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Olive is considered as a moderately salt tolerant plant, however, tolerance to salt
appears to be cultivar-dependent and genotypic responses have not been extensively
investigated. In this work, saline stress was induced in four olive cultivars: Arbequina,
Koroneiki, Royal de Cazorla and Fadak 86. The plants were grown in 2.5 l pots
containing 60% peat and 40% of pumice mixture for 240 days and were irrigated three
times a week with half-strength Hoagland solution containing 0, 100 and 200 mM NaCl.
The effects of salt stress on growth, physiological and biochemical parameters were
determined after 180, 210, and 240 days of treatment. Saline stress response was
evaluated in leaves by measuring the activity of GSH and CAT enzymatic activity, as well
as proline levels, gas exchanges, leaves relative water content and chlorophyll content,
and proline content. All the studied cultivars showed a decrease in Net Photosynthesis,
leaves chlorophyll content and plant growth (mainly leaves dry weight) and an increase in
the activity of GSH and CAT. In addition, the reduction of proline content in leaf tissues,
induced an alteration of osmotic regulation. Among the studied cultivars Royal and
Koroneiki better counteracting the effects of saline stress thanks to a higher activity
of two antioxidant enzymes.

Keywords: salt stress, olive, photosynthesis, proline, antioxidant enzyme

INTRODUCTION

Environmental conditions may strongly impact plant crop growth (Kachaou et al., 2010; Feller
and Vaseva, 2014; Pandolfi et al., 2017). In particular, abiotic constraints, such as drought, soil
salinity and extreme temperatures, which cause water depletion in cells, are responsible for a large
proportion of losses in agricultural productivity (Bose et al., 2014).

In order to overcome water shortages and to satisfy the increasing water demand for agricultural
development, the use of water of low quality (brackish, reclaimed, drainage) that frequently has an
high salinity level is becoming important in many countries (Chartzoulakis, 2005).

In particular, plants under high salinity conditions are subject to significant physiological and
biochemical changes, for example a marked decrease in photosynthesis rate and transport of
salt ions from roots to shoots (Ben Ahmed et al., 2009; Anjum et al., 2011; Singh and Reddy,
2011; Goltsev et al., 2012; Abdallah et al., 2018). A major biochemical alteration, also induced by
other types of stress, is the production of reactive oxygen species (ROS) (Gill and Tuteja, 2010;
Boguszewska and Zagdańska, 2012; Ozgur et al., 2013; Bose et al., 2014). An excess of ROS leads
to lipid peroxidation, inhibition of enzymes, and modifications of nucleic acids (Proietti et al.,
2013; Bose et al., 2014; Tedeschini et al., 2015). Under stress conditions, plants can nonetheless
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develop tolerance, that is, the ability to adequately survive,
and often prosper, under an unfavorable environment,
following a robust production of antioxidant enzymes (Ben
Ahmed et al., 2009; Bhaduri and Fulekar, 2012; Keunen
et al., 2013). Among these enzyme, superoxide dismutase
(SOD), ascorbate peroxidase (APX), and glutathione reductase
(GSH) are localized in chloroplasts and mitochondria (Pang
and Wang, 2010; Del Buono et al., 2011; Proietti et al.,
2013), whereas catalase (CAT) and guaiacol peroxidase
(GPX) are generally present within microbodies and cytosol,
respectively (Bhaduri and Fulekar, 2012; Hameed et al., 2013;
Nath et al., 2016).

