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In order to evaluate the impact of water deficit in field conditions, researchers or breeders
must set up large experiment networks in very restrictive field environments. Experience
shows that half of the field trials are not relevant because of climatic conditions that do
not allow the stress scenario to be tested. The PhénoField R© platform is the first field
based infrastructure in the European Union to ensure protection against rainfall for a
large number of plots, coupled with the non-invasive acquisition of crops’ phenotype. In
this paper, we will highlight the PhénoField R© production capability using data from 2017-
wheat trial. The innovative approach of the PhénoField R© platform consists in the use of
automatic irrigating rainout shelters coupled with high throughput field phenotyping to
complete conventional phenotyping and micrometeorological densified measurements.
Firstly, to test various abiotic stresses, automatic mobile rainout shelters allow fine
management of fertilization or irrigation by driving daily the intensity and period of the
application of the desired limiting factor on the evaluated crop. This management is
based on micro-meteorological measurements coupled with a simulation of a carbon,
water and nitrogen crop budget. Furthermore, as high-throughput plant-phenotyping
under controlled conditions is well advanced, comparable evaluation in field conditions
is enabled through phenotyping gantries equipped with various optical sensors. This
approach, giving access to either similar or innovative variables compared manual
measurements, is moreover distinguished by its capacity for dynamic analysis. Thus,
the interactions between genotypes and the environment can be deciphered and better
detailed since this gives access not only to the environmental data but also to plant
responses to limiting hydric and nitrogen conditions. Further data analyses provide
access to the curve parameters of various indicator kinetics, all the more integrative
and relevant of plant behavior under stressful conditions. All these specificities of the
PhénoField R© platform open the way to the improvement of various categories of crop
models, the fine characterization of variety behavior throughout the growth cycle and
the evaluation of particular sensors better suited to a specific research question.
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INTRODUCTION

The last three decades have witnessed a decline in the growth
of yield trends (AGRESTE, 2018) which has been attributed to
climate change rather than to breeding or agronomical causes
(Brisson et al., 2010). Climate changes are in general unfavorable
to cereal yields in temperate climates because of higher heat stress
during grain filling and longer drought during stem elongation.
Regional model simulations for climate change in mid-Europe
agree on an occurrence of higher variability in rainfall in the
coming decades, with an increased risk of water shortage during
summers (Jacob et al., 2013). At the same time, water resources
available for agricultural irrigation will be reduced or maintained
in the best scenarios (Barros et al., 2014). Moreover, the crucial
role of nitrogen on production and quality of the harvested
organs (Jensen et al., 2011) coupled with the potential impact of
nitrogen losses on the environment (Galloway et al., 2003; Sutton
et al., 2011) lead to an increasing concern about the improvement
of the nitrogen use efficiency of the agricultural systems. This
perspective enforces the need to design strategies and tools that
combine novel crop genotypes and adapted crop management
techniques to assist agriculture in facing major challenges, such
as increasing rainfall variability and the reduced availability of
fertilizers (Wreford et al., 2010).

While genomic capacity encountered a breakthrough in
2010, phenotyping capacity has become the major limitation in
breeding programs aimed at building genotypes that maintain
or increase crop performance under climate changes and
reduced inputs (Furbank and Tester, 2011). In field conditions,
conventional phenotyping represents high investment, it is
laborious, mainly destructive, and could weaken significance or
precision of results from consolidated large experimental reliant
networks. Numerous measurements on a broad genetic diversity
panel are now perceived as key levers of genetic advances and
lessen the potential added value of modern techniques such as
marker-assisted selection, or genomic selection (Araus et al.,
2018). To address this issue, significant efforts have been made to
encourage the capacities of multilevel phenotyping in worldwide
initiatives and dynamics, creating networks and communities.
The acceleration of instrumentation (Reynolds et al., 2018;
Roitsch et al., 2019) and sampling capacities (Pieruschka and
Schurr, 2019) has opened the way for further investigation in
epigenetic mechanisms and plant physiology with the possibility
of building advanced digital models of plant physiology which
underpin research and decision support services (Jiang et al.,
2018; Tardieu et al., 2018; van Eeuwijk et al., 2018).

