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Infrared canopy temperature (CT) is a well-established surrogate measure of stomatal

conductance. There is ample evidence showing that genotypic variation in stomatal

conductance is associated with grain yield in wheat. Our goal was to determine when

CT repeatability is greatest (throughout the season and within the day) to guide CT

deployment for research and wheat breeding. CT was measured continuously with

ArduCrop wireless infrared thermometers from post-tillering to physiological maturity, and

with airborne thermography on cloudless days from manned helicopter at multiple times

before and after flowering. Our experiments in wheat, across two years contrasting for

water availability, showed that repeatability for CT was greatest later in the season, during

grain-filling, and usually in the afternoon. This was supported by the observation that

repeatability for ArduCrop, and more so for airborne CT, was significantly associated

(P < 0.0001) with calculated clear-sky solar radiation and to a lesser degree, vapor

pressure deficit. Adding vapor pressure deficit to a model comprising either clear-sky

solar radiation or its determinants, day-of-year and hour-of-day, made little to no

improvement to the coefficient of determination. Phenotypic correlations for airborne

CT afternoon sampling events were consistently high between events in the same year,

more so for the year when soil water was plentiful (r = 0.7 to 0.9) than the year where

soil water was limiting (r = 0.4 to 0.9). Phenotypic correlations for afternoon airborne

CT were moderate between years contrasting in soil water availability (r = 0.1 to 0.5)

and notably greater on two separate days following irrigation or rain in the drier year,

ranging from r = 0.39 to 0.53 (P < 0.0001) for the midday events. For ArduCrop

CT the pattern of phenotypic correlations, within a given year, was similar for both

years: phenotypic correlations were higher during the grain-filling months of October and

November and for hours-of-day from 11 onwards. The lowest correlations comprised

events from hours-of-day 8 and 9 across all months. The capacity for the airborne

method to instantaneously sample CT on hundreds of plots is more suited to large field

experiments than the static ArduCrop sensors which measure CT continuously on a
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single experimental plot at any given time. Our findings provide promising support for the

reliable deployment of CT phenotyping for research and wheat breeding, whereby the

high repeatability and high phenotypic correlations between afternoon sampling events

during grain-filling could enable reliable screening of germplasm from only one or two

sampling events.

Keywords: field experiments, proximal sensing, remote sensing, data processing, field phenotyping, foliage

temperature

1. INTRODUCTION

Canopy temperature (CT) has been used in field phenotyping
of crops since the 1960s (e.g., Fuchs and Tanner, 1966). The
use of CT is based on the fact that plant surfaces (e.g., leaves)
are cooled by evaporation, so that temperatures decrease in
proportion to the evaporation rate. In this way, cooler CT is
related to stomatal opening and higher transpiration rates while
in contrast, stomatal closure and a reduction in transpiration rate
manifests as a warmer CT. Thus, CT can be used as a surrogate
measure of stomatal traits including stomatal conductance,
stomatal aperture or leaf porosity and indirectly, photosynthetic
rate (Blum et al., 1982; Smith et al., 1988; Amani et al., 1996;
Fischer et al., 1998; Jones, 2004; Leinonen et al., 2006; Jones
and Vaughan, 2010; Maes and Steppe, 2012). The latter arises
because of the dependence of photosynthetic gas exchange on
stomatal conductance and the two are often highly correlated.
However, CT could be insensitive to non-stomatal regulation of
photosynthesis. The relationship between stomatal conductance
and yield potential in C3 crops over the last 50 years was
recently highlighted in a review (Roche, 2015). Further, under
yield potential conditions, cooler CT has been associated with
genetic gains in wheat yield (Aisawi et al., 2015), and higher
stomatal conductance and maximum photosynthetic rate in
the CIMMYT wheat breeding program (Fischer et al., 1998).
Likewise, cooler CT has been associated with grain yield under
warm irrigated conditions in Mexico (Reynolds et al., 1994;
Amani et al., 1996; Ayeneh et al., 2002; Rutkoski et al., 2016)
and in Australian environments (Rattey et al., 2011; Rebetzke
et al., 2013b). Similarly, in water-limited environments, cooler
CT has been associated with increased wheat yield (Blum et al.,
1989; Rashid et al., 1999; Olivares-Villegas et al., 2007). While
lower CT may be linked directly to yield via greater stomatal
conductance under yield potential conditions, another possibility
arises under water limitation: cooler CT has been associated
with increased rooting depth (Reynolds et al., 2007), and greater
water use and yield (Lopes and Reynolds, 2010) when measured
during grain-filling.

The use of airborne thermography in field experiments has
greatly increased the repeatability of CT. Previous hand-held
CT heritability estimates were low of the order of 0.1 to 0.3
(e.g., Rebetzke et al., 2003, 2013b; Pask et al., 2012). In contrast,
using airborne CT, Deery et al. (2016) reported broad-sense
heritabilities typically >0.50 and as high as 0.79. In a study
comprising five environments and several hundred breeding
lines, broad-sense heritabilities for airborne CT, estimated on a
single-plot and line-mean basis, were high ranging from 0.56

to 0.96 (Rutkoski et al., 2016). To the best of our knowledge,
no study has reported estimates of CT repeatability from
ArduCrop CT.

The greater heritability now achievable through airborne
thermography (Deery et al., 2016; Rutkoski et al., 2016), together
with the demonstrable association between stomatal conductance
and grain yield improvement (Roche, 2015), highlights the
potential for deployment of CT within a breeding program
as an indirect surrogate for grain yield. The value of CT
deployment is likely to be greatest in early generations (Rebetzke
et al., 2002; Fischer and Rebetzke, 2018), on unreplicated rows
or small plots where reliable yield measures are unattainable
(Rebetzke et al., 2014). Further opportunities include improving
the heritability estimate of grain yield by using CTmeasurements
to improve spatial and site characterization for variation
in soil water, and subsoil constraints including root disease
(Araus et al., 2018).

In order for CT to be effectively utilized within a wheat
breeding program, a greater understanding is required of: (1) the
optimal period of the season (e.g., before and or after flowering)
and the optimal time during the day to measure CT; (2) the
benefits of aerial vs static CT measurements; and (3) the number
of measurements required in a given year to appropriately
characterize the germplasm.We address these issues in this paper
through the use of continuous terrestrial and regular airborne CT
measurements to evaluate the repeatability of CT at discrete time
points and the phenotypic correlation across and between two
seasons contrasting in soil water availability.

2. MATERIALS AND METHODS

2.1. Field Experiments
A field experiment containing wheat genotypes contrasting for
canopy architecture was grown in two successive years at the
Managed Environment Facility (MEF) (Rebetzke et al., 2013a),
located at Yanco (34.62◦S, 146.43◦E, elevation 164 m) in South-
eastern Australia. The soil at the Yanco MEF is classified as
chromosol and has a clay-loam texture (Isbell, 1996). The
experiment was sown on 23rd May in 2016 and 29th May in 2017
following canola or field pea break-crops and then managed with
adequate nutrition and chemical controls as required for pest,
weed and leaf diseases.

The experiment comprised 400 and 192 experimental plots,
in 2016 and 2017, respectively, of size 2 × 6 m containing seven
rows of 25 cm spacing (orientated North - South), sowing density
of 200 seeds per mţ2 and paths between plots of ca. 0.4 m.
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FIGURE 1 | ArduCrop wireless infra-red canopy temperature sensor (Left) and manned helicopter for airborne canopy temperature (Right) comprising white cargo

pod mounted on skid of helicopter with thermal camera inside.