Mechanistically, tolerance may also include osmotic
adjustments at cellular level (Ayala-Astorga and Alcaraz-
Meléndez, 2010). Some plants implement this process by
increasing the amount of solutes and lowering the water
potential of root cells, thereby counteracting the water outflow.
These substances, reported as osmolytes, can accumulate in
large amount, but do not generally interfere with enzymatic
activities and cytoplasmic pH, due to their zwitterionic nature.
Osmolytes commonly used by plants are sugars, alcohols,
quaternary amines, betaine, glycine and proline (Warren, 2014).
In this regard, the concentration of proline in leaves and roots
was reported as a response by the olive tree to saline stress
(Ayala-Astorga and Alcaraz-Meléndez, 2010; Hayat et al., 2012;
Iqbal et al., 2014; Abdallah et al., 2018). In fact, proline facilitates
water retention in the cytoplasm and, therefore, its concentration
is indicative of response to saline stress (Ben Ahmed et al.,
2009; Gupta and Huang, 2014). Cultivated olive (Olea europaea
subsp. europaea var. europaea) is a long-living, evergreen,
thermophilic species. In the Mediterranean basin where olive is
mostly cultivated salinity is becoming a relevant problem due
to high rates of evaporation and insufficient leaching (Mousavi
et al., 2019). In addition in costal areas the need for water of good
quality for urban use is increasing while there is a large amount
of low quality water mostly saline (EC > 2.0 dS m−1) that can
be use for irrigation (Chartzoulakis, 2005). Olive is considered
as a moderately salt tolerant plant and the tolerance appear
to be cultivar dependent (Rugini and Fedeli, 1990). The olive
crop counts a very rich varietal heritage (Mousavi et al., 2017)
but genotypic responses of olive to NaCl salinity have not been
extensively investigated, and only few works have been published
(Al-Absi et al., 2003; Chartzoulakis, 2005). In this context it’s
important to select cultivars that may give good performance
when cultivated in soil with salinity problems or irrigated with
saline water. Among the cultivars studied in the present work
Arbequina and Koroneiki cultivars are the subject of increasing
interest given their adaptability to super-intensive cultivation
systems (Proietti et al., 2015). The identification of saline-
resistant cultivars is of particular interest, especially for those
cultivation systems, such as the super-intensive, which require
large quantities of water as the availability of non-saline water
will decrease dramatically in the future due to climate change.

The purpose of this work was to study the behavior of different
olive cultivars during saline stress by analyzing the activity of
the GSH and CAT enzymes, the proline content and the plant
growth parameters.

MATERIALS AND METHODS

Plant Material, Growing Conditions and
Salt Treatments
Sixty own-rooted plants for each olive cultivar Fadak 86, Royal
de Cazorla (referred along the text as “Royal”), Koroneiki and
Arbequina were used (20 plant replicates per treatment). Two-
years old plants, approximately 1.3–1.5 m tall, were grown in
greenhouse in black plastic pots (volume 2.5 L) containing
a substrate composed of 60% peat and 40% pumice (w/w).
Plants were irrigated three times a week, for 3 months,
using half-strength Hoagland solution in the absence of salt.
Subsequently, for the following 8 months from February, plants
were irrigated three times a week with half-strength Hoagland
solution containing 0, 100, and 200 mM NaCl, respectively. The
salinity levels used were high since 137 mM NaCl has been is
the tolerance limit for olive trees (Rugini and Fedeli, 1990) and
were chosen accordingly to previous studies on salt stress in olive
(Therios and Misopolinos, 1988; Tattini et al., 1995; Ben Ahmed
et al., 2008). At beginning of treatment, to prevent osmotic shock,
salt was added using daily increments of 25 mM up to the
target levels. Electrical conductivity was determined weekly in the
leaching solution with the conductometer “Hanna Instruments-
HI 9033,” giving values of about 1.2, 12.4, and 21.4 dS m−1 in
relation to the 0, 100, and 200 mM NaCl group, respectively, thus
confirming that an irrigation rate with a leaching fraction of 20–
30%, ensures a stable salinity level in pots throughout the course
of the experiment (Perica et al., 2008).

Plants were exposed to natural light inside the greenhouse,
and a ventilation system was automatically engaged by air
temperature not exceeding 35◦C.

During the entire course of the experiment, minimum and
maximum daily temperatures ranged between 9.4 and 15.2◦C,
and 10.4–30.4◦C, respectively.

