conditions (C and W) 50 ml of 0.5%
Wuxal R© Super fertilizer solution per pot was added, while
for reduced nitrogen conditions (N and N + W) 50 ml
of 0.03% Fetrilon R©1-Combi (micronutrients without nitrogen,
BASF) and 725 mg of KH2PO4 have been applied per pot.
In total, 35 mg of nitrogen per pot was applied in optimal
nitrogen conditions and 15 mg of nitrogen per pot in reduced
nitrogen conditions.

In the C and N treatments, pots were watered daily to a
target weight corresponding to 75% soil field capacity (SFC)
from transplanting to DAT 35 (Supplementary Figure 1). The
method for SFC determination was described in Junker et al.
(2015). All carriers were weighed every day and the reduction
of weight from 1 day to the next was used to calculate the
amount of water lost from the soil. The standard cultivation
protocol for maize at IPK-APP includes the use of blue cover
material (rubber mats) for facile top view image segmentation
and reducing water evaporation from the soil. In W and N +W
treatments water stress was initiated at DAT 9 by cumulative
soil drying to 20% SFC (DAT 22) and then raised to 30%
SFC and kept at this level till the end of the experiment
(Supplementary Figure 1).

Image-Derived Plant Traits
Plants were imaged daily starting from 2 days after transplanting
(DAT 2) to the end of the experiment (DAT 35). The
Integrated Analysis Platform (IAP) was used for image
(pre-) processing and automated feature extraction (Klukas
et al., 2014). The multi-sensor setups at IPK (VIS, FLUO,
NIR, FluorCam) support the assessment of around 200 traits
corresponding to plant architecture, plant colorization, plant
water content, or levels of fluorophores, as well as efficiency
of photosystem II. In this study we focus on 25 phenotypic
traits (extracted from images of each individual carrier) selected
(i) to support biological interpretation of plant growth, (ii) to
belong to different trait categories (Supplementary Table 2)
and (iii) to show significant genotypic and/or treatment effects
(Supplementary Table 3).

Selected image-derived traits could be broadly classified
into three categories: architectural (length, area, shape,
structure), physiological (fluo-based and color-related traits) and

biomass-related traits. Detailed information for image-based
trait definitions and details of trait extraction are shown in
Supplementary Table 2. We here refer to their names and codes
which will be used through the manuscript: side area (PSA), top
area (PTA), side compactness (SCom), top compactness (TCo),
convex hull area (CHA), solidity (Sol), surface coverage (SCov),
caliper length (CLe), roundess (Rnd), plant height (PHg), plant
width (PWd), leaf count (LCn), leaf width (LWd), leaf length
(LLn), estimated biovolume (EBv), fluorescence intensity (FI),
photosystem II efficiency (PSII), yellow to green (Y2G), brown
to green (R2G), red to green (R2G), red color value (RGB_r),
green color value (RGB_g), blue color value (RGB_b), Lab color
a (Lab_a), and Lab color b (Lab_b). Although images from all
standard modules (visible, fluorescence, and near-infrared) were
available, we mainly used VIS images for selected traits. The
static bulk fluorescence (IF) value was obtained from FLUO
imaging (Junker et al., 2015) and pulsed amplitude modulated
fluorescence parameters (PSII) from the FluorCam (Tschiersch
et al., 2017) modules, respectively. Traits were derived from top
or side view (averaged across different angles), or combined,
as in a case of EBv [calculated as a volume from side and top
view areas (Klukas et al., 2014), and can be used as a proxy for
estimated biomass].

In this study we focused on the measurements done at the end
of the experiment (DAT 35) for architectural and biomass-related
traits. However, color-related traits were evaluated at the time
of maximum water stress (DAT 22) as a previous study in
barley (Neumann et al., 2015) showed that values of color-related
traits were more different compared to that of the control
plants during the water stress period than after re-watering.
Obtained color-related traits data in this study also showed higher
distinction among treatments at DAT 22 (when SFC was 20%)
compared to DAT 35 when SFC was 30% (data not shown). The
FluorCam device used for photosystem II operating efficiency
(PSII) measurement became available at an advanced state of the
stress treatment and was used once at DAT 23 (before watering
applied that day, see Supplementary Figure 1).

Manual Measurements of Traits and
Indices
An overview of measured trait/indice definitions and methods of
their extraction are given in Supplementary Table 2. A day before
the end of the experiment (DAT 34) relative water content (RWC)
in the youngest fully expanded leaf of each plant was determined.
At the end of experiment (DAT 35) plants were removed at the
soil level for biomass fresh- (BFw) and dry-weight (BDw) as
well as chemical analyses (relative carbon concentration, CC and
relative nitrogen concentration, NC in dry matter). Only data for
NC (%) was shown, as for CC there were no significant differences
between genotypes and treatments (ranged 39.2–43.6% across
genotypes and treatments). Stress- and biomass-related indices
such as specific plant weight (SPW), water use efficiency (WUE),
physiological nitrogen use efficiency (PNUE), resilience capacity
index (RCI) and production capacity index (PCI) were calculated
based on BDw. Manual measurements were later used to establish
correlations with image-based phenotypes.
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Identifying Contrasting Genotypes in
Terms of Biomass Production Under
Stress
To identify the degree of stress tolerance of different ILs used in
this study we applied the screening method recently proposed
by Thiry et al. (2016). Briefly, this new approach relies on
the introducing of simple 10-grading (scoring) assesment for
five stress indices previoulsly developed to evaluate drought
adaptation: stress susceptibility index – SSI (Fischer and Maurer,
1978), stress tolerance index – TOL (Rosielle and Hamblin, 1981),
mean productivity index – MP (Rosielle and Hamblin, 1981),
geometric mean productivity – GMP (Fernandez, 1992) and
stress tolerance index – STI (Fernandez, 1992). The calculations
of stress indices are based on grain yield (in present case on
a biomass dry matter basis) per se under stress and non-stress
conditions. Once obtained, score indices have been classified
within two new scales called RCI and PCI. New indices RCI
(average indice score of SSI and TOL) and PCI (average indice
score of MP, GMP and STI) were used to classify ILs in the
different response groups (from A to D) according to the
concept developed by Fernandez (1992). Contrasting groups A
(high resilient/tolerant and high productive ILs) and D (low
resilient/tolerant and low productive ILs) were compared for
image-based and manually measured traits.