The germplasm represented a series of near-isogenic wheat
lines varying for a range of agronomic traits including plant
height, tiller number, plant development and canopy erectness.
In 2016, 106 genotypes were sown into a partial-replicate design
experiment with the genotype replication averaging 3.8 and
ranging from one to five. In 2017, 99 genotypes were sown into a
partial-replicate design experiment comprising 192 plots with the
genotype replication averaging 1.9 and ranging from one to two.
Ninety-eight of the 99 genotypes grown in 2017 were also grown
in 2016. The dimensions of the experiment were 50 × 110 m in
2016 and 25× 110 m in 2017.

In 2016, 670 mm of rainfall was recorded at the site between
1-Jan-2016 and when the crop reached physiological maturity
(1-Dec-2016). Of this, 191 mm was recorded prior to sowing
and the remaining 479 mm between sowing and harvest. In
2017, 201 mm of rainfall was recorded at the site between 1-
Jan-2017 and physiological maturity (1-Dec-2017). Of this, 90
mm was recorded prior to sowing and the remaining 111 mm
between sowing and physiological maturity. Due to the limited
rainfall in 2017, a total of 186 mm of sprinkler irrigation was
applied on seven separate days throughout the season, with
amounts ranging from 15 to 37 mm. Thus, rainfall and irrigation
totalled 387 mm in 2017, 283 mm less than the total rainfall
in 2016.

In 2016, for 90% of the lines, the flowering growth stage
ranged from 22-Sept-16 to 13-Oct-16 (122 to 143 days after
sowing, respectively) and the median flowering date was 28-
Sept-16 (128 days after sowing). In 2017, for 90% of the lines,
the flowering growth stage ranged from 25-Sept-17 to 10-
Oct-17 (119 to 134 days after sowing, respectively) and the
median flowering date was 3-Oct-17 (127 days after sowing).
Therefore, results are presented according to the following
growth stages: early-veg, early vegetative growth stage (August);
late-veg, late vegetative growth stage (September); early-gf, early
grain-filling growth stage (October); late-gf, late grain-filling
growth stage (November).

2.2. Weather Measurements
For 2016 and 2017, the following weather variables were
obtained from the Bureau of Meteorology (http://www.bom.
gov.au) weather station located at the experiment site (station
number 074037): air temperature (◦C); average and maximum
wind speed (km.hr−1); wind direction (◦); and vapor pressure
deficit (VPD) (Pa). These variables were measured at 60 s
frequency. The clear-sky solar radiation, Rso (W.m−2), was
calculated as 75% of the extraterrestrial solar radiation, whereby
the latter was calculated hourly from the day-of-year and latitude
(Allan et al., 1998) for both 2016 and 2017. In 2016 and 2017,
solar radiation, Rs (W.m−2), was measured hourly at Griffith
NSW (ca. 60 km north-west from the experiment site).

2.3. Continuous Canopy Temperature
Measurements
Continuous CT measurements were made with the ArduCrop
wireless canopy temperature system described previously
(Rebetzke et al., 2016; Jones et al., 2018) (Figure 1). The
ArduCrop system comprises wireless infrared temperature
sensors, similar in design to that described by O’Shaughnessy
et al. (2011a,b), with an infrared thermometer sensor
(MLX90614-BCF from Melexis, Ypres, Belgium), for which
the technical specifications are: 10◦ field of view; resolution
of 0.02◦C; and accuracy of ± 0.5◦C from 0 to 50◦C. This
specification was checked for each ArduCrop sensor before and
after deployment with a Landcal P80P black body radiation
source (Land Instruments, Leicester, United Kingdom).
Temperature data were recorded at 1 s intervals on an Arduino
microcontroller and 60 s averages radio transmitted to a field
base station. The base station sent data via the mobile phone
network every 15 min to the SensorDB website [http://sensordb.
csiro.au, see Salehi et al. (2015)] for real-time data access and
preliminary visualization through a web portal. The ArduCrop
sensors were height adjustable to maintain a consistent height
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for all plots above the crop canopy throughout the growing
season of ca. 0.5 m. The ArduCrop viewing angle was 45◦ facing
toward the canopy. Thus, each ArduCrop sensor collected data
from an elliptical field of view ca. 0.2 m long by ca. 0.1 m wide.
Each ArduCrop sensor was positioned to view the canopy at
ca. 45◦ angle to the individual rows, and thereby reduce the
likelihood of viewing background soil, and facing approximately
north-northwest (in Southern Hemisphere) to avoid the warmer,
sunlit side of the canopy (see Jones, 2002).

In 2016, 113 ArduCrop sensors in total were deployed
from 11-Aug-2016 until 24-Nov-2016, across 43 randomly
sampled genotypes on 84 of the 400 experimental plots. Of the
84 experimental plots containing ArduCrop sensors, 55 plots
contained one ArduCrop sensor and 29 plots contained two
paired ArduCrop sensors, referred to as duplicate-ArduCrop-
plots. The duplicate-ArduCrop-plots enabled testing whether the
additional ArduCrop sensor improved the estimate of CT. The
plot level replication per genotype ranged from one to four and
averaged 1.95.

In 2017, 96 ArduCrop sensors were deployed from 24-Aug-
2017 until 27-Nov-2017, across 49 randomly sampled genotypes,
20 of which were also used in 2016. ArduCrop replication per
genotype in 2017 ranged from one to two and averaged 1.96.
Duplicate-ArduCrop-plots were not used in 2017.

2.4. Airborne Canopy Temperature
Measurements
As previously described (Deery et al., 2016), thermal images were
acquired using a thermal infrared camera (FLIRţ R© SC645, FLIR
Systems, Oregon, USA, for which the technical specifications are:
±2◦C or ±2% of reading; < 0.05◦C pixel sensitivity; 640x480
pixels; 0.7 kg without lens; 13.1 mm lens). The camera was
mounted in a commercially-available helicopter cargo pod (R44
Helipod II Slim Line Top Loader, Simplex Aerospace, Oregon,
USA) and fitted to a Robinson R44 Raven helicopter (Figure 1).
Images for a given event were collected in a single pass and
typically acquired at a height of 120 m above-ground-level and
at a flight velocity of 25 to 35 knots (45 to 65 km/h). The camera
was mounted to provide a nadir view (pointing straight down),
such that the angle of view for a given image spread from vertical
to 15-20◦ at the image edges. Thus, images for a given event were
acquired in <10 s for the experiments described above.

Measurements of airborne CT occurred on six and eight
separate days in 2016 and 2017, respectively. On a given day,
measurements generally occurred hourly starting at 09:00 and
finishing at 15:00. Herein an airborne CTmeasurement at a given
date and time is referred to as an event.

2.5. Data Processing
The Python 3.5 software language (Python Software Foundation,
https://www.python.org) was used for data processing [pandas
and NumPy modules (Jones et al., 2001)]. All data is reported
in local time for the experiment site, namely Australian Eastern
Standard Time (UTC/GMT +10 h) and, during daylight savings
time, Australian Eastern Daylight Time (UTC/GMT +11 h).
Note that daylight saving time commenced at 02:00 on 1-Oct-
2016 and 02:00 on 1-Oct-2017.

2.5.1. Weather Data
Hourly means were calculated from the 60 s weather
data using the pandas module in Python 3.5 [method:
resample(“H”).mean()], whereby an hourly mean computed for
12:00 comprises values from 12:00 to 12:59 inclusive.