Plant Growth
At the beginning of the experiment and at 240 days after
treatment (DAT), five plants for each treatment (including
control plants) were removed from the substrate, roots were
washed with deionized water and separated into different parts.
For each plant, basal diameter, total height, number of lateral
shoots, total length of lateral shoots, total leaf area and fresh
and dry weight (FW and DW) of roots, lateral shoots (after
removing the leaves) and stems (principal axis) were determined.
DW was obtained by oven-drying at 95◦C until constant
weight was achieved.

At the end of the experiment the relative growth rate (RGR)
was calculated as follows (Hoffmann and Poorter, 2002):

RGR =
ln (v2)− ln (v1)

t2 − t1

where: ln = natural logarithm; v2 e v1 = plant DW at the end (t2)
and at the beginning (t1) of the experiment.
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Leaf Net Photosynthesis (Pn), Stomatal
Conductance (gs), Leaf Transpiration
Rate (E), and Sub-Stomatal CO2
Concentration (Ci)
Photosynthesis, gs, E and Ci were determined at 180, 210 and 240
DAT in 15 leaves for each combination (cultivar + treatment).
Leaf gas exchange rates were measured using a portable
IRGA (ADC-LCA-3, Analytical Development, Hoddesdon,
United Kingdom) and a Parkinson-type assimilation leaf
chamber. Leaves were enclosed in the leaf chamber and
perpendicularly exposed to sun’s rays inside the greenhouse.
PPFD was always higher than 1,200 µmol m−2 s−1 (within the
1,500–1,900 range), which is known to be over the saturation
point in olive (Proietti and Famiani, 2002). The flow rate of air
passing through the chamber was kept at 5 cm3 s−1. During
gas-exchange measurements, the external CO2 concentration was
about 385 cm3 m−3 and the air temperature inside the leaf
chamber was 2–4◦C higher than outside. Measurements were
taken under steady state conditions (about 30 s). Leaves were
then returned to the laboratory for area measurements using a
Delta-T Image Analysis System (“Delta-T Devices,” Cambridge,
United Kingdom) and Pn, gs and E were expressed in relation
to the leaf area.

Leaf Water Status and Chlorophyll
Content
For each treatment, relative water content (RWC) was
determined from leaves of five plants (three leaves each),
collected at 180, 210, and 240 DAT. Leaves were detached,
sealed in a plastic bag, and taken immediately to the laboratory to
determine leaf water status according to the procedure previously
described (Proietti et al., 2013).

Total chlorophyll content was determined by the
portable SPAD-502 chlorophyll meter, which allows rapid,
non-destructive measurements (Boussadia et al., 2011).

Chemical Analysis
Glutathione Reductase (GSH)
The enzymatic activity was measured by a modification of
the previously published method (Flohé and Günzler, 1984)
using H2O2 as substrate. GSH activity was measured in olive
leaves (five leaves of about 1 g total for each combination
cultivar+treatment) homogenized in 5 ml of KNaHPO4 (0.1 M)
buffer at pH 7.0 containing EDTA 1 mM, with an ultra-Turrax
T25 homogenizer (Tanke and Kunkel Ika Labortechnik) for 3 min
in ice. The supernatant obtained by centrifugation (10 min at
3,000 rpm) was used as the source of enzyme activity.

The reaction mixture consisted of 0.2 mL of the extract
supernatant, 0.4 ml of GSH (0.1 mM) and 0.2 ml of KNaHPO4
(0.067 M) containing EDTA 1 mM. The reaction mixture was
kept at 25◦C for 5 min, after which the reaction was started by
adding 0.2 ml of H2O2 (1.3 mM), and then stopped 10 min later
with 1 ml of trichloroacetic acid.

The mixture was cooled in ice for 30 min and centrifuged at
3000 rpm for 10 min; the supernatant (0.48 ml) was placed in

a cuvette containing 2.2 ml of 0.32 M Na2HPO4 and 0.32 ml of
1 mM DTNB (Sigma-Aldrich), and read after 5 min in a Beckman
spectrophotometer set at 412 nM.