Data Analysis
The data from phenotyping platform are used to determine
the overall importance of the factors like genotype, treatment
and their interaction for the observed digital and manual traits,
follows a Gaussian linear mixed model which formulated for
each trait separately: y = Xβ + Zu + ε, where y is the response
variable with n observations of a given continuous trait, X and
Z are design matrices of fixed and random effects, respectively;
β and u are the estimated and predicted parameters of the
fixed and random effects in the model; ε is the vector of
the random errors associated with the response variable. The
effects of the replication in the model was treated as fixed
while the effects of genotype, treatment and the interaction as
random effects. For the random terms in the model the normal
distribution is assumed with E(u) and E(ε) equal to zero and
variance-covariance matrices G and R side of the model. In order
to ensure the reliability of the models, the AOM algorithm based
on the Studentized residuals for the detection of the anomaly
or extreme observations along with diagnostic plots were used.
The significance of the fixed effect model term was assessed
using Wald test, whereas the significance of the random term
by likelihood ratio (LR) test. In order to account for different
precision of the treatment conditions, we fitted two competitive
models for each response variable: (i) with homogeneous residual
error variances across the treatments and (ii) with heterogeneous
residual error variance across the treatments. The selection
among the competitive models was made according to Akaike
Information Criterion (AIC). The model with the lower AIC
value was selected. In addition, the random effects (i.e., the
BLUPs) of the genotypes were predicted in each treatment and
used for all subsequent analyses.

The measures of descriptive statistics, box-plot as well as the
Person linear correlation coefficients among the observed traits
were used. Furthermore, the correlation network map based
on the matrix of Person linear coefficients was constructed to
visually identify the correlation pattern that is not observable in a
symetric correlation matrix (Ursem et al., 2008). In a correlation
network map, the traits represent variables as nodes which are
connected by edges, whose width is proportional to the strength
of the correlation. Based on the REML estimates of the variance
components of random terms, the sample-basis heritability (h2)
of the traits is estimated using the following equation (Holland
et al., 2003): h2

= σ̂
2
G/σ̂2

P, where is σ̂2
G – estimated genetic

variance; σ̂2
P – total phenotypic variance expressed as the sum of

σ̂2
G – genetic variance component, σ̂2

GT – genotype × treatment
variance component and a σ̂2

ε error variance.
In order to interpret the importance of the traits on biomass

in two treatments, the multivariate regression approaches were
used. Due to previously observed high correlations among the
traits which are considered as the predictors (j = 1, . . . , k) of the
biomass variation, we fitted two alternative shrinkage/penalized
regression approaches known as the ridge regression (RR) model
(Hoerl and Kennard, 1970) and the Least Absolute Shrinkage and
Selection Operator (LASSO) regression model (Tibshirani, 1996).
In the RR model, the minimization of the residual sum of squares
is based on the following equation:

β̂RR = arg min
β

RRS (β) =

arg min
β


n∑

i=1

yi − β0 −

k∑
j=1

xijβj

2

+ λ

k∑
j=1

β2
j


where λ ≥ 0 is the complexity parameter which controls the
amount of the shrinkage, and `2 =

∑k
j=1 β2

j is the ridge penalty
function (Hastie et al., 2009).

The LASSO model uses a different type of penalty function
and minimizes the residual sum of squares based on the
following equation:

β̂LASSO = arg min
β


n∑

i=1

yi − β0 −

k∑
j=1

xijβj

2

+ λ

k∑
j=1

|βj|


where `1 =

∑p
j=1 |βj| is the LASSO model penalty function

(Hastie et al., 2009). In contrast to RR model penalty function, the
LASSO model penalty function enable an efficient shrinking of
some of the regression coefficients (i.e., β̂LASSO) to zero. Thus, the
LASSO model usually results into sparse models that are easier
to interpret. For RR and LASSO models, the optimal value of the
complexity parameter was estimated by fivefold cross-validation.

Diagrams were used to group the ILs in terms of RCI
and PCI into four groups (from A to D). The diagram axes
were generated by the means of all ILs and the values of
each IL distributed into quadrants. Means between contrasting
groups A and D were separated by t-test. The two-way table
of genotype-by-treatment predictions for biomass data was
analyzed by the interaction AMMI model (Cornelius et al., 2001).
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The table was double-centered such that each genotype (gi)
biomass in each treatment (tj) value has an interaction value (tgij),
i.e., yij − ȳi. − ȳ.j + ȳ.. where yij – is the effect of i-th genotype
in j-th treatment; ȳi. – effect of i-th genotype; ȳ.j – effect of j-th
treatment; ȳ.. – overall mean. The singular value decomposition
method was used to derive the hypothetical parameters of the
AMMI model. The derived hypothetical parameters are displayed
on two-dimensional biplot graph (Bradu and Gabriel, 1978).

All computations and data visualizations were accomplished
within the R computing environment (R Core Team, 2019). The
mixed model analyses were conducted with the ASReml software
(Gilmour et al., 2009).

RESULTS

Trait Performance and Estimation of
Variance Components
For all architectural (except Rnd) and biomass-related traits
means were the highest in C, followed by N, then by W
and N + W (Supplementary Table 4). The same stands for
fluorescence-based traits (FI and PSII). Average reduction of
architectural, biomass-related and flourescence-based traits due
to nitrogen stress (N), water stress (W), and combination
of nitrogen and water (N + W) stress was 3.2% (ranged
0–7%), 19.3% (ranged 1–44%), and 21.8% (ranged 1–46%)
(Supplementary Table 4). In all stress treatments the highest
percentage reduction was found for BDw (ranged 7–46%),
followed by EBv (ranged 7–42%), and BFw (ranged 6–38%).
The lowest percentage reduction associated with applied stresses
was found for Rnd (ranged 0–1%) and Sol (ranged 0–4%). For
color-related traits (except RGB_g) means in N + W and W
treatments were higher compared to control conditions (C),
while differences between N and C were mostly marginal. Color
ratios (Y2G, B2G, and R2G) of stressed plants under W and

N + W had highest change of means among all image-based
and manually measured traits compared to control plants (ranged
from 0.5- to 4.5-fold increase).