The French Plant Phenotyping Network1, PHENOME-
EMPHASIS/France, funded by the French National Research
Agency (ANR), and lead by the National Institute of Agricultural
Research (INRA), provides French researchers with up-to-
date, high throughput infrastructures and methods allowing the
characterization of different species under scenarios associated
with climate change. The project aims (i) to build and upgrade
highly instrumented platforms in nine French sites able as a
whole to grow the most common crop species under a large

1https://www.phenome-emphasis.fr/

range of environmental conditions, (ii) to develop new sensing
technologies, associated with advanced data processing and
management, (iii) to disseminate the newly developed techniques
and methods within the French phenotyping community
(breeders, technical institutes, and public research groups) and
(iv) to enhance the emergence of French SMEs involved in
developing phenotyping methods.

The PhénoField R© platform is management by the applied
research institute ARVALIS and is part of the PHENOME-
EMPHASIS/France project. It is an original field phenotyping
platform enabling the design of a large range of drought
and nutrient availability scenarios and the fine characterization
of crop functioning as a response to these abiotic stresses.
This accurate monitoring of both growing conditions and
crop growth in the field is a key to improving the analysis
of genetics × environment interactions and to identifying
genotypic markers associated with favorable crop behavior. To
this end, the PhénoField R© platform manages a moving rainout
shelter and irrigation systems that allow the application of
different field drought conditions (since 2015), all the while
coupled with environmental sensors to control drought stress
environments. PhénoField R© uses high-throughput phenotyping
technologies set (validated and innovative sensors) on an
automated gantry (since 2017), allowing frequent and non-
invasive high-resolution measurements of the canopy. Its
location at Ouzouer-le-Marché/Beauce la Romaine (41), central
France, makes PhénoField R© representative of irrigated crop farms
of the Beauce area with the capability of studying large genotype
panels of various species (bread wheat, durum wheat, corn, etc.).

2017 was the 1st year offering advanced capability on
PhénoField R©. During this crop season, PhénoField R© carried
out a bread wheat field trial in the framework of the
BREEDWHEAT project2, the purposes of which are to strengthen
the competitiveness of the French wheat breeding sector and
address the societal demand for sustainability, quality, and safety
in agricultural production. The BREEDWHEAT project aims to
develop new breeding methodologies and use unexploited genetic
resources to identify and combine alleles of interest into new
ecological friendly varieties adapted to climate changes, including
the enhanced adaptation to increasing biotic and abiotic stresses.
The trial hosted in 2017 in the PhénoField R© platform as a node
of a trial network, focused on water and nitrogen stresses and
their interaction with genotypes. Indeed, one of the key drivers
of yield gap mitigation and reduction is reducing the reliance
on nitrogen fertilizers (Hawkesford, 2014) or a better Nitrogen
Use Efficiency (NUE) and Water Use Efficiency (WUE) through
improved understanding of respective and crossed mechanisms
driving these parameters in plain field conditions (Fischer and
Connor, 2018). It evaluates the functioning of 22 bread wheat
varieties, representative of the last three decades of genetic
innovation, under nitrogen and water deficit. Phenotyping data
were acquired during the growing season using conventional and
innovative techniques.

This paper presents the PhénoField R© phenotyping platform.
We first evaluate its capacity to control crop-growing conditions

2https://breedwheat.fr/
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and potential biases due to the presence of mobile shelters.
Related to this, a set of tools and procedures have been
assessed to finely monitor and record weather data and soil
water status; then, the high throughput phenotyping system is
described. It includes automated sensing tools and the related
data processing methods.

As an example here, results obtained during the 2017
BREEDWHEAT experiment have been analyzed to answer
two questions: Is the platform able to generate the desired
abiotic-stress scenarios? How is the phenotyping system able
to reveal differentiated bread wheat behaviors amongst water
deficit conditions, nitrogen deficit conditions or a studied
genotypic panel?