Catalase (CAT)
Catalase activity was carried out in olive leaves (five leaves for
each combination cultivar+treatment) homogenized for 3 min
in ice by an ultra-Turrax T25 in 5 ml of 0.2 M Tris buffer
(pH 7.8) containing 0.13 mM EDTA and 80 mM PVP. The
homogenates were centrifuged at 3,000 × g for 10 min, after
which the supernatants were used to measure CAT activity.
CAT activity was determined based upon the consumption of
hydrogen peroxide (coefficient of extinction 39.4 M−1 cm−1) at
240 nM for 2 min (Kraus et al., 1995).

The reaction mixture contained 2 ml of a 100 mM
NaH2PO4/Na2HPO4 buffer (pH 6.5), and 0.05 ml of the extract.
The reaction was started by adding 0.01 ml of 30% (w/v)
hydrogen peroxide.

Proline
The determination of proline in leaves (five leaves for each
combination cultivar + treatment of about 1 g total) was
performed by HPLC using a Jasco 880-PU instrument equipped
with a Jasco 821-FP fluorometric detector. The HPLC procedure
was carried out according to the method described (Palmerini
et al., 1985). Proline was measured in leaves homogenized in 5 mL
of ultra-pure H2O with an ultra-TurraxT25 for 3 min in ice.

The extract supernatant (1 ml) was deproteinized with 0.2 ml
of HClO4 (20% v/v) in ice, centrifuged at 8000 rpm for 5 min, and
finally neutralized with 0.2 ml of KOH (20% by weight).

The supernatant (0.05 ml) was mixed with 0.15 ml (0.4 M) of
borate pH 9, 0.05 ml of o-phthalide chloride (OPA) (150 mM) in
methanol and 0.1 ml of 7-chloro-4-nitrobenzo 2 ossa-1,3-diazolo
(NBD-Cl) (25 mM) in methanol. The reaction, set at 60◦C for
3 min, was stopped in ice with 0.1 ml HCl (1 M).

The derivatized sample (0.02 ml) was injected into a HPLC
Lichrosor RP-18 column (15 cm × 4.6 mm ID) and eluted under
isocratic conditions with H2O/CH3CN (93/7), used as the mobile
phase. The solvents used were previously passed through a 0.22-
micron filter (Millipore Corporation).

NBD-derivatives were determined at 470 nM (excitation) and
530 nM (emission). NBD-proline was eluted in 6.5 min and
quantified using a standard proline solution. Proline (0.043 M)
and hydroxy-proline (0.038 M) standards were diluted 1 to 100 in
H2O, derivatized with NBD-Cl and analyzed by the same HPLC
method to generate reference data.

Statistical Analysis
All statistical analyses of data were performed using Graph Pad
Prism 6.03 software for Windows (La Jolla, CA, United States).
Tests for variance assumptions were conducted (homogeneity
of variance by the Levene’s test, normal distribution by the
D’Agostino-Pearson omnibus normality test). Significance of
differences were analyzed by Fisher’s least significant differences
test, after the analysis of variance according to the randomized
complete factorial design. Differences with p < 0.05 were
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TABLE 1 | Gas exchanges in four cultivars treated with 0, 100, and 200 mM NaCl.