Boxplots illustrating the phenotypic distributions within
treatments for each image-based and manually measured trait
are provided as Supplementary Figures 2, 3, respectively.
Considering coefficient of variation (CV), most of the studied
traits showed relatively low (5–10%) and moderate (10–20%)
variability within treatments (Supplementary Table 5). High
variability (at least 25% in any of the treatments) was determined
for B2G and TCom, with R2G being by far the most variable
trait (varying from 55 to 83% for different treatments). Very
low variability (<5%) in each of the treatments was exhibited by
color-related traits Lab_a, Lab_ b and RGB_g as well as RWC.
For most of the traits CV was similar among the treatments.
However, there were several exceptions. Variability of PSII,
color ratios and RWC were increased in conditions with water
stress (W and N + W) compared to conditions where water
stress was not applied (C and N). On the other side, variability
of biomass-related traits BFw, BDw and SPW was gradually
declined with increasing the level of stress.

Highly significant (P < 0.001) REML variance components
of treatment, genotype and interaction effects were obtained
for almost all image-based and manually measured traits
(Supplementary Table 6). The only exceptions were Sol in
a case of treatment effect (P > 0.05) and RWC in a case
of genotype effect (P < 0.01). Studied traits showed variable
genotypic and treatment effects and their interactions (Figure 1
and Supplementary Table 6), with dominant effect of treatment
for 12 image based traits such as RGB_g (89%), Lab_a (85%),
EBv (83%), PTA (81%), etc. Genotype was accounted for most
of the variation for twelve image-based traits, being highest for
Sol (91%), LLn (89%), SCov (88%), Lab_b (87%), FI (86%),
etc. The only trait with dominant interaction effect was R2G
(41%). Variation of all manually measured traits was dominated

FIGURE 1 | Relative contribution of the variance components (estimated by REML model) to the phenotypic variance of image-based and manually measured traits.
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by treatment effect. Heritability (h2) was generally slightly
higher for image-based traits than for manually measured traits
(Supplementary Table 6). Highest heritabilities (over 0.96) were
found for some architectural traits such as TCom, Sol, SCov, and
LLn, as well as FI and Lab_b. Lowest heritabilities were obtained
for some physiological traits such as RGB_g (0.56), RWC (0.63),
NC (0.70), and R2G (0.73), as well as PTA (0.74).

Major Correlations Between
Image-Based and Manually Mesured
Traits
Networks visualizing phenotypic (r) correlations among all
studied traits in four treatments are given in Figure 2. Several

manually measured traits showed distinct relationships with
image-derived traits regarding different treatmans. For example,
NC had significant correlations with image-derived traits only
in treatments with water stress, while the oposite was true
for RWC and SPW. In general, higher number of significant
correlations between image-derived and manually mesured traits
were found in non-water stress treatments (C and N) than in
treatments with water stress (W and N + W) (Supplementary
Tables 7–10). Significant positive correlations were observed
between two types of biomass measurements (BFw and BDw) and
image-derived estimated biovolume (EBv) in all treatments, with
the highest in C (r = 0.753 and 0.793, respectively), followed by N
(r = 0.632 and 0.635, respectively), then W (r = 0.613 and 0.545,
respectively) and N + W (r = 0.615 and 0.537, respectively).

FIGURE 2 | Phenotypic correlation networks among 25 image-based and six manually measured traits in control (A), nitrogen stress (B), water stress (C), and
combination of nitrogen and water stress (D) treatment. Full and dotted lines represent positive and negative correlations, respectively. Line width is proportional to
the strength of the correlation. Red, yellow, orange, and blue nodes represent manually measured traits, biomass-related traits, architectural traits, and physiological
traits, respectively.
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Further image-derived biomass-related traits, PSA and PTA,
respectively, showed relationships with BFw and BDw in a similar
patterns like EBv. BDw had also strong positive relationships
with CHA, Cle, and PHg, but only in C and N treatments. Apart
from BFw and BDw, EBv had significant positive correlation with
WUE (in all treatments) and SPW (only in C and N).

Variable Selection
To define a subset of image-derived traits that contribute to
BFw and BDw as dependent variables in the model, LASSO
and Ridge regressions were applied. These techniques were
chosen to avoid the problem of the high degree of the
multicollinearity as indicated by high correlation coefficients
(r) among predictors (image-derived traits) (see Figure 2 and
Supplementary Tables 7–10). In this study, we focused on the
results from the LASSO model selection approach as results
from the two different methods were well consistent and led
to similar conclusions. Results from the Ridge regression are
provided as supplementary material (Supplementary Table 11).
The LASSO estimates of the contributors to BFw and BDw
in each treatment among 25 image-based traits are presented
in Table 2. The number of non-zero coefficients for BFw was
highest in C and N (both 12) and the lowest in W and N + W

(both nine). Contrary to this, for BDw the highest (13) and
the lowest (8) number of non-zero coefficients were obtained
for W + N and C, respectively. In general, biomass-related
traits such as EBv and PTA showed to be among the most
significant contributors to BFw and BDw in each treatment.
Further traits that were contributors in each treatment were color
ratios (Y2G and B2G) and PSA for BFw, and SCom, B2G and
Lab_b for BDw. However, several traits showed distinct patterns
of trait importance between tretments. Namely PSII, Lab_a, Sol,
and RGB_b had non-zero coefficients for BDw in water stress
treatments (W and N+W), but not under mild (N) or non-stress
(C) conditions. The same is true for PSII, Lab_a and Rnd in a
case of BFw. On the other hand, Cle and SCov were significant
contributors for BFw and BDw, respectively, only in control
treatment. Several image-based traits such as CHA, PWd, FI,
and RGB_g were not substantially important for BFw and BDw
in any treatment.