MATERIALS AND METHODS
DEVELOPED ON THE PHÉNOFIELD R©

PLATFORM

The PhénoField R© platform is located at Ouzouer-le-
Marché/Beauce la Romaine (41) in Beauce region, one of
France’s most productive agricultural areas hosting a wide variety
of cultivated crops (Figure 1). It was implemented in 2013
on 7.5 hectares of farmland and is equipped with 8 moving
rainout shelters, environmental sensors and high throughput
phenotyping facilities. A web-based user interface, named PhenX
(Piquemal, 2017), allows data visualization and downloading.

Managed Environment
Mobile Rainout Shelters
Each rainout shelter covers 655 m2 (about 25 m × 25 m), and
is equipped with an automaton controlling its movement. The
central controller is linked to a rain contact sensor and sonic
anemometer to, respectively, trigger the movement of the rainout

shelters and secure the infrastructure (in case of strong wind).
Each of the 8 rainout shelters is seated on three 150 m-long
rails in order to move them from a garage position (when it
does not rain Figure 2A) to a rain controlled position (when
raining Figure 2B). The rainout shelters are arranged along 4
cropping areas to ensure adequate crop rotation every year with,
generally, 2 cropping areas with the trial crop (Nos. 3 and 4,
Figure 2) and the 2 others with an “erasure crop” (Nos. 1 and 2,
Figure 2) including one area for park position. This experimental
design allows firstly, the rainout shelter to be stationed at 43 m
further than the trial area, thus avoiding the drop shadow during
non-rainy periods and secondly, the rain- controlled position to
operate in the same area every 4 years. To maintain this efficient
crop rotation, the erasure crop must be chosen according to the
species studied. Field trial species on PhénoField R© are therefore
discussed nearly 18 months before trial implementation.

The 8 rainout shelters protect 384 m × 6 m field trial
microplots (1 m× 6 m; Figure 1-rigth part). Each shelter, formed
by 2 spans, manages 48 microplots with experimental modalities
applied per group of 24 microplots at span scale. For crop
management, PhénoField R© is equipped with a special spray boom
to treat one span from the central aisle between rainout shelters
and so avoid affecting soil compaction with machinery under
rainout shelters. Thus, nitrogen or crop protection cross-factors
are set up at span scale.

The eight rainout shelters are equipped with their own
individual irrigation networks, allowing precise management
of the water supply in protected plots. Two booms per
rainout shelter allow up to 16 different irrigation modalities.
Hence PhénoField R© can perform between 1 controlled irrigation
modality on 384 microplots to up to 16 modalities of 24
microplots. Using the rainfall area (when rainout shelter parking
is on area no. 1 or no. 4), PhénoField R© allows a 768-
microplot field trial. Roof gutters collect the rain water used for

FIGURE 1 | Location of PhénoField R© platform in France, near Orléans, and aerial view of the 8 rainout shelters and gantries around wheat field trial (GPS
coordinates: 47◦53′01.6′ ′N 1◦31′16.4′ ′E).
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FIGURE 2 | Four crop growth areas to ensure a correct crop rotation every year (switch between green area and yellow area) and to avoid the effects of drop
shadows on the crop trial (at least 35 m). (A) No rain position; (B) position during a raining event.

irrigation. This whole infrastructure allows crops to be subjected
to a pre-determined duration of water stress at any desired
period of their cycle.

Soil Characterization
The management of crop water stress implies precise soil
characterization established with measurements of soil
resistivity and water holding capacity (WHC) on the entire
PhénoField R© platform.