Pn E gs Ci

µmol(CO2) m−2 s−1 mmo l(H2O) m−2 s−1 mmol(H2O) m−2 s−1 µmol mol−1

180 DAT

Fadak 86-0 12.14 a 3.50 a 246.50 a 297.21 a

Fadak 86–100 11.67 a 3.55 a 236.38 a 284.46 a

Fadak 86–200 11.40 a 3.60 a 232.47 a 281.67 a

Royal-0 13.80 a 2.93 a 147.97 a 209.54 a

Royal-100 12.03 a 2.43 a 127.96 b 213.80 a

Royal-200 10.15 b 2.25 a 128.62 b 201.41 a

Koroneiki-0 14.10 a 3.85 a 252.65 a 260.69 b

Koroneiki-100 10.69 b 3.81 a 209.77 b 312.56 a

Koroneiki-200 9.31 b 3.51 a 180.34 b 359.19 a

Arbequina-0 13.05 a 3.38 a 184.47 a 254.94 a

Arbequina-100 11.63 b 2.32 b 174.70 b 244.43 a

Arbequina-200 11.01 b 2.33 b 170.79 b 251.64 a

210 DAT

Fadak 86-0 11.75 a 2.12 a 162.53 a 288.21 b

Fadak 86–100 7.20 b 1.38 b 72.04 b 346.47 a

Fadak 86–200 5.47 b 1.35 b 68.78 b 332.03 a

Royal-0 6.72 a 0.69 a 21.60 a 112.07 a

Royal-100 6.02 a 0.72 a 27.06 a 101.43 a

Royal-200 5.17 b 0.70 a 22.18 a 117.32 a

Koroneiki-0 9.30 a 2.12 a 90.75 a 241.55 b

Koroneiki-100 5.54 b 1.61 a 57.79 b 279.20 a

Koroneiki-200 4.47 b 1.30 b 45.85 b 295.43 a

Arbequina-0 7.96 a 1.83 a 108.32 a 329.36 b

Arbequina-100 4.60 b 1.85 a 105.90 a 394.26 a

Arbequina-200 4.79 b 1.86 a 53.47 b 368.24 ab

240 DAT

Fadak 86-0 5.01 a 2.11 a 72.66 a 266.25 b

Fadak 86–100 −0.68 b 1.28 b 37.53 b 341.68 a

Royal-0 7.77 a 2.34 a 86.55 a 265.92 b

Royal-100 1.78 b 1.55 b 50.04 b 371.09 a

Royal-200 −0.45 b 1.37 b 36.37 b 393.99 a

Koroneiki-0 4.06 a 2.96 a 95.40 a 296.85 b

Koroneiki-100 −0.16 b 1.94 b 53.15 b 375.65 a

Koroneiki-200 −0.83 b 2.11 b 59.32 b 395.95 a

Arbequina-0 2.70 a 4.57 a 167.90 a 333.34 b

Arbequina-100 −0.86 b 3.03 a 95.16 b 383.40 a

Mean values followed by different letters are significantly different (P < 0.05). Tests were performed inside each cultivar for three treatments (0, 100, and 200 mM NaCl)
and separately for each time point.

considered significant (Supplementary Tables S1–S14). The
coefficient of variation (CV) was determined for each trait.

RESULTS

Leaf Net Photosynthesis (Pn), Stomatal
Conductance (gs), Leaf Transpiration
Rate (E), and Sub-Stomatal CO2
Concentration (Ci)
Plants treated with 100 and 200 mM NaCl showed lower values
of Pn compared to control, especially at 210 and 240 days

after treatment start (DAT). The Pn decrease in stressed plants
started from 180 DAT, and the most significant impact was
observed in “Arbequina,” and “Fadak 86” treated withf Pn
compared to control, 100 and 200 mM NaCl and the plants
of the same cultivars treated with 200 mM NaCl died at 220
DAT. Ci increased at 100 and 200 mM NaCl and the higher
values were observed in Arbequina and Fadak 86 gs and E
decreased at 200 mM.

As a general trend, in stressed plant, the decrease in Pn
was accompanied by a decrease in gs. On the other hand,
gs decrease is related with an increase in Ci and a decrease
in E (Table 1).
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TABLE 2 | Relative water content of leaves in four olive cultivars treated with 0,
100, and 200 mM NaCl.