Identification of Stress-Adapted
Genotypes Within the Investigated
Population
As a first step toward selection of stress-adapted genotypes,
we used five stress-tolerance indices (SSI, TOL, MP, GMP,

TABLE 2 | Estimated coefficients from the LASSO applied to the biomass fresh and dry weight.

Predictor Biomass fresh weight (BFw) Biomass dry weight (BDw)

C N W N +W C N W N +W

PSA 0.049 0.084 0.301 0.232 0.087 0.046

PTA 0.424 0.532 0.237 0.184 0.269 0.228 0.395 0.294

SCom −0.146 −0.164 −0.126 −0.151

TCom −0.162 −0.633

CHA

Sol 0.143 0.102

SCov 0.073

CLe 0.033 0.182 0.041

Rnd −0.221 −0.146 0.096 0.077

PHg 0.171 0.344 0.304 0.203

PWd

LCn −0.011 −0.047 −0.023 −0.035 −0.196 −0.111

LLn 0.024 0.090 0.124

LWd −0.210 −0.435

EBv 0.340 0.218 0.212 0.260 0.337 0.236 0.225 0.246

FI

PSII 0.346 0.316 0.194 0.176

Y2G 0.124 0.153 −0.177 −0.151

B2G −0.048 −0.060 −0.051 −0.033 −0.033 −0.102 −0.090 −0.094

R2G 0.062 −0.008

Lab_a 0.089 0.039 0.114 0.082

Lab_b −0.098 −0.332 −0.174 −0.224 −0.192 −0.182

RGB_g

RGB_b −0.061 −0.037 0.026 0.075

RGB_r 0.031 0.005

The blank entries correspond to variables excluded from the model. C, control; N, nitrogen stress; W, water stress; N +W, combination of nitrogen and water stress. Trait
names are given in Section “Materials and Methods,” while their definitions and details of extraction are provided in Supplementary Table 2.
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and STI) based on dry biomass weight to summarize the
genotypic response to the applied stresses (Supplementary
Tables 12–14). In the next step, for each of the five indices
a simple 10-grading (scoring) assesment of ILs was applied
to obtain RCI and PCI (Supplementary Tables 15–16).
Distribution of ILs in terms of variation in RCI and PCI
was used to construct a diagram, showing the separation
of the ILs into four groups from A to D (Figure 3 and
Supplementary Table 17) of differential response under
stress conditions according to concept of Fernandez
(1992). Groups A (best genotypes-high tolerant and high
productive) and D (worst genotypes- low tolerant and
low productive) represent the extremes, which are in the
focus of this study. We looked for statistical difference
between average values of digital and manually measured
traits for groups A and D in each stress treatment and
control (Table 3).

In the N treatment, the five ILs of group A (IL4, IL6,
IL9, IL13, and IL19) had significantly higher EBv, BFw, BDw,
PNUE and SPW than the four ILs of group D (IL3, IL5, IL17,
and IL20). In the W treatment, the five ILs group A (IL6,
IL7, IL13, IL16, and Il19) showed significantly higher PSA,
PTA, SCov, EBv, DFw, BDw, SPW, and WUE than the five
ILs of group D (IL1, IL3, IL5, IL17, IL20). In the N + W
treatment, group A consisted of four ILs (IL6, IL7, IL13, and
IL19) that had significantly higher PTA, Sol, EBv, DFw, BDw,
SPW, WUE, and RWC than the three ILs of group D (IL1,
IL3, and IL17). The differences expressed under the stress
treatments between groups A and D were not observed in
control treatment for any trait. Genotype× treatment interaction
analysis for dry weight showed to be highly consistent with
the classification of the ILs into the four groups (Figure 4).
ILs placed in the left upper quadrant of the biplot can be
regarded as stable since their vectors had no acute angles
with vectors of any treatment (e.g., ILs 6, 7, 12, 15, etc.).
These ILs were grouped in all treatments either in group A
(marked as A–A–A on the biplot) or C (marked as C–C–C
on the biplot). Three ILs placed in upper right quadrant (9,
1, and 4) appeared to be most adapted to mild stress (N).
Most adapted to severe stress (W and N + W) conditions
are ILs 10, 8, and 2. They were classified in group C in
all treatments (C–C–C). In general, in the biplot the 20 ILs
showed no grouping according to their origin, maturity group
or gene pool. This was also not the case for five ILs (9, 11,
12, 13, and 14) identified to carry unique SNP mutations in
MYBE1 transcription factor gene involved in drought stress
tolerance pathways.

DISCUSSION

Expression of maize growth- and stress tolerance-related traits
was monitored during the vegetative period from approx.
the 4-leaf stage up to the 14-leaf stage by four types of
imaging modules, visible (color), near-infrared, fluorescence
(static bulk), and kinetic chlorophyll fluorescence (at one day).
This multi-sensor setup supports the assessment of approx.

FIGURE 3 | Distribution diagram of twenty maize inbred lines (ILs) into four
different response group (from A to D) according to their variation in resilience
capacity index (RCI) and productive capacity index (PCI) calculated for
nitrogen stress (N), water stress (W), and combination of nitrogen and water
stress (N+W) treatments.

200 phenotypic traits and thus offers novel opportunities
to gain knowledge of genetic determinants and mechanisms
governing plant performance under challenging environmental
conditions. However, it also imposes a substantial challenge
with respect to the analysis of the large volume of data. In
this study, we focused on 25 image-derived traits which are
highly informative (showed genotype and treatment effects)
and with biological meaning (can be used as a proxy for
important agronomic features). The majority of the extracted
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TABLE 3 | Comparison of best (A) and worst (D) inbred lines based on their productivity and tolerance under stress (A, high productivity and high tolerance; D, low
productivity and low tolerance).