The electrical resistivity of the soil is a physical quantity related
to the soil’s intrinsic characteristics (clay content, texture, water
content, depth, etc.), with the higher values representing soil
resistance to current flow. This magnitude of soil resistivity is
measurable at high resolution and allows, for some types of soil,
to extrapolate geographically located measures of water holding
capacity (Michot et al., 2003). Soil resistivity measurements were
performed by using the Automatic Resistivity Profiling (ARP)
method which uses a multi-electrode system towed by a quad bike
for rapid data acquisition (Dabas, 2008). One pair of electrodes
was used for electric current injection and 3 pairs were employed
for measurements in order to investigate the soil resistivity
between 0–50, 0–100, and 0–200 cm. ARP measurements were
performed in September 2011 over the entire farmland to acquire
soil-resistivity data used to get a global view of the agricultural
plot and optimize rainout shelter locations on the farmland.

The soil observed on the agricultural field is Beauce clay loam
with a loamy clay texture on calcareous Beauce rock. Samples
have been taken to determine the WHC/cm of the different types
of soil layers based on granulometric analyses. Spatialization
of soil layer thicknesses was performed at the beginning of
platform construction by using the 1,100 pits opened for pouring
concrete pads, from 0 to 1.5 m for each pit. In more detail, we
measured four kinds of soil thicknesses: LA which corresponds
to plowed horizon, S which is cambic horizon, C1 and C2 which
correspond to calcaric material (C1 is cryoturbed limestone and
C2 is sandy calcaric material). Based on these data combined
with pF data for each horizons characterized, soil mapping was

generated with krigeage models providing soil layer thicknesses
but also WHC estimation at every point of the platform. As
microplots are georeferenced, an estimation of the WHC was
performed for each of them by computing the mean of the WHC
points contained in the corresponding area. Data management
was operated by PostgreSQL software, a relational database
management system extended with PostGIS software to add
support for geographic objects.

PhénoField R© Rainout Shelter Efficiency
Characterization
Evaluation of the shelters’ capacity to efficiently intercept rainfall
was evaluated in 2017 by measuring precipitation along transects
of crops protected by the shelters. Seven pluviometers were
installed at equivalent distances (6 m) with five installed under
the area protected by rainout shelters and two others installed
on each side of this protected area. Pluviometers were positioned
between each microplot-line.

Possible side effects on photosynthetically active radiation
(PAR) and temperature were also assessed in 2017 by using,
respectively, two quantum sensors (SKP215, Campbell Scientific)
and two thermocouples (T109, Campbell Scientific). One of each
sensor was set up in the center of the area protected from rain
and the other one outside the protected area. Comparisons of
air temperature and PAR inside and outside the shelter-protected
area were performed by measuring the cumulative PAR and
degree-day over the period of crop protection. The cumulative
daily light was calculated as the sum of PAR received each day
by the crop (in µmol.m−2) and the cumulative degree-day as the
mean of maximum and minimum daily temperatures added up
over the day with the 0 value corresponding to the 1st day of
rain interception.

Stress Control
Environmental Monitoring
The meteorological conditions on the PhénoField R© platform
are monitored by a weather station measuring air temperature,
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atmospheric pressure, diffuse radiation, relative humidity, wind
speed and direction in 15-min steps. The soil humidity and soil
water tension at 30, 60, and 90 cm deep are recorded in control
plots under each rainout shelter.

Irrigation management was realized using Irrinov R© method
(Bouthier et al., 2003). Irrinov R© is an online free irrigation
tool based on tensiometer measurements3. It gives tension
thresholds above which farmers have to irrigate for Watermark R©

tensiometers at 30 and 60 cm deep in a given situation (3
tensiometers are placed at each depth). This method has been
developed by Arvalis and its partners for different regions in
France. Thresholds depend on four main variables: climatic
demand, soil type, crop and period between two irrigations
(parameter which depends on farmer irrigation equipment). It
is made for farmers to manage irrigation in its tactic phase.
Thresholds were determined with field trials in different French
regions. For PhénoField R©, we chose Irrinov R© method adapted to
French region Centre, for a deep soil and for wheat. In these
conditions, 30 cm-tensiometer threshold is 100 cbar and 60 cm
threshold is 80 cbar before last leaf spread growth stage (Z39)
and 100 cbar after. To manage well-watered irrigation during the
BREEDWHEAT trial, we decreased thresholds to bring water in
the field to 80 cbar also after Z39 to be sure plants do not suffer
from water stress in well-watered conditions (WW). This method
allowed us to consider that under 120 cbar threshold at 60 cm
wheat is not suffering from water stress. Unfortunately, this kind
of probe cannot record signal higher than 200 cbar and they don’t
measure soil humidity directly.