2.5.2. ArduCrop Canopy Temperature Data
For each ArduCrop sensor, temperature data <–30.0◦C and
>50.0◦C was attributed to the ArduCrop sensor inadvertently
viewing the sky or soil and was therefore discarded, prior to
the calculation of hourly mean. ArduCrop sensor data was also
discarded on days when rainfall and irrigation occurred. Then
for each day, hourly mean data between the times of 08:00 and
16:00, inclusive, were calculated for later analysis (refer section
2.6) using same method described above for the weather data.

2.5.3. Airborne Canopy Temperature Data
Thermal images were processed using a previously described
method (Deery et al., 2016), whereby the CT for each individual
plot was extracted for later analysis. Custom developed software
works on a frame-by-frame basis extracting data from the raw
images, whereby the user navigates through the image stack
to ensure that each plot in the experiment has been sampled.
For each experimental plot, a rectangle was defined within a
surrounding buffer, and the CT pixels extracted from within
the plot rectangle. From the resultant pixels within each plot, a
mean CT for a given plot was calculated for later analysis (refer
section 2.6).

2.6. Statistical Analysis
Hourly ArduCrop and airborne CT data were analyzed after first
checking for residual normality and error variance homogeneity
at each date-by-time sampling event. Each event was analyzed
separately using the SpATS package (Rodríguez-Álvarez et al.,
2018) (available fromCRAN: https://cran.r-project.org/package=
SpATS) in the R programming language (http://www.r-project.
org). Spatial effects were modeled on a row and column basis
by specifying the separation of anisotropic penalties (SAP)
algorithm, with the number of segments set to the respective
number of rows and columns from the experimental design.
For the 2016 ArduCrop data, where for the purpose of the
analysis the duplicate ArduCrops in the duplicate-ArduCrop-
plots were treated as internal replicates (or pseudo-replicates),
the following factors were modeled as random effects: genotype,
row, column and the internal ArduCrop replicate. For the
2016 airborne, 2017 ArduCrop and 2017 airborne CT data, the
following factors were modeled as random effects: genotype, row
and column. Repeatability (ρ), sometimes called broad-sense
heritability (Falconer and Mackay, 1996; Holland et al., 2003;
Piepho and Möhring, 2007), was then estimated using relevant

variance components, namely: ρ =
σ
2
g

(σ 2
g+

σ2ǫ

nrep )
. Where σ

2
g and

σ
2
ǫ are the genotypic and residual variances, respectively, and

nrep is the number of genotype replicates in the experiment. The
best linear unbiased predictors of genotype effects (BLUPs) and
standard errors (BLUP SEs) were predicted from a fitted SpATS
object. Phenotypic correlations were estimated between BLUPs
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TABLE 1 | Experimental conditions during the canopy temperature (CT) measurement period for 2016 and 2017 at Yanco, New South Wales.

Tmin Tmax VPD Radiation Rain Irrigation ArduCrop CT Airborne CT

(◦C) (◦C) (Pa) (MJ.m−2) (mm) (mm) delta (◦C) delta (◦C)

Year Month

2016

Aug 5.4 15.7 805 11.9 66 0

Sep 7.9 17.3 828 14.9 151 0

Oct 8.0 21.4 1548 22.2 35 0 1.0 2.5

Nov 12.0 28.0 3004 25.3 35 0

2017

Aug 4.1 15.8 1025 13.3 32 0

Sep 7.0 21.6 2033 16.8 1 85

Oct 11.4 26.0 2481 23.1 28 64 6.8 10.7

Nov 15.5 30.0 3426 25.8 21 0

Monthly means of daily minimum (Tmin) and maximum air temperature (Tmax ); daily maximum vapor pressure deficit (VPD); daily accumulated solar radiation. Rain and irrigation are

monthly totals. ArduCrop and Airborne CT deltas from air temperature (CT minus air temperature) were calculated on two dates (at 13:00 on 5-Oct-16 and 3-Oct-17) using the respective

ArduCrop or airborne CT mean of the best linear unbiased predictors of genotype effects.

using Pearson correlation analysis with the pandas module in
Python 3.5 and statistically significant associations denoted:
∗∗∗∗P < 0.0001; ∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05.
The scipy module (Jones et al., 2001) in Python 3.5 was used
to estimate linear least-squares regression and the coefficient of
determination (R2) between variables.

The association between canopy temperature (CT)
repeatability (response variable) and the weather (explanatory)
variables most significantly and strongly correlated with
repeatability was investigated using ordinary least squares
(OLS) regression analysis using the statsmodels Python module
(Seabold and Perktold, 2010). Figures were prepared using the
matplotlib and seaborn Python modules (Jones et al., 2001).
Phenotypic correlations for ArduCrop CT are presented in
hierarchically-clustered heatmaps to identify occasions when
the phenotypic correlations were greatest. Box plots were used
to summarize data according to the following: The box extends
from the lower to upper quartile values (Q1 and Q3) of the data,
with a line at the median. The whiskers extend from the box by
the product of 1.5 and the interquartile range (i.e., Q3+1.5*IQR
and Q1-1.5*IQR). The flyer points are data points past the end of
the whiskers.

3. RESULTS

3.1. Summary of Experimental Conditions
The meteorological conditions during the CT measurement
period for both years are summarized in Table 1, together with
the rainfall, irrigation and the ArduCrop and airborne CT deltas
from air temperature (CTminus air temperature). The latter were
calculated on two dates (at 13:00 on 5-Oct-16 and 3-Oct-17),
using the respective ArduCrop or airborne CT mean of the best
linear unbiased predictors of genotype effects, and illustrate the
extreme contrast in available soil water between 2016 and 2017,
whereby ArduCrop and airborne CT deltas from air temperature
were greater in 2017 than 2016. On both dates, ArduCrop CT and
airborne CT were warmer than air temperature and airborne CT
was warmer than ArduCrop CT. VPDs were greater in 2017 than

FIGURE 2 | Relationship between canopy temperature (CT) of duplicate

ArduCrop sensors, denoted ArduCrop 1 and ArduCrop 2. Scatter plot

comprising CT data from all 29 plots with fitted linear regression equation,

coefficient of determination (R2), root mean square error (RMSE), normalized

RMSE (NRMSE) and the number of values (n). Linear regression analysis for

each individual plot is shown in Figure S2 and Table S1.

2016, indicating that evaporative demand was likely also greater
in 2017.

3.2. ArduCrop Internal Replicate
The internal ArduCrop replicate sensors on the duplicate-
ArduCrop-plots were significantly correlated with one another
(slope=0.98, intercept=0.34◦C, R2 = 0.98, P < 0.0001,
Figure 2) and the root mean square error (RMSE) was 1.18◦C,
equating to a normalized RMSE (NRMSE) of 0.05. Linear
regression analysis for each individual plot (Figure S2 and
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FIGURE 3 | Repeatability estimates for ArduCrop canopy temperature shown as box plots for each hour of the day grouped by growth stage for 2016 (A) and 2017

(B). Early-veg, early vegetative; late-veg, late vegetative; early-gf, early grain-filling; late-gf, late grain-filling.

Table S1) showed a high degree of linearity between the pairs of
ArduCrop sensors (R2 ≥ 0.96, P < 0.0001). The slopes ranged
from 0.91 to 1.11, the intercepts ranged from -1.32 to 1.31◦C,
the RMSE ranged from 0.55 to 1.89◦C and the NRMSE was
≤ 0.09. We investigated the size of the variance explained with
the addition of an internal ArduCrop replicate on the duplicate-
ArduCrop-plots. For the 2016 ArduCrop data, the variance ratios
between the internal ArduCrop replication, σ 2

ArduCrop, and σ
2
ǫ

were typically <0.1 (Figure S1). Specifically, the percentile score
denoting when the variance ratios, σ 2

ArduCrop and σ
2
ǫ , were<0.1

was 87.