Trait code N treatment W treatment N +W treatment

A (n = 5) D (n = 4) A (n = 5) D (n = 4) A (n = 5) D (n = 4)

Image-based traits

PSA 1312 ± 30 1295 ± 22 1186 ± 29∗ 1052 ± 39 1091 ± 36 1004 ± 34

PTA 1546 ± 25 1449 ± 61 1191 ± 30∗∗ 1006 ± 40 1107 ± 41∗∗ 893 ± 21

SCom 925 ± 27 962 ± 66 857 ± 39 910 ± 72 796 ± 17 813 ± 76

TCom 509 ± 44 546 ± 80 445 ± 56 472 ± 68 404 ± 32 442 ± 91

CHA 5512 ± 276 5321 ± 328 4226 ± 258 3984 ± 250 3823 ± 155 3786 ± 242

Sol† 28.5 ± 1.5 27.7 ± 2.4 28.4 ± 1.5 2.56 ± 1.1 28.7 ± 1.2∗ 23.5 ± 1.3

SCov† 13.8 ± 0.8 13.4 ± 2.1 13.7 ± 0.4∗ 11.5 ± 0.9 12.6 ± 0.5 11.3 ± 0.1

CLe 83.3 ± 2.4∗ 74.1 ± 3.2 68.0 ± 1.8 65.3 ± 2.3 66.6 ± 1.8 64.4 ± 2.8

Rnd 0.75 ± 0.02 0.74 ± 0.02 0.72 ± 0.03 0.72 ± 0.01 0.69 ± 0.02 0.71 ± 0.01

PHg 143 ± 6 137 ± 7 98 ± 5 101 ± 4 96 ± 6 99 ± 6

PWd 65.0 ± 1 62.8 ± 4 63.3 ± 2 59.1 ± 3 61.5 ± 2 58.7 ± 4

LCn 11.8 ± 0.3 12.8 ± 0.7 10.2 ± 0.5 10.9 ± 0.7 9.6 ± 0.7 10.1 ± 1.1

LLn 69.1 ± 3.4 66.6 ± 4.1 68.8 ± 3.5 65.1 ± 4.1 68.7 ± 4.5 66.4 ± 2.7

LWd 7.7 ± 0.1 6.9 ± 0.4 6.8 ± 0.2 6.5 ± 0.3 6.8 ± 0.2 6.2 ± 0.4

EBv†† 154 ± 4∗ 139 ± 1 115 ± 5∗ 94 ± 4 102 ± 3∗ 86 ± 2

FI† 31.2 ± 0.8 30.4 ± 1.1 30.4 ± 0.7 28.4 ± 1.5 30.2 ± 0.7 27.0 ± 2.1

PSII† 52.1 ± 0.5 51.5 ± 0.7 46.8 ± 0.7 46.1 ± 1.7 46.6 ± 0.6 43.9 ± 2.7

Y2G† 7.4 ± 0.2 8.0 ± 0.2 9.8 ± 0.6 10.4 ± 1.0 10.1 ± 0.7 10.9 ± 1.7

B2G† 1.9 ± 0.1 1.8 ± 0.1 3.2 ± 0.3 3.4 ± 0.7 3.4 ± 0.3 3.5 ± 1.1

R2G† 2.0 ± 0.0 2.0 ± 0.0 4.0 ± 0.1 5.0 ± 0.2 6.0 ± 0.1 6.0 ± 0.3

Lab_a 106 ± 1 106 ± 1 111 ± 1 111 ± 1 111 ± 1 110 ± 1

Lab_b 152 ± 1 155 ± 1 154 ± 1 155 ± 1 155 ± 1 155 ± 1

RGB_g† 43.8 ± 0.6 41.6 ± 0.6 34.6 ± 0.6 34.3 ± 0.7 34.2 ± 0.9 34.7 ± 0.9

RGB_b† 16.6 ± 0.2 16.2 ± 0.3 18.0 ± 0.5 17.6 ± 0.6 17.8 ± 0.6 17.4 ± 0.4

RGB_r† 26.3 ± 0.5 25.8 ± 0.4 27.7 ± 0.6 26.7 ± 0.6 27.3 ± 0.8 26.1 ± 0.2

Manually measured traits

BFw 215 ± 2 200 ± 8 156 ± 2∗ 136 ± 6 146 ± 2∗ 124 ± 6

BDw 24.4 ± 0.8∗ 21.3 ± 0.3 15.4 ± 0.4∗∗ 12.9 ± 0.3 14.4 ± 0.4∗∗ 12.1 ± 0.1

NC 1.78 ± 0.07 1.79 ± 0.05 2.73 ± 0.08 2.79 ± 0.10 2.63 ± 0.12 2.61 ± 0.13

RWC 93.8 ± 0.5 93.2 ± 0.5 85.8 ± 1.2 83.9 ± 1.1 87.2 ± 1.1 80.9 ± 1.5

SPW 77.2 ± 1.7∗ 68.4 ± 1.2 50.1 ± 1.0∗ 45.5 ± 1.1 50.6 ± 2.2∗ 43.8 ± 1.0

WUE 1.54 ± 0.03 1.49 ± 0.03 2.11 ± 0.06∗ 1.84 ± 0.04 2.04 ± 0.05∗ 1.75 ± 0.05

Indice

PNUE 12.3 ± 1.7∗∗ 24.1 ± 1.0 93.0 ± 10.0 102.1 ± 5.0 72.0 ± 8.0 77.1 ± 2.0

n denotes number of inbred lines belong to the group. †Values were multiplied by 100, ††given in mega-voxel. Significant differences between groups A and D obtained
by t-test were bolded (∗significant at P < 0.05; ∗∗significant at P < 0.01). N, nitrogen stress; W, water stress; N + W, combination of nitrogen and water stress. Trait
names are given in Section “Materials and Methods,” while their definitions and details of extraction are provided in Supplementary Table 2.

traits were derived from RGB images (except two FLUO-
based traits), which is by far the most frequently used
imaging modality in phenotyping experiments (Ge et al.,
2016). Color imaging can be used not only to assess growth
status and biomass accumulation of plants but also their
nutritional or health status, while fluorescence imaging detects
chlorophyll and other fluorophores signals and can serve as
a proxy for stress symptoms (Chen et al., 2014; Janka et al.,
2018). Selected traits are broadly classified as of architectural,
biomass-related and physiological type. For architectural and
biomass related traits we focused on the values of the final
measurement at the end of the experiment to correlate

them with manually measured traits, including destructively
determined fresh and dry biomass weight. However, for
the traits that represent stress symptoms (i.e., color-related
traits), data from the day of the maximum water stress
were used instead, as these traits tend to change over time
(Neumann et al., 2015).