RWC (%)

180 DAT 210 DAT 240 DAT

Fadak 86-0 84.36 a 84.36 a 70.40 a

Fadak 86–100 84.15 a 84.15 a 56.65 b

Fadak 86–200 83.37 a 83.37 a 0

Royal-0 82.72 a 74.89 a 76.06 a

Royal-100 83.43 a 76.15 a 66.23 b

Royal-200 79.05 a 77.47 a 64.58 b

Koroneiki-0 88.43 a 77.84 a 75.13 a

Koroneiki-100 84.04 a 81.46 a 72.01 a

Koroneiki-200 83.49 a 78.33 a 64.67 b

Arbequina-0 86.03 a 85.53 a 78.75 a

Arbequina-100 82.73 b 77.44 b 68.51 b

Arbequina-200 80.09 b 73.95 b 0

Mean values followed by different letters are significantly different (P < 0.05). Tests
were performed inside each cultivar for three treatments (0, 100, and 200 mM
NaCl) and separately for each time point.

Relative Water Content (RWC) and
Chlorophyll Content
In general in stressed plants, RWC was lower than control
starting from 210 DAT without differences between 100 and
200 mM NaCl (Table 2).

In all plants under saline stress of the four cultivars, low values
of chlorophyll content than control were observed at 240 DAT,
however, the major impact was observed in stressed plants of
“Fadak 86” (Table 3).

Plant Growth
Salt treatments reduced dry weight (DW) in all plant
parts of all examined cultivars at 100 and 200 mM
NaCl. The larger DW reductions were observed in leaves
while roots and shoots DW decreased only at 200 mM
(Table 4 and Supplementary Figures S1–S4). The major

TABLE 3 | Chlorophyll content of leaves of different olive cultivars treated with 0,
100, and 200 mM of NaCl.

SPAD

180 DAT 210 DAT 240 DAT

Fadak 86-0 85.75 a 88.02 a 82.10 a

Fadak 86–100 85.70 a 80.78 b 65.23 b

Fadak 86–200 84.48 a 79.84 b 0

Royal-0 90.74 a 91.29 a 90.40 a

Royal-100 93.08 a 83.22 b 68.00 b

Royal-200 92.14 a 84.39 b 66.99 b

Koroneiki-0 92.99 a 93.18 a 89.53 a

Koroneiki-100 90.54 a 80.96 b 77.18 b

Koroneiki-200 93.44 a 82.33 b 62.51 b

Arbequina-0 95.94 a 93.11 a 94.35 a

Arbequina-100 95.36 a 82.86 b 50.99 b

Arbequina-200 96.78 a 85.62 ab 0

Mean values followed by different letters are significantly different (P < 0.05). Tests
were performed inside each cultivar for three treatments (0, 100, and 200 mM
NaCl) and separately for each time point.

DW reduction was observed in “Fadak 86.” Moreover,
“Fadak 86” and “Arbequina” showed the lowest RGR values
(data not shown).

Enzymatic Activity
In leaves of plants treated with 100 and 200 mM NaCl,
GSH, and CAT activities systematically increased in relation
to controls across the four cultivars and regardless of the
duration of NaCl treatment (Figure 1). CAT increased
more markedly with extended exposure to saline stress in
“Fadak 86,” “Royal” and, less evidently, in “Koroneiki” and
‘”Arbequina,” whereas GSH activity exhibited higher values in
“Royal” plants.

Catalase increased more markedly with prolonged exposure
to salt stress in “Fadak 86,” “Arbequina,” and “Koroneiki,” less

TABLE 4 | Dry weight (DW) (g) of different parts of olive plants treated with 100 and 200 mM NaCl at 240 DAT.