3.3. Repeatability of ArduCrop Canopy
Temperature
The box plots of repeatability estimates for each hour of the
day grouped by growth stage, for 2016 (Figure 3A) and 2017
(Figure 3B), show a similar temporal distribution for both

years, although less marked in 2017, whereby repeatability
was greater during the grain-filling months of October and
November. In 2016, repeatability was highest, and the range
lowest, during late-gf (November) and from 11:00 onwards.
Estimates of repeatability were also high for the same HoDs in
early-gf (October) 2016, however the range was greater cf. late-gf
(November) 2016. Repeatability estimates were lowest for HoD 8
and 9, for all months in 2016 and during late-veg (September).
For 2017, ArduCrop CT repeatability estimates were highest
during early-gf and late-gf (October and November, respectively)
for HoD after and including 10, and were also high during late-
veg (September) for the afternoon HoDs 15 and 16. For all
growth stages at HoD 8 and 9 in 2017, with the exception of
late-gf (November) at HoD 9, a large proportion of repeatability
values were <ca. 0.4. The temporal distributions of repeatability
on a weekly basis are shown in Figures S7, S8, for 2016 and
2017, respectively. The frequency distributions of repeatability
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FIGURE 4 | Hierarchically-clustered heatmap of all possible pairwise phenotypic correlations between best linear unbiased predictors of genotype effects (BLUPs) for

ArduCrop canopy temperature in 2016. Frequency distributions of the phenotypic correlations are shown in Figure S11.

estimates for ArduCrop CT in 2016 and 2017 are shown in
Figure S6. The range in repeatability was large in both years,
ranging from 0.0 to 0.80 in 2016 (Figure S6a), and from 0.0 to
0.82 in 2017 (Figure S6b). The median repeatability was similar
for both years (0.42 in 2016 and 0.36 in 2017).

3.4. Phenotypic Correlations for ArduCrop
Canopy Temperature Within Years
Hierarchically-clustered heatmaps of all possible pairwise
phenotypic correlations between BLUPs are shown for ArduCrop
CT in 2016 (Figure 4) and 2017 (Figure 5). The overall pattern
of clusters was similar for both years, whereby correlations
were higher during the grain-filling months of October and
November and for HoDs from 11 onwards. Conversely, the

lowest correlations comprised events from HoDs 8 and 9 across
all months (clustered at the lower left of the figures).

To investigate the phenotypic correlations between ArduCrop
CT BLUPs as a function of repeatability, all possible pairwise
phenotypic correlations were estimated for ArduCrop CT BLUPs
corresponding to the following, arbitrarily chosen, quantiles
of event repeatability: 0.0 to 0.33; 0.33 to 0.66; 0.66 to
1.0 (shown as frequency distributions in Figures S11a–c for
2016 and Figures S11d–f for 2017, respectively). The mean,
median and percentiles of phenotypic correlations increased with
repeatability quantiles (i.e., 0.0 to 0.33 < 0.33 to 0.66 < 0.66 to
1.0) for both years. For a given quantile distribution (e.g., 0.0
to 0.33 in 2016 cf. 0.0 to 0.33 in 2017 etc.), the mean, median
and percentiles of phenotypic correlations were higher for 2016
than 2017.

Frontiers in Plant Science | www.frontiersin.org 7 July 2019 | Volume 10 | Article 875

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Deery et al. Repeatability of Canopy Temperature in Wheat

FIGURE 5 | Hierarchically-clustered heatmap of all possible pairwise phenotypic correlations between best linear unbiased predictors of genotype effects (BLUPs) for

ArduCrop canopy temperature in 2017. Frequency distributions of the phenotypic correlations are shown in Figure S11.

The frequency distributions of phenotypic correlations for the
entire data set of ArduCrop CT BLUPs are shown in Figure S11g

for 2016, and Figure S11h for 2017, whereby the mean, median
and percentiles of phenotypic correlations were higher for 2016
than 2017. The mean and median was 0.50 and 0.52, in 2016
respectively, and 0.38 and 0.41 in 2017, respectively.

3.5. Repeatability of Airborne Canopy
Temperature
Repeatability estimates for 2016 and 2017 airborne CT events
are shown as scatter plots for each date in Figure 6 (and as
frequency distributions in Figure S12). In 2016 all airborne CT
events occurred post-flowering during the grain-filling months
of October and November. Repeatability estimates in 2016 were
typically high, ranging from 0.63 to 0.82 with a mean of 0.76

(Figure S12a). In 2016, the scatter plots of repeatability for each
date show that repeatability estimates were typically lower at
09:00, ranging from 0.63 to 0.74 (Figure 6A). In 2017 airborne
CT events occurred pre and post-flowering, as denoted on
Figure 6B. Repeatability estimates were generally lower in 2017,
ranging from 0.31 to 0.85 with a mean of 0.56 (Figure S12b
and showed no clear pattern with regards to HoD (Figure 6B).
The lowest repeatability estimates occurred during late-veg (20
and 28 September 2017) and, conversely, repeatability estimates
were consistently higher for the early-gf and late-gf (October and
November, respectively) events. For airborne CT events during
early-gf (October) 2017, repeatability tended to increase with
HoD until 12, and then decrease with HoD for 13, 14, and 15.
Similar patterns were evident for late-gf events (November, one
day only), where repeatability increased until HoD 13 before
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FIGURE 6 | Repeatability estimates for airborne canopy temperature shown as scatter plots for each date in 2016 (A) and 2017 (B) with hour-of-day denoted as per

legend. Growth stage is denoted as follows: early-veg, early vegetative; late-veg, late vegetative; early-gf, early grain-filling; late-gf, late grain-filling.

decreasing, and the early-veg (September) events, where there
was a marked decrease in repeatability for HoDs 13 and 14. The
range in repeatability was greatest for the early-veg (September)
events at HoD 9, ranging from 0.36 to 0.85.

3.6. Phenotypic Correlations for Airborne
Canopy Temperature Within and Between
Years
For both years, the phenotypic correlations between the best
linear unbiased predictors of genotype effects (BLUPs) for
airborne CT events were generally lower for HoDs before 12:00
and in 2017, for days before 20-September (pre-flowering). For
these reasons, Figure 7 shows phenotypic correlations between
BLUPs for selected airborne CT events in 2016 and 2017: for
2016, on each day after (and including) 12:00; for 2017, for

events on days after and including 20-September and after 12:00.
Frequency distributions of the selected airborne CT events are
shown in Figure S18a for 2016 and Figure S18b for 2017. For
the selected airborne CT events, the phenotypic correlations
ranged from 0.73 to 0.98 in 2016, and from 0.41 to 0.94 in
2017. Phenotypic correlations between BLUPs for all airborne
CT events are shown as frequency distributions (Figure S17a for
2016 and Figure S17c for 2017) and heatmaps (Figure S17b for
2016 and Figure S17d for 2017).

Phenotypic correlations across the years for BLUPs (for the
98 genotypes common to both years), for the 2016 and 2017
airborne CT events shown in Figure 7, are shown in Figure 8

(and frequency distribution in Figure S19). Figure 8 shows
that phenotypic correlations between the selected 2016 and
2017 airborne CT events were moderate, ranging from 0.06 to
0.53, and greater on particular days in 2017 than others (e.g.,
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FIGURE 7 | Heatmaps of phenotypic correlations between the best linear unbiased predictors of genotype effects (BLUPs) for selected airborne canopy temperature

events in 2016 (A) and 2017 (B). For 2016, on each day after (and including) 12:00. For 2017, for events on days after and including 20-Sept and after 12:00.