While the applied water stress level built up rapidly and
was quite severe, the applied nitrogen stress appeared to
be in a mild and more chronic fashion (our intention was
to obtain moderately reduced nitrogen growth conditions).
In other words, under the low N treatment the plants ran
more slowly into N-deficiency and had probably more time
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FIGURE 4 | Additive main effects and multiplicative interaction (AMMI) 2 biplot for 20 inbred lines (IL) based on measured dry weight in four treatments (C = control;
N = nitrogen stress; W = water stress; N + W = combined nitrogen and water stress). Letters in brackets signify belonging of ILs to the different response groups
(from A to D) according to their variation in resilience capacity index and productive capacity index calculated for N, W, and N + W treatment, respectively. Details of
the inbred lines are provided in Table 1.

to adjust than in the case of water stress. This resulted in
less observable phenotypic effect in the N treatment compared
to W and N + W treatments. As expected, biomass-related
traits were in general the most sensitive to applied stresses
among studied image-derived traits, except for color ratios
(Y2G, B2G, and R2G). Variance component analyses revealed
that heritability of image-derived traits was high for most
of them, with values of 0.56 and above, especially for
architectural traits. Chen et al. (2014) also reported higher
heritability of geometric and morphological than physiological
traits obtained from digital images in barley. Biomass yield
is a quantitatively inherited trait and its heritability tends to
be low due to interactions with several other traits and a
high environmental influence (Jackson et al., 1996). However,
in this study the heritability of estimated biovolume, the
proxy of biomass, was estimated to be rather high (80–84%),
due to low interaction (genotype × treatment) effect. This
is consistent with previous findings by Junker et al. (2015)
and Muraya et al. (2017) in the same facilities, who found
non-significant genotype × cultivation interaction for biomass

in both smaller and larger panel of maize lines, respectively.
High heritability of image-derived traits is promising to study the
genetic architecture of maize plant growth (Muraya et al., 2017;
Zhang et al., 2017).

The Pattern of Phenotypic Trait
Correlations
The structure of phenotypic correlations including six manually
measured was assessed at the end of the experiment. Consistent
with previous studies in different crop species, the digital
image-derived traits proved to be reliable estimators of manually
measured traits (Humplík et al., 2015; Neilson et al., 2015). The
correlation coefficients between estimated biovolume (biomass
proxy) and measured fresh and dry weight obtained in this
study were highly significant but a little lower, particularly
under stress (ranged from r = 0.62 and 0.61 in combination
of nitrogen and water stress to r = 0.75 and 0.79 in control
treatment, respectively), compared to previously reported data
in barley and maize (Chen et al., 2014; Honsdorf et al., 2014;
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Ge et al., 2016; Muraya et al., 2017). The correlation coefficient
depends on the range of trait values displayed by the lines
under analysis. In contrast to Muraya et al. (2017), the lines
investigated in the present study have been pre-selected to enrich
the elite MRIZP breeding material. The different composition
of the panels and the assessment of the traits at a later
developmental stage (at 50 days vs. 41 days of cultivation) well
explains the lower estimates in our study, as the correlations
become weaker at later growth stages when the difference
in plant architecture of genotypes becomes more pronounced
(Ge et al., 2016). Gradual decrease of correlation coefficients
between image-derived and manually measured biomass with
increasing stress intensity suggests that different physiological
mechanisms and genes are involved in adaptation for higher
stress (Banziger and Edmeades, 1997).

Phenotypic correlations within traits of the same category (i.e.,
architectural and biomass-related traits) were mainly high and
positive, while physiological traits were either not correlated or
negatively correlated with other traits. This is in accordance with
Chen et al. (2014) who suggested that the variation in color-based
traits has an independent genetic basis from other traits.
As expected, estimated biovolume had the highest correlation
coefficients with fresh and dry weight among image-derived traits
in all treatments, followed by two other biomass-related traits,
projected plant area from top and side view. Furthermore, these
were the only image-derived traits significantly related with fresh
and dry weight in W and N+W treatments.

Subset of Image-Derived Traits That
Relate to Fresh and Dry Biomass
To identify the most important image-derived traits related
to mid-season biomass accumulation for breeding purpose we
applied two regression techniques that have been extensively used
for model selections and feature reductions in machine learning
literature and applications (Aloraini, 2017). As many predictors
might have weak predictive value relative to the noise in the
data, shrinkage would be appropriate for the stabilization of the
estimates (Kruschke, 2015). In this study, the focus is on the
results from the Lasso regression that performs feature selection
along with shrinking coefficients, although data from the Ridge
analysis, that keeps all variables in the model and shrinks the
coefficients toward zero, was rather consistent.

In general, the number of identified non-zero coefficients
by Lasso model for fresh and dry weight versus image-derived
traits was higher than the number of significant simple
correlations coefficients between the same group of traits,
especially under more stressed treatments (W and N + W).
Again, biomass-related traits (EBv, PSA, and PTA) were among
the most important traits both for biomass measurements in all
treatments. Under severe stress conditions (W and N+W) Lasso
analysis identified several additional important physiological and
architectural traits.