Roots DW Shoots DW Leaves DW Stem DW Plant DW

Fadak 86-0 28.81 a 2.63 a 8.19 a 9.85 a 49.48 a

Fadak 86–100 19.06 b 2.66 a 8.36 a 10.56 a 40.64 a

Fadak 86–200 9.52 c 2.51 a 0.03 b 11.10 a 23.16 b

Royal-0 32.24 a 9.30 a 23.14 a 19.11 a 83.79 a

Royal-100 17.40 b 5.20 b 10.19 b 14.99 b 47.78 b

Royal-200 18.52 c 3.84 c 2.78 c 12.11 c 37.25 b

Koroneiki-0 33.54 a 11.87 a 21.75 a 21.64 a 88.80 a

Koroneiki-100 11.38 b 3.83 b 5.81 b 11.26 b 32.28 b

Koroneiki-200 15.61 b 5.03 c 3.21 b 12.30 b 36.15 b

Arbequina-0 25.75 a 9.81 a 24.41 a 21.70 a 81.67 a

Arbequina-100 20.24 b 4.42 b 8.98 b 15.25 b 30.89 b

Arbequina-200 12.35 c 2.16 c 0.02 c 11.99 c 26.52 b

Mean values followed by different letters are significantly different (P < 0.05). Tests were performed inside each cultivar for three treatments (0, 100, and 200 mM NaCl).
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FIGURE 1 | Time-points of glutathione reductase (GSH) and catalase (CAT)
activity in leaves of four olive cultivars under saline stress. (1) control, (2)
100 mM NaCl, and (3) 200 mM NaCl. Each value represents the average of
five experiments ± SEM. Mean values followed by different letters are
significantly different (P < 0.05).

noticeably, in “Royal,” while GSH activity showed higher values
in plants “Koroneiki.”

At 240 DAT the enzymatic activity was determined in the
leaves of “Arbequina,” and “Fadak 86” of the few survived trees
treated with 200 mM NaCl.

Proline
Upon salt stress, proline concentration decreased in all four
cultivars, and more evidently at the higher dose of NaCl
(Figure 2). Notably, proline reduction did not correlate
with duration of the induced stress. In control plants, the
concentration of proline in leaves was higher in “Royal” and

FIGURE 2 | Proline levels in leaves of four olive cultivars under saline stress.
(1) control, (2) 100 mM NaCl, and (3) 200 mM NaCl. Each value represents the
average of five experiments ± SEM. Mean values followed by different letters
are significantly different (P < 0.05).

“Koroneiki” compared to “Arbequina” and “Fadak 86.” At 240
DAT the proline concentration was determined in the leaves of
“Arbequina,” and “Fadak 86” of the few survived trees treated
with 200 mM NaCl.

DISCUSSION

In all the four cultivars considered in this study, Pn reduction
in leaves under stress conditions was associated with an
increase in Ci. This is in agreement with Chartzoulakis (2005)
who reports that low and moderate salinity is associated

Frontiers in Plant Science | www.frontiersin.org 6 July 2019 | Volume 10 | Article 867

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00867 July 4, 2019 Time: 16:11 # 7

Regni et al. Salt Stress and Olive Tree Resistance

with reduction of CO2 assimilation rate. The increase in
Ci due to reduction of Pn caused stomatal closure, with a
consequent decrease in gs and E and this is in agreement
with what postulated by Proietti et al., 2013. The Ci increase
is likely indicative that Pn reduction is mainly caused by
non-stomatal effects, and could be the result of a damage
in the photosystem under saline stress (Proietti and Famiani,
2002; Ben Ahmed et al., 2010; Singh and Reddy, 2011;
Proietti et al., 2012).

The reduction of the photosynthetic rate in plants
exposed to salt stress togheter with the reduction in Leaf
area caused a reduction of plant’s growth (Chartzoulakis
et al., 2002; Karimi and Hasanpour, 2014; Pandolfi et al.,
2017; Abdallah et al., 2018). In this regard, we noted
that saline stressed plants clearly displayed, with time,
a lower DW than controls. The DW reduction, mainly
localized in leaves was observed also by Karimi and
Hasanpour (2014), who found that if the amount of salt
rises to a toxic level in the leaves, it causes premature leaf
senescence and abscission.

Catalase and GSH enzymes were both investigated in light
of their different cellular localization, since CAT is expressed in
peroxisomes and removes H2O2 produced by the conversion of
superoxide anion (Guerfel et al., 2009; Huang et al., 2012), while
GSH is mainly present in chloroplasts and mitochondria, where
it maintains a high ratio between reduced (GSH) and oxidized
(GSSG) glutathione, despite formation of GSSG as a result of
exposure to the superoxide anion (Bray, 2000; Yousuf et al., 2012;
Keunen et al., 2013).