It was therefore necessary to have other kind of sensors to
measure soil humidity. To do that, soil humidity was measured
with Time Domain Reflectometry probes (TDR-TRIME-PICO
64) installed at 30, 60, and 90 cm deep in control plots under
each shelter. This type of probe has the advantage of being
buried for 5–10 years without being moved. To position them
deep in the soil it was necessary to make small trenches and
TDR probes are known to be very sensitive to their immediate
environment (air, ground contact with the pins, pebbles, etc.) so
they must have been calibrated with a series of five gravimetric
measurements performed every 2 months. Gravimetric water
content was determined by measuring the weight of freshly
collected soil (near each probe) and a soil sample oven-dried at
110◦C over 48 h (see Supplementary Figure S1).

In addition to measurements by the probes on control plots,
soil nitrogen content was measured following a colorimetric
method using a KCL extraction on samples taken before sowing,
at the end of winter and after harvesting.

CHN: A Model to Quantify Abiotic Limiting Factors
Agro-meteorological conditions are incorporated into a dynamic
crop model (called ‘CHN’) used to estimate crop growth,
manage crop practices and evaluate crop responses to water and
nitrogen shortage (Soenen et al., 2016). This model calculates
the daily flow of carbon (C), water (H), and nitrogen (N)
between the soil, atmosphere and plant compartments at a
daily time stage during a cropping season (see Supplementary

3http://www.irrinov.arvalisinstitutduvegetal.fr/irrinov.asp

Figure S2). Soil and Atmosphere compartments are connected
to databases using, respectively, different soil characteristics in
France and daily weather data (over 250 sites with 25 years data;
Soenen et al., 2016). The plant compartment is based on the
Monteith approach (Monteith, 1994): leaf growth is modeled
and intercepts radiation that is converted into biomass. The
Green Plant Area Index (GPAI), transpiration and biomass are
affected by water and nitrogen deficiency, according to functions
of stress response developed by Sinclair (Sinclair, 1986). These
functions provide a stress factor between 1 (minimum stress)
and 0 (maximum stress), that is used to slow down the potential
growth and transpiration. Links between soil–plant–atmosphere
compartments are the background of a model of the water and
nitrogen balance. Coupled with frequentist weather forecasts,
CHN outputs are complementary to probe measurements for
water and nitrogen input management to follow-up the situation
of each shelter line each day.

Trial From the BREEDWHEAT Project
In 2016–2017, a bread winter wheat field trial was conducted
for the BREEDWHEAT project. It aimed to evaluate 22
varieties, mutual to other field experiments and known for their
diversity of responses to different stresses, especially differing
in behavior to nitrogen- and water-stressed conditions. Using
six of the eight rainout shelters from PhénoField R©, it was
implemented with a double split-plot design in order to group
water management treatments under rainout shelters and two
nitrogen fertilization levels per rainout shelter (one per span) (see
Supplementary Table S1).

The two water management treatments consisted of:

1. Well Water conditions (called “WW”) without rain
interception and good irrigation practices (following the
IRRINOV R© method and CHN model).

2. Water Deficient conditions (called “WD”) with the
interception of rainfall in the period between the first node
and grain filling growth stages (from 22nd February to the
25th June) and irrigation occurring only to allow nitrogen
uptake from fertilizer.