28-Sept-17, 10-Oct-17). For many of the individual CT events on
28-Sept-17 and 10-Oct-17, the phenotypic correlation was >0.40
and significantly associated (P < 0.0001) with every CT event

in 2016, evidence of a strong genotypic effect across years. The
two days in 2017 where the correlations were greatest (28-Sept-
17 and 10-Oct-17), occurred soon after irrigation or rain (24 mm
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FIGURE 8 | Heatmap of phenotypic correlations between the best linear unbiased predictors of genotype effects (BLUPs) (98 genotypes) for selected airborne canopy

temperature (CT) events in 2016 and 2017 (as shown in Figure 7). For 2016, on each day after (and including) 12:00. For 2017, for events on days after and including

20-Sept-17 and after 12:00. Repeatability is shown in parenthesis for each respective airborne CT event. The two days in 2017 where the correlations were greatest

(28-Sept-17 and 10-Oct-17), occurred soon after irrigation or rain (24 mm irrigation on 22-Sept-17 and 8 mm rain on 9-Oct-17) when the crop was less water-limited.

irrigation on 22-Sept-17 and 8 mm rain on 9-Oct-17) when the
crop was less water-limited.

3.7. Association Between Repeatability and
Weather Data
The scatter plot associations between CT repeatability estimates
and the corresponding hourly weather data are shown in
Figures S20–S23 for 2016 ArduCrop, 2016 airborne, 2017
ArduCrop and 2017 airborne, respectively. For 2016 ArduCrop
CT, all weather variables were positively and significantly (P <

0.0001) associated with repeatability, with the calculated clear-
sky solar radiation (Rso), vapor pressure deficit (VPD) and
the measured solar radiation (Rs) at Griffith NSW (ca. 60 km
north-west from the experiment site) having the strongest
correlations with repeatability (0.61, 0.51, and 0.47, respectively)
(Figure S20). For 2016 airborne CT all weather variables, except

the wind parameters (average wind speed, maximum wind speed
and wind direction), were positively and significantly (P < 0.01)
associated with repeatability, with Rso, Rs and VPD having the
strongest correlations with repeatability (0.78, 0.45, and 0.44,
respectively) (Figure S21). For 2017 ArduCrop CT, Rso, Rs, air
temperature and VPD were positively and significantly (P <

0.0001) associated with repeatability (respective correlations with
repeatability were 0.30, 0.27, 0.25, 0.21) (Figure S22). For 2017
airborne CT, only air temperature and VPD were significantly
(P < 0.05) associated with repeatability with correlations of 0.39
and 0.39, respectively (Figure S23). Non-significant correlations
between repeatability and Rs, Rso were 0.30 and 0.27, respectively.
Generally, correlations between CT repeatability and weather
variables were greatest for Rso, Rs, VPD and air temperature. The
association between CT repeatability and the wind parameters
(average wind speed, maximum wind speed and wind direction)
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were generally poor and not significant, with the exception of
2016 ArduCrop where correlations were highly significant (P <

0.0001) and ranged from 0.24 to 0.28.
The day-of-year (DoY) and hour-of-day (HoD) were

positively and significantly correlated with CT repeatability
for 2016 ArduCrop CT (DoY: 0.47, P < 0.0001; HoD: 0.36,
P < 0.0001), 2016 airborne CT (DoY: 0.38, P < 0.05; HoD: 0.44,
P < 0.01) and 2017 ArduCrop CT (DoY: 0.14, P < 0.01; HoD:
0.18, P < 0.0001). For 2017 airborne CT, DoY was significantly
associated with repeatability (0.33, P < 0.05), however the
association with HoD was poor (0.02) and not significant.

Ordinary least squares (OLS)model results for estimates of CT
repeatability (response variable) and the power set of the most
significantly correlated weather (explanatory) variables (namely
Rso and VPD) are shown in Table 2. Air temperature and Rs
were omitted from the OLS models due to their high correlation
with VPD and Rso, respectively. Both DoY and HoD are directly
related to Rso and were therefore modeled separately (discussed
below). The wind parameters (average wind speed, maximum
wind speed and wind direction) were also omitted from the
models due to their generally poor correlation with repeatability
(Figures S20–S23). Table 2 shows that, when modeled alone Rso
and VPD were highly significant (P < 0.0001) and that the
coefficient of determination (R2) was higher for Rso than VPD
for ArduCrop and airborne in both years. Although VPD was
highly significant (P < 0.0001) whenmodeled alone, the addition
of VPD to Rso did not substantively increase the R2. Specifically,
the addition of VPD to Rso increased the R2 from 0.815, with Rso
alone, to 0.830 and from 0.990 to 0.992 for 2016 ArduCrop and
airborne CT, respectively. For 2017 ArduCrop and airborne CT,
the addition of VPD to Rso was non-significant. The OLS model
results were consistent for ArduCrop and airborne in both years,
where the ranking ofmodels byR2 and the ranking of P-values for
each respective model and variable were the same. In summary,
the R2 values were high, ranging from 0.666 (2017 ArduCrop,
VPD) to 0.992 (2016 airborne, Rso and VPD).

Given that Rso is directly related to DoY and HoD, the
latter two were modeled with VPD to test for their significance
as surrogates for physiological effects (Table S2). For 2016
ArduCrop, the addition of VPD to DoY and HoD increased the
R2 from 0.763 to 0.804. However, for 2016 and 2017 airborne,
the addition of VPD to DoY and HoD did not increase the R2.
Similarly for 2017 ArduCrop, the R2 only increased marginally
from 0.792 (DoY and HoD) to 0.793 (VPD, DoY and HoD).

3.8. Association Between ArduCrop
Canopy Temperature and Airborne Canopy
Temperature
Airborne CT occurred on six and eight separate days in 2016
and 2017, respectively. In 2016 airborne CT commenced post-
flowering in early October and in 2017, commenced pre-
flowering in late August. Regressing the best linear unbiased
predictors of genotype effects (BLUPs) for airborne and
ArduCrop CT from all of the date-by-time events revealed a
strong and significant association between the airborne and
ArduCrop CT in 2016 (R2 = 0.96, P < 0.0001) and 2017
(R2 = 0.94, P < 0.0001) (Figures 9A,C for 2016 and 2017,

TABLE 2 | Ordinary least squares model results for canopy temperature (CT)

repeatability (response variable) and the weather (explanatory) variables most

significantly and strongly correlated with repeatability, namely Rso and VPD

(positive associations always).