In water stress treatments photosystem II operating efficiency
(PSII, a proxy for photosynthetic efficiency) was most important
among all image-derived traits to distinguish genotypes with
high/low fresh weight. For dry weight, PSII is the most important

after EBv, PSA, and PTA. PSII was also among the top ranked
traits for fresh and dry weight under severe stress (W and N+W)
identified by Ridge analysis. PSII is based on pulse-amplitude
modulated technique which allows early analysis of activity and
regulation of photosystem II, even before visible symptoms of
biotic and abiotic stresses become apparent (Humplík et al., 2015;
Tschiersch et al., 2017). In Arabidopsis, severe drought stress has
been shown to reduce PSII efficiency (Jansen et al., 2009). In
contrast to PSII, the static bulk fluorescence parameter measured
in this study (FI) was neither important for fresh nor for dry
weight in any treatment. It may distinguish non-stressed and
senescent leaves at later stages of stress progression as reported
by Humplík et al. (2015). Along with the aforementioned traits
also several architectural and color-related traits were involved in
the Lasso models for fresh and dry weight in stress treatments.
While architectural traits refer to shape, length or area of the
whole plant or part of the plant, color traits may be related to
physiological responses and to the degree of tissue damage. In
severe stress treatments (W and N + W), the most important
color-related trait for fresh weight was yellow to green (Y2G)
color ratio, which may indicate the degree of wilting symptoms.
This trait was reported to be the most sensitive to drought
among several color traits in a study of vegetative biomass
accumulation in barley (Neumann et al., 2015). Interestingly,
Y2G appeared to be of some importance also in C or N
conditions. In contrast to severe stress conditions, here, Y2G
ratio was positively correlated with fresh weight. It might be
related to a phenomenon called physiological leaf spotting or
flecking, which is the mild, genetically determined spotting
(lesion) commonly observed on the leaves of maize (Vontimitta
et al., 2015; Olukolu et al., 2016) including line Mo17 (Zehr et al.,
1994) and in several other cereals (Nair and Tomar, 2001; Behn
et al., 2004). Moderate coefficient of variation for Y2G ratio in
the C treatment (over 11%) suggests genetic variation of this trait
independent of stress.

The most important color-related trait for dry weight in all
treatments was Lab_b. Despite low variation in all treatments
(2.4–2.7%), significant differences of this trait were observed
among the studied genotypes. Genotypes with high values of this
trait (which indicate yellow color) tend to have low dry weight.
Furthermore, Lab_b was top-5 ranked for dry weight by Ridge
regression in all treatments, even higher than EBv. Lab_b was also
among most important and top-ranked image-based traits for
fresh weight, particularly in C and N treatments (in which Y2G
was not so prominent). Thus, average color in the b∗ range (blue
to yellow) of the L∗a∗b∗ color space (Ibraheem et al., 2012) can be
regarded as overall the most useful among studied color-related
traits to screen genotypes for vegetative biomass accumulation
under different conditions.

While several traits (e.g., PTA, EBv, and B2G) were
informative for fresh and dry weight in all treatments, others
showed large differences in their importance for the two measures
of biomass: The aforementioned Y2G may be important for
predicting fresh weight but not for dry weight, whereas side
compactness (SCom) showed the reverse. In general, decreased
plant height and plant width, thus higher SCom, was in negative
correlation with dry weight in all treatments.
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Other architectural traits detected by both analyses as being
important for dry weight only in stress treatments, were all related
to leaf traits (LCn and LLn): Maize plants with few (LCn) but
long leaves (LLn) tended to have high dry weight, which is in
agreement with the recent indication of leaf length as one of
the key aspects (along with leaf angle, curvature and dark green
color) for ideotype-based maize breeding (Zhang et al., 2017).
The relation of leaf number with biomass observed in stress
treatments but not in C conditions may be linked to variation
in developmental progression among the investigated genotypes:
While at the time of transplanting the maximum difference in
leaf number genotypes was only 0.8, it was almost four leaves
at the end of the experiment in each treatment. Thus, more
rapidly developing genotypes were exposed to the stress during
more advanced stages. Actually, few of the genotypes were at
reproductive stage (tasseling) at the end of the experiment, which
is often considered more sensitive to abiotic stress than vegetative
stage (Çakir, 2004; Walsh et al., 2012) and flowering time as a
key to local environmental adaptation (Li et al., 2016). Solidity
(Sol) is another leaf trait found to be important for identifying
genotypes with high dry weight accumulation under severe stress
conditions (W and N + W), but not in mild stress (N) or
non-stress conditions (C). This trait measures the degree of leaf
area coverage and can be used as a proxy trait of the agronomic
measure of LAI (Neilson et al., 2015). LAI (leaf area per unit
growth area) is a key determinant of radiation interception,
biomass accumulation and yield in maize (Lindquist et al., 2005;
Lukeba et al., 2013). In contrast to Sol, PHg was important for
measured biomasses only under C and N, but not under severe
stress (W and N + W). These findings are in accordance with
Chen et al. (2018) who suggested that image-based phenotypic
traits reflect differences in underlying determinants of plant
biomass subjected to various growing conditions.

Comparing Contrasting Inbred Lines for
Image-Derived and Manually Measured
Traits
To further investigate which image-derived trait might be of
interest for maize breeders and researchers regarding mid-season
stress adaptation, we first classified the genotypes in terms of
yield formation (here dry biomass production) under stress and
then searched for image-derived and manually measured traits
with significant differences among the groups. Classification into
four different response groups (from A to D) was done for
each treatment according to Thiry et al. (2016) by analyzing
the RCI, in terms of dry biomass decrease of ILs under stress
within a population, compared to non-stress conditions, and the
PCI, in terms of mean production of ILs under both stress and
non-stress conditions within a population. With the assumption
that contrasting groups A (best ILs with a high value in both
indices) and D (worst ILs with a low value in both indices)
would differ in traits underlying stress adaptation, they were
interrogated for traits with significant differences in expression.

In the N treatment, groups A and D significantly differed
for two image-based traits (EBv and CLe) and three manually
measured traits (BDw, SPW, and PNUE), in all cases in favor of

the best ILs. Since indices RCI and PCI were based on dry weight,
the difference between groups A and D in biomass-related traits
(EBv, SPW, and BDw) was expected. CLe describes the maximum
diameter of the plant which is very informative (Honsdorf
et al., 2014) as plants with a large diameter cover a larger
area, tend to be bigger, have a higher growth rate and a higher
biomass than plants with a smaller diameter. Also both regression
analyses indicated this trait as important for dry weight in the
N treatment. The detected image-derived traits will be suitable
for high-throughput measurement of varietal differences in dry
matter accumulation and nitrogen use efficiency at the vegetative
stage. This could be advantageous as it is unaffected from
additional variables affecting (seed) yield in later stages such as
number of grain per ear and mass of 1000 grains (Namai et al.,
2009) and can help in speeding up the phenotyping process for
testing hybrids as well as inbreds (Ciampitti et al., 2012).