In the absence of stress, “Fadak 86,” “Koroneiki,” and
“Arbequina” plants showed a greater activity of CAT, while
only the cultivar “Koroneiki” expressed GSH. This may
explain the greater resistance of ’Koroneiki’ to saline stress
also confirmed by a lower reduction of Pn compared to
“Fadak 86” and “Arbequina.”

Decrease in Pn and chlorophyll content after treatments with
100 and 200 mM NaCl, could be related to a greater catalytic
activity of both CAT and GSH in the leaves of the four cultivars
(Yasar et al., 2008; Sevengor et al., 2011; Keshavkant et al., 2012).

Overall, obtained results indicated significant increase in CAT
and GSH enzymatic activities according to the increase of NaCl
concentrations across the four cultivars, excepting for GSH at
low salt level (100 mM) in “Royal.” The increased activity of
CAT and GSH in response to the reduction of Pn indicates
an altered redox state in the different cellular compartments of
leaves of the four cultivars and can be considered an important
marker of cellular response to saline stress, as also reported
by Hernández et al. (2000). Indeed a low chlorophyll content
in leaves of stressed plants, as observed in the olive plants, is
a typical effect of NaCl exposure, associated with an increase
of oxidative stress and, at the same time, an increase in ROS
scavenging enzymes as a physiological response (Yasar et al.,
2008; Gill and Tuteja, 2010; Saha et al., 2010; Din et al., 2011;
Arjenaki et al., 2012).

Other reports on olive response to salt stress have shown that
the concentration in leaves and roots of osmolytes such as proline,
may refer to a possible mechanism of adaptation to unfavorable

conditions (Feller and Vaseva, 2014; Iqbal et al., 2014). Proline
promotes water retention in the cytoplasm and its higher
content appears to represent a specific mechanism engaged by
the plants to better tolerate stress conditions (Parida and Das,
2005; Ben Ahmed et al., 2010; Hayat et al., 2012; Iqbal et al.,
2014). However, the involvement of osmolytes in carrying out
a protective action under unfavorable environmental conditions
is currently widely debated and has not yet been elucidated
and clarified, considering that tolerance to dehydration also
depends on the ability of cells to keep membranes intact
and prevent protein denaturation (Munns and Tester, 2008;
Iqbal et al., 2014; Cardi et al., 2015). Proline concentration
in the four cultivars examined under non-stress conditions
was different, that is, higher in “Royal” and “Koroneiki” and
less pronounced in “Fadak 86” and “Arbequina.” In saline
stressed plants, proline decrease was statistically significant
across the four cultivars. This finding is in agreement with
the observations of some authors (Ayala-Astorga and Alcaraz-
Meléndez, 2010), however, it does not parallel what is reported
by others, since in some cases it was shown an increase
in proline during saline stress (Ben Ahmed et al., 2009). In
this regard, it must be noted that the trend affecting proline
concentration is likely associated with NaCl doses higher
than 100 mM, usually used to evoke a saline stress (Ayala-
Astorga and Alcaraz-Meléndez, 2010). Furthermore, a number
of observations concerning proline and saline stress were made
under different experimental conditions (e.g., NaCl doses),
and by the application of different assay methods, such as
non-specific, colorimetric determinations (e.g., ninhydrin), that
might impact specificity and sensitivity of the determinations
(Bates et al., 1973).

In conclusion, the increase of CAT and GSH in salt stress,
induced by high levels of NaCl on the cultivars examined,
indicates the presence of a high oxidative stress in progress.

In particular, the Koroneiki cultivar showed a greater response
to saline stress, probably due to the prevalence of CAT and GSH
in control coditions.

Therefore, it will be interesting to investigate whether the
increased activity of CAT, GSH and proline, in basal conditions,
may represent a possible prognostic marker of olive trees in the
salt stress response.
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