Variables P-values R2

VPD Rso

2016 ArduCrop CT

Rso
∗∗∗∗ 0.815

VPD ∗∗∗∗ 0.707

VPD Rso
∗∗∗∗ ∗∗∗∗ 0.830

2016 Airborne CT

Rso
∗∗∗∗ 0.990

VPD ∗∗∗∗ 0.851

VPD Rso
∗ ∗∗∗∗ 0.992

2017 ArduCrop CT

Rso
∗∗∗∗ 0.792

VPD ∗∗∗∗ 0.666

VPD Rso ns ∗∗∗∗ 0.793

2017 Airborne CT

Rso
∗∗∗∗ 0.943

VPD ∗∗∗∗ 0.874

VPD Rso ns ∗∗∗∗ 0.943

Air temperature and Rs were omitted from the models due to their high correlation with

VPD and Rso, respectively. Statistically significant P-values are denoted:
∗∗∗∗P < 0.0001;

∗∗∗P < 0.001; ∗∗P < 0.01; ∗P < 0.05; ns, not significant. Scatter plot associations

between CT repeatability estimates and corresponding hourly weather data are shown

in Figures S20–S23 for 2016 ArduCrop, 2016 airborne, 2017 ArduCrop and 2017

airborne, respectively.

respectively). In 2016, for temperatures >18◦C, the ArduCrop
CT was typically cooler than the airborne CT (slope of 0.78
and intercept of 4.19◦C) while in 2017, for temperatures >21◦C,
the ArduCrop CT was typically cooler than the airborne CT
(slope of 0.75 and intercept of 5.12◦C). Figures 9B,D show that
phenotypic correlations between airborne and ArduCrop CT
BLUPs were typically higher in 2016 than 2017. In 2016, the
phenotypic correlations between airborne and ArduCrop CT
BLUPs ranged from 0.25 to 0.75 and with the exception of one
event (13-Oct-16 at 09:00), ranged from 0.38 to 0.75. In 2017,
the phenotypic correlations between airborne and ArduCrop CT
BLUPs ranged from 0.19 to 0.76.

On an individual plot basis, the frequency distributions of
phenotypic correlations between airborne and ArduCrop CT,
show that the associations were generally greater in 2016 than
2017 (Figures S5a,b). In 2016, associations were highest from
11:00 onwards (with the exception of one event at 11:00)
(Figure S5c). In 2017, the correlations were highest at 14:00 and
15:00 and, with the exception of two events at 10:00, tended
to increase with hour-of-day (HoD) (Figure S5d). The same
data are shown as scatter plots for each airborne CT event in
Figures S3, S4, for 2016 and 2017, respectively.

4. DISCUSSION

There is substantive evidence for the concomitant yield
improvement in C3 crops and increased stomatal conductance in
irrigated or non water-limited environments (for many examples
see Roche, 2015). In turn, CT provides a surrogate measure of
stomatal aperture traits, particularly stomatal conductance (Blum
et al., 1982; Smith et al., 1988; Amani et al., 1996; Fischer et al.,
1998; Jones, 2004; Jones and Vaughan, 2010; Rebetzke et al.,
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FIGURE 9 | Association across all dates between airborne canopy temperature (CT) and ArduCrop CT (where for a given airborne CT event, data was compared to

the nearest hourly ArduCrop CT event). Scatter plots for 2016 (A) and 2017 (C). Scatter plots of phenotypic correlations between airborne CT and ArduCrop CT for

each date 2016 (B) and 2017 (D). Data are coded by hour-of-day as per respective legend. CT data are best linear unbiased predictors of genotype effects (BLUPs).

2013b). In this study, the consistently high estimates of CT
repeatability obtained during grain-filling and from themiddle of
the day onwards (Figures 3, 6), together with the high phenotypic
correlations between different sampling events (Figures 4, 5, 7,
8), provide confidence in the repeatability of CT phenotyping.
These findings, together with the recent developments in reliable
CT phenotyping through airborne thermography (Deery et al.,
2016), provide further support for the use of CT to reliably screen
germplasm, in both research and plant breeding, from as little as
one or two sampling events.

4.1. Extreme Contrast in Available Soil
Water Between 2016 and 2017
There was an extreme contrast in available soil water between
2016 and 2017, whereby the total rainfall and irrigation in 2017
was 283 mm less than that in 2016. The VPD was also greater
in 2017 than 2016 (Table 1). The impacts of the contrast in

available soil water between years are evident in nearly all of the
results presented herein. Canopy temperature (CT) delta from air
temperature (CT minus air temperature) plotted as a function
of VPD has been used to indicate the crop water stress (e.g.,
Jackson et al., 1981; Idso et al., 1984), with higher values of
CT delta denoting greater water stress. Table 1 shows that, for
both ArduCrop and airborne CT, CT deltas during the grain-
filling period were greater for 2017 than 2016, presumably due
to reduced stomatal conductance and transpiration arising from
the greater water limitation in 2017.

The assessments of CT delta enable comparison with those
reported by Smith et al. (1988) where CT was measured
continuously using a logging infra-red thermometer on wheat,
well-watered and under drought, at Griffith NSW (ca. 60 km
from the present study). Smith et al. (1988) reported a diurnal
time-course of CT delta and VPD on 31-Oct-1985 and the
approximate values at 13:00 h were as follows: CT delta of
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2.0◦C for well-watered; CT delta of 5.0 to 6.0◦C under drought;
VPD of 1300 Pa. The ArduCrop CT delta under well-watered
conditions in 2016 was 1.0◦C (Table 1), consistent with those
reported by Smith et al. (1988) for well-watered wheat during
grain-filling. By contrast, the ArduCrop CT delta under water
limited conditions in 2017 was 6.8◦C, slightly greater than the
range of 5.0 to 6.0◦C reported by Smith et al. (1988) for their
drought treatment. Together these findings provide confidence
in the ArduCrop method. By contrast to the VPD and CT deltas
from air temperature reported herein (and in Smith et al., 1988),
the VPD reported from CT studies in Mexico and Arizona were
much greater and CT was typically less than air temperature by
up to 5◦C or more in well-watered experiments (Jackson et al.,
1981; Idso et al., 1984; Amani et al., 1996).

4.2. Comparison of ArduCrop and Airborne
Canopy Temperature
That the variance for the internal ArduCrop replication in 2016
was negligibly small (Figure S1), indicates that the additional
ArduCrop sensors on the duplicate-ArduCrop-plots did not
significantly improve the estimate of CT. However, the highly
significant association between the internal ArduCrop replicate
sensors (R2 = 0.98, P < 0.0001), together with the slope of
0.98 and intercept of 0.34 (Figure 2), provides good evidence
for the capacity of an individual ArduCrop sensor to reliably
measure CT.

For CT>ca. 20◦C, the ArduCrop CT was typically cooler than
the airborne CT across both years (Figures 9A,C for 2016 and
2017, respectively). This can be partly attributed to the respective
viewing angles of the ArduCrop and airborne CT methods.
The ArduCrop viewing angle was 45◦ (facing downward) to
minimize the likely influence of soil temperature resulting from
the 25 cm row spacing used herein. In contrast, the airborne
CT viewing angle was nadir (directly above) and therefore likely
to sample a greater proportion of soil than the ArduCrop.
For a given plot, the airborne CT was derived from the mean
of all pixels within a rectangle and no attempt was made to
remove temperature pixels resulting from the background soil.
The latter is because a previous study at the Yanco site, using
the same row spacing of 25 cm, found that methods based on
filtering the frequency distribution of the temperature pixels
to remove the influence of background soil did not improve
the estimates of broad-sense heritability (Deery et al., 2016).
Nevertheless, the airborne CT as measured from the nadir view,
was possibly influenced by the degree of fractional cover and
the soil temperature. In our study, early morning airborne CT
measurements at HoD 9 were typically cooler than ArduCrop
CT measurements and conversely, airborne CT measurements
from midday onwards were often warmer than ArduCrop CT
(Figure 9). These differences may have been attributable to the
airborne CT sampling a cooler soil temperature in the morning
and a warmer soil temperature from midday onwards. For a
given event the association between ArduCrop and airborne CT
BLUPs (Figures 9B,D) tended to improve with HoD, for both
years, and was generally greater in 2016 than 2017. That for
a given experimental plot the sampling area of the ArduCrop
(ca. 0.02 mţ2) was far less than for airborne CT (ca. 4.0 mţ2),

the reasonable association between ArduCrop and airborne CT
BLUPs is encouraging and provides confidence in the precision
of both methods.