In the water stress treatments (W and N + W), all
biomass-related traits (except PSA in N + W treatment)
significantly differed between groups A and D and WUE was
significantly higher in the A vs. the D group. Along with
drought tolerance, WUE is one of the two primary mechanisms
of adaptation to water deficit (Condon et al., 2004). The
biomass-related image-derived values are among the strongest
criteria for identifying plants with high resilience and high
productivity under severe stress. In addition, the architectural
trait surface coverage (SCov) was also significantly higher in
the best ILs compared to the worst ones in the W treatment.
SCov can be used as a proxy for LAI, particularly when plants
were subjected to water-limiting conditions (Neilson et al., 2015).
Contrary to SCov, two previously discussed image-based traits
Sol and PSII appeared to make substantial difference between
the two contrasting groups in N + W treatment, but not in W
treatment. Also, RWC is significantly different between A and D
group only in combination of nitrogen and water stress, but not
in water stress solely. These differences between W and N + W
stresses are in accordance with the well-known fact that the
response of plants to a certain combination of stresses is unique
and cannot be directly extrapolated from the response of plants to
individually applied stresses (Mittler, 2006; Humbert et al., 2013).

Interestingly, when contrasting groups from particular stress
treatments were compared in control conditions, only Y2G of
all studied traits appeared to be significantly different between
groups. In stress-free conditions, the best ILs from each stress
treatment had significantly lower Y2G than the worst ILs. As
mentioned before, Y2G might be affected by naturally occurring
mild leaf spotting, which is possibly related to disease resistance
(Vontimitta et al., 2015; Olukolu et al., 2016), but which could
also lead to reduced growth and to a yield penalty (Todesco et al.,
2010; Olukolu et al., 2016).

Adaptation and Biomass Yield Stability
of Inbred Lines Across Treatments
Finally, we used the AMMI method with two principal
components to identify stable ILs with their adaptation behavior
in a graphical manner. Stability refers to the ability of the
genotype to perform consistently, both with high or low
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yield levels in multiple environments, while adaptability
refers to a genotype that produces high yields in specific
environmental conditions and poor yields in another
environment (Annicchiarico, 2002). Several ILs (ILs 6, 7, 13,
15, 18, and 19) can be regarded as stable. Both, commercial
and public lines are present in this group. In general, obtained
results for W treatment to a large extent correspond to the
classification of used ILs to tolerant and drought-sensitive based
on the 2-year identification results (ILs 9-20) or our knowledge
(ILs 1-8). Namely, 10 out of 15 ILs previously determined as
drought tolerant express uniform superiority in both drought
and non-stress conditions (group A) or had a relatively higher
biomass yield only under stress (group C). Furthermore, two
public ILs known to be drought susceptible B73 (exhibits top-fire)
and Mo-17 (barrenness under drought) (Chang et al., 2018) had
good performance only in control (C) and not under drought
condition (W) or express poor biomass performance in both
drought and non-stress conditions, respectively. Three ILs (9,
1, and 4) appeared to be most adapted to mild stress (N), as
their yield was high (only) under nitrogen stress but poor under
water stress or under combination of nitrogen and water stress.
Inbreds 9 and 1 are public, while IL 4 represents a prolific
(multi-ear) version of the B73 inbred (IL1). A prolific version
of B73 with higher average productivity than its original, has
previously been found to be drought sensitive (Chen et al.,
2012). In recent study with 98 Expired Plant Variety Protection
Act-certified germplasm for genetic diversity of nitrogen use
traits B73 exhibited high nitrogen use and utilization efficiency
(Mastrodomenico et al., 2018). On the other hand, Mo-17 showed
low physiological efficiency of plants to produce grain utilizing
the plant N accumulated when grown without N fertilizer. This
is well in accordance with our study since B73 and Mo-17 were
classified in group A (most adapted to nitrogen stress) and group
D (most sensitive to nitrogen stress), respectively. Furthermore,
these two inbreds have different response to drought and nitrogen
stress and combined well sa a hybrid (Hallauer et al., 2010). In
general, the intermated B73-Mo17 recombinat ILs with high
B73 composition had better performance under low nitrogen
stress than the ones with high Mo-17 composition (Sen et al.,
2015). Most adapted to severe stress conditions are ILs 10, 8, and
2, all from the public domain. They were classified in group
C in all treatments (C–C–C). However, it can be noted that
some of the ILs (e.g., 12 and 15) with high biomass yields only
under stress treatments (C–C–C) were rather grouped among
stable ILs than among ILs adapted to severe stress. This could
be due to a low discriminatory power of the method (Thiry
et al., 2016) to distinguish genotypes from the A and C groups
and it has been suggested that genotypes from both A and
C groups should be considered for selection for abiotic stress
tolerance and suitable yield performance. In this regard it will
be important to investigate how well the categorization of the
inbreds achieved in this study using the phenotyping experiments
in the controlled environmental condition matches with their
classification based on field data (i.e., to assess the value of
the controlled environment phenotyping data to identify lines
performing well in stress conditions in the field). Thus, future
work will involve the use of data from ongoing field trials to

investigate the value of high-throughput image-derived traits
collected and analyzed as described in this study.

CONCLUSION

High-throughput plant phenotyping becomes more and more
widely used in plant breeding. Image analyses provide the
opportunity to study new traits which we weren’t able to measure
manually, but with challenge to recognize most realible and useful
biological traits. In this study, we identified several color-related
traits and kinetic chlorophyll fluorescence (PSII) that might be
relevant features informative of biomass production ability in
maize, particularly under severe stress conditions. In addition,
architectural traits related to a greater leaf area were found
to provide good discrimination of resistant cultivars to abiotic
stresses which are assumed to better perform under climate
change scenarios. Our future work is planned to be on
translating the results and predicting the effect of traits obtained
from experiments under controlled greenhouse conditions to
field environments.
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