4.3. Higher Repeatability for Canopy
Temperature During Grain-Filling and From
11:00 Onwards
The repeatability of CT was typically greater during the grain-
filling growth stage in October and November than during the
pre-flowering months of August and September (Figures 3, 6).
The ArduCrop CT repeatability estimates were often greater
from 11:00 onwards in 2016 (Figure 3A) and 2017, although less
so in 2017 (Figure 3B). These patterns were more pronounced
in the more favorable growing environment of 2016 than the
more water-limited environment of 2017 (cf. 2016 ArduCrop
data (Figure 3A) with the 2017 ArduCrop data (Figure 3B). The
repeatability estimates for airborne CT were slightly lower for
events at 09:00 during 2016 (Figure 6A), however no clear HoD
pattern was evident in 2017 (Figure 6B). The greater repeatability
of CT later in the season is consistent with previous studies
including Rutkoski et al. (2016), where in four out of their
five environments, broad-sense heritabilities of CT on a line
mean basis and on a single plot basis, were greater during
grain-filling than pre-flowering. The higher repeatability for
ArduCrop CT from 11:00 onwards, particularly in 2016, is similar
to experiments with Pima cotton, whereby the optimal time
for screening stomatal conductance was two to three hours
past solar noon (Lu et al., 1998). Similarly in a selection of
23 spring wheat cultivars (Amani et al., 1996), correlations
between CT and yield were greatest for CT measurements made
between noon and 4pm compared to those made between 8am
and noon. Further, in a recent study involving continuous CT
measurements on 20 winter wheat cultivars (Thapa et al., 2018),
variation between genotypes was greater during the middle of the
day than early morning.

Ordinary least squares modeling revealed that the calculated
clear-sky solar radiation (Rso) and vapor pressure deficit (VPD)
were highly significant explanatory variables for repeatability
(Table 2), with Rso the most highly significant explanatory
variable for ArduCrop and airborne CT in both years. The
addition of VPD to the model comprising either Rso or its
determinants, day-of-year and hour-of-day, made little to no
improvement to the coefficient of determination (Table S2).
Thus, it is possible that genotypic differences in CT, and
potentially stomatal conductance (Rebetzke et al., 2013b), were
more pronounced during the grain-filling stage because of
greater solar radiation and VPD. From energy balance theory
linking the estimation of CT from the local weather variables
(e.g., Jackson et al., 1981; Smith et al., 1988; Jones and Vaughan,
2010), for a given stomatal conductance, CT is linearly related
to solar radiation and VPD. Therefore, it seems biophysically
plausible that genotypic differences in stomatal conductance
would produce larger differences in CT, and potentially (but
not necessarily) repeatability, with greater solar radiation and
VPD, both of which are more likely to occur during grain-filling
and later in the day. That CT repeatability was generally lower
earlier in the day is not surprising given that solar radiation
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and VPD are lower earlier in the day. However, that the most
significant explanatory variable associated CT repeatability was
Rso, a diurnal function that increases with the day-of year-
after the winter solstice in the southern hemisphere, implies a
significant temporal association with CT repeatability that may
be mechanistic in nature. Although the mechanisms responsible
for the apparent increase in CT repeatability during grain-filling
cannot be identified with certainty, possible reasons include: (a)
that genotypes differed in their capacity to extract water from
the soil with cooler genotypes producing deeper root systems
(e.g., Lopes and Reynolds, 2010; Pask and Reynolds, 2013);
(b) that genotypes with cooler canopies were responding to
either higher photosynthetic capacity or higher sink demand for
photosynthate - for example Tang et al. (2015, 2017) reported
that genotypes with greater canopy photosynthesis, measured at
flowering and 20 days after flowering, had greater leaf chlorophyll
(as measured by SPAD) and were also higher yielding; (c) that
the genotypes differed in “stay-green” (a genotype’s capacity to
continue assimilating carbon toward the latter part of grain-
filling) and that such differences increased as they moved into
grain-filling, so that cooler genotypes had greater green leaf area
(e.g., Christopher et al., 2016; Rebetzke et al., 2016); and (d)
that the genotypes differed in their seasonal pattern of water-use,
so that cooler genotypes had lower water-use pre-flowering and
greater water-use post-flowering (e.g., Richards and Passioura,
1989; Rebetzke et al., 2003; Blum, 2005).

Although in our experiments the repeatability estimates
for CT were often smaller pre-flowering, the importance of
stomatal conductance during the pre-flowering growth stage
was recently highlighted by Motzo et al. (2013), whereby
the greater pre-flowering radiation-use-efficiency of triticale
was associated with greater stomatal conductance and greater
biomass than durum wheat. Although pre-flowering genotypic
variation for stomatal conductance may be potentially useful
for yield improvement, our experiments suggest that detecting
such variation using CT as a surrogate measure of stomatal
conductance may be difficult. This is because of the likely
smaller differences in conductance pre-flowering, due to lower
VPD and solar radiation, and therefore lower sensitivity of
CT to conductance. The latter would likely result in reduced
repeatability of CT. Published theoretical calculations and
sensitivity analyses are useful for understanding the relationship
between CT and conductance for a range of weather variables
(Leinonen et al., 2006; Maes and Steppe, 2012). In particular,
theoretical calculations for a range of conductance values
show the convergence of CT with decreasing VPD (Maes
and Steppe, 2012, their Figure 3), thereby highlighting the
potential difficulty in detecting variation in CT at low VPD.
Error analysis showing the steep increase in relative error with
decreasing conductance (Leinonen et al., 2006, their Figure 4),
further highlights the challenge with detecting variation for
conductance using CT at low conductance values. However,
that our results show a strong phenotypic correlation between
CT measurements, more so when repeatability was high
(Figure S11), suggests the possibility of a sufficient phenotypic
correlation between pre and post-flowering CT for screening
purposes (discussed later).

4.4. High Phenotypic Correlation When
Repeatability Was High
The phenotypic correlation between the best linear unbiased
predictors of genotype effects (BLUPs), for both ArduCrop and
airborne CT within a particular year, was high when repeatability
and confidence in among-genotypic differences was high. For the
ArduCrop CT, the mean, median and percentiles of phenotypic
correlations all increased with repeatability quantiles (i.e., 0.0 to
0.33 < 0.33 to 0.66 < 0.66 to 1.0) in both years (Figure S11). In
particular, for the 2016 ArduCrop repeatability quantile 0.66 to
1.0, the median phenotypic correlation was 0.84 and the 25ţth
percentile was 0.74 (Figure S11c).

The high phenotypic correlations for the airborne CT in
2016 (Figure 7A) provide evidence of the repeatability of CT
measurements between different sampling events. Together these
results provide confidence in the potential for CT phenotyping,
whereby the sufficiently high repeatability and phenotypic
correlation across multiple sampling events, for afternoon events
later in the season, could permit reliable genotype screening
from as little as one or two sampling events provided soil water
availability is not constrained.

That the phenotypic correlations between the 2016 and 2017
airborne CT events were typically smaller (median was 0.32
shown in Figure S19) is not surprising given the contrast in
available water between the two years. Although the correlations
for airborne CT between years were moderate, ranging from
0.06 to 0.53, they were greater on particular days in 2017 than
others, in particular 28-Sept-17 and 10-Oct-17 (Figure 8) when
the crop was less water-limited (24 mm irrigation applied on
22-Sept-17 and 8 mm rain on 9-Oct-17). The correlations on
these two days, for the midday events, were highly significant
(P < 0.0001), ranging from r = 0.39 to 0.53. The higher
correlations after irrigation and rainfall events on 22-Sept-17 and
9-Oct-17, between two environments with an extreme contrast in
available water throughout the season, provide confidence in the
capacity of CT to reliably discriminate genotypes in a generally
water-limited environment (2017), provided that CT is sampled
soon after an irrigation or rainfall event when the soil water
stress is reduced. Nevertheless, that many of the individual CT
events on 28-Sept-17 and 10-Oct-17 were significantly correlated
with every CT event in 2016 (Figure 8), provides evidence of a
strong genotypic effect across years and for the potential of CT
in more favorable environments that are not exposed to severe
water limitation (discussed below).

4.5. Implications for Research and Plant
Breeding
The estimates of repeatability and phenotypic correlations for CT,
across multiple sample events, were notably greater in the more
favorable 2016 environment than those in the water-limited 2017
environment (Figures 3–7). Further, the phenotypic correlations
across the years between selected 2016 and 2017 airborne CT
events were greater on particular days in 2017 than others,
probably due to the severe water limitation in 2017, while the
2016 events were devoid of such day effects (Figure 8). That
the two days in 2017 when the correlations with 2016 events
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were greatest (r = 0.39 to 0.53, P < 0.0001) occurred soon
after an irrigation or rainfall event, provides support for the
use of CT as a selection tool in more favorable environments
that are not exposed to severe water limitation. While such
favorable environments may not represent the complete target
population of environments for a breeding program, there is
good evidence in wheat supporting the use of favorable selection
environments (Cooper et al., 1997) and that yield potential
progress can translate across to most environments, except those
most strongly water-limited (Araus et al., 2002; Rebetzke et al.,
2002; Olivares-Villegas et al., 2007).

The consistently high estimates of CT repeatability obtained
herein and in previous studies (e.g., Deery et al., 2016; Rutkoski
et al., 2016) is encouraging for the potential use of CT for
indirect selection of grain yield in a breeder’s nursery (Fischer and
Rebetzke, 2018). This is because the theory of correlated response
to indirect selection (Falconer, 1952) shows greater benefits for
indirect selection when both the heritability for the indirect trait
(i.e., CT) and the genetic correlation between the indirect and
target trait (i.e., yield) are high. While a number of studies have
reported high genetic correlations between CT and grain yield
(e.g., Rebetzke et al., 2013b; Rutkoski et al., 2016), to the best of
our knowledge few studies have reported such consistently high
estimates of repeatability from multiple sampling events as those
presented herein.

The interquartile range for CT variation between genotypes on
a given sampling event was typically <1.0◦C for both ArduCrop
(Figures S9, S10) and airborne (Figures S13–S16). Thus, the
high precision camera used herein, with <0.05◦C pixel-to-pixel
sensitivity, is ideally suited to the application of CT phenotyping.
Further, by using a manned helicopter at an approximate height
of 120 m above-ground-level, large image swaths were obtained:
using the camera described above, at 120 m AGL, an image
swath ca. 87.1 m by 64.1 m was obtained with a pixel size
0.14 × 0.13 m, which equated to ca. 55 temperature pixels
per mţ2. Such large swaths enabled sampling from the entire
experiment, with dimensions of 50 × 110 m in 2016 and
25 × 110 m in 2017, in a few seconds, together limiting the
impact of slight weather fluctuations to reduce experimental
noise and increase the measurement precision of CT. While
unmanned aerial vehicles (UAVs) have been used for thermal
image acquisition (e.g., Sullivan et al., 2007; Berni et al., 2009a,b;
Zarco-Tejada et al., 2012; Chapman et al., 2014; Gómez-Candón
et al., 2016), their effectiveness for quantifying repeatable CT
differences among genotypes is yet to be determined. To the best
of our knowledge, no study has reported high estimates of CT
repeatability or heritability from a UAV.

The ArduCrop sensors measure CT continuously on a single
experimental plot at any given time. By contrast, the airborne
method measures CT across large experiments comprising
hundreds of plots at a single moment in time and, supported
by the high repeatability estimates and phenotypic correlations
herein, is ideally suited to deployment within plant breeding.
Despite that in our experiments the repeatability estimates
from ArduCrop CT were high during grain-filling and in
the afternoon (Figure 3), the deployment of large numbers of
ArduCrop sensors, in the numbers deployed herein (ca. 100),

on a breeder’s trial is not practically feasible nor justified when
compared to the airborne method. However, the reasonable
association between ArduCrop and airborne CT (Figure 9)
is encouraging and provides confidence in the precision of
the ArduCrop sampling only a fixed small part of each plot.
This is further supported by the high correlation between the
internal ArduCrop replicate sensors and the negligibly small
variance for the internal ArduCrop replication in 2016 (Figure 2,
Figures S1, S2 and Table S1). The use of the ArduCrop CT
sensors is probably more suited to detailed crop physiology
studies and applications where an understanding of the crop’s
diurnal and seasonal response to the environment is required.
For example, the possibility to estimate crop canopy conductance
and evaporation rate from ArduCrop CT (Jones et al., 2018)
may assist with improved: environmental characterization using
probe genotypes; agronomic decisions including irrigation
scheduling (e.g., Mahan et al., 2012); characterization of frost or
high temperature events.

Clearly in most cases, CT phenotyping is of diminishing value
unless CT can be confidently related to stomatal conductance
and yield. However, there is the possibility that variation in
canopy structure (e.g., height, ground-cover, architecture and
albedo) and stage of development (e.g., variation in flowering and
maturity dates) can influence the association between stomatal
conductance and CT. Moreover, sensitivity analyses indicate that
variation in height, albedo, leaf area index and leaf angle can
influence the relationship between CT and stomatal conductance
(Maes and Steppe, 2012). Nevertheless, the effectiveness of UAV
platforms for quantifying leaf area and plant height (Potgieter
et al., 2017; Hu et al., 2018), together with ground-based
platforms (e.g., Deery et al., 2014; Jimenez-Berni et al., 2018),
presents an opportunity for greater understanding between
conductance, CT and yield, in the presence of variation in canopy
structure, and highlights the need for further work in this area.

5. CONCLUSIONS

Repeatability estimates for ArduCrop and airborne CT in wheat
were typically greater later in the season during grain-filling and
in the afternoon. This was supported by the observation that the
pattern of repeatability, for ArduCrop and more so for airborne
CT, was significantly associated (P < 0.0001) with the calculated
clear-sky solar radiation and to a lesser degree, vapor pressure
deficit. The latter is because the addition of vapor pressure deficit
to a model comprising either clear-sky solar radiation or its
determinants, day-of-year and hour-of-day, made little to no
improvement to the coefficient of determination. For airborne
CT afternoon sampling times, the phenotypic correlations were
consistently high across sampling times within a given year
and, to a lesser extent, between years contrasting in soil water
availability. The phenotypic correlations for ArduCrop CT were
higher during the grain-filling months of October and November
and for hours-of-day from 11 onwards. In contrast, the lowest
correlations comprised events from hours-of-day 8 and 9 across
all months. These findings build upon the recent developments in
CT phenotyping as a surrogate measure of stomatal conductance
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and the abundant evidence of the association between wheat yield
improvement and high stomatal conductance. Together these
factors provide promising support for the reliable deployment of
CT phenotyping within both pre and commercial plant breeding,
whereby the high repeatability and phenotypic correlation across
afternoon sampling events later in the season could enable
reliable screening of germplasm from as few as one or two
sampling events.
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