Each water management treatments was applied to 3 shelters
and separated per span so as to have two nitrogen levels:

1. With optimum nitrogen supply (receiving a total 132 kg
N.ha−1, called “N+”).

2. Without N supply (called ‘N0’).

The 22 bread winter wheat varieties were randomized
under each span to evaluate their agronomic performances
under these 4 modalities with 3 biological replicates (22
varieties × N+/N0 × WW/WD × 3 replicates). One
control variety, APACHE, was triplicated in order (i) to
perform destructive measurements, (ii) to grow above
the soil tensiometers and TDR probes and (iii) to measure
non-destructive variables and yield components.

The sowing was performed on 2016 October 20th and the
harvest occurred on 2017 July 11th for the WD and 2017 July
18th for the WW due to differences in maturity stages. Good
agricultural practices in plant protection were performed to avoid
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weeds, pest and disease effects on the trial. Agronomic traits were
measured on each microplot:

1. Phenology: sowing date, emergence date, heading date,
flowering date, harvest date.

2. Yield components: plant density (plants.m−2), spike
density (spikes.m−2), dry matter grain yield (GY, t.ha−1),
thousand Kernel Weight (TKW, g), grain protein content
(P, %). Nitrogen Grain Quantity (Nabs, Kg.ha−1) was
calculated using GY∗P/5.7.

On check plot, above ground biomass and nitrogen content
(based on the Dumas combustion method) were measured at
flowering stage and also at maturity stage, distinguishing straw
and grain to measure harvest index and nitrogen harvest index.

Statistical analyses were conducted using R studio software
version 3.4.4 (R Core Team, 2017). The effects of water and
nitrogen stresses and variety on agronomic variables were
assessed with variance analysis with these three factors and
their interactions.

High Throughput Phenotyping Data
Phenotyping Gantry and Sensor Bay
A set of eight fully automated phenotyping gantries were installed
over the moving rainout shelter rails in order to acquire frequent
crop canopy measurements via remote sensors, thus ensuring
non-invasive measurements and the collection of a large amount
of phenotyping data. Each 25 m wide gantry is able to lift
a payload at a 6 m height, allowing data acquisition on any
type of crop, even tall maize cultivars. These data are obtained
with the sensors installed on a high throughput phenotyping
bay, mounted on the gantries during experimental campaigns. It
allows smoothed screening from 0.1 to 3 m.s−1 and centimetric
controlled repositioning of canopy sizing from 0 to 3 m. Each
sensor head can carry a set of sensors with no limit of power
consumption and up to 150 kg. New sensor installation is possible
thanks to its payload capacity and its agile interfacing. An open
robotic operating system (ROS; Quigley et al., 2009) was used
to allow interfacing of several sensors and the management of
spatial and temporal sampling on each microplot.

Two identical phenotyping bays are currently used on the 8
gantries to carry several types of optical sensors. The position
of the sensors was optimized in order to spatially sample the
area of interest and allow intra-plot borders removal. Each
sensor bay had 2 measuring viewpoints: an optical head at the
vertical of the vegetation (nadir) and an angular view positioned
at 45◦. The two sensor bays also included 4 xenon flashes to
allow active measurement and standardization of daily radiation
acquisition. Flashes are distributed on the vertical and inclined
bays to ensure good illumination homogeneity over the camera
and spectrometric field of view. An ultrasonic actuator coupled to
the robotized gantries was used to estimate the height of the crop
canopy and automatically set up distance to target in a closed loop
control. The available sensors were (Figure 3):

1. RGB industrial cameras (VLG40c, Baumer, Ger;
2044 pixels ∗ 2044 pixels for 28◦ optical aperture) to
ensure the measurement of the fraction cover, green

FIGURE 3 | Bay carrying the sensors with 2 angles of view. The shapes show
the 2 LIDARs (in red), the 4 cameras (in purple), the 4 spectroradiometers (in
yellow), the flashes (in blue) and the telemeters (in green).

fraction, green plant area index and average leaf index.
The resulting fields of view in the object plane measure
60 cm∗60 cm corresponding to a resolution of 0.29 mm
per pixel at a 1.5 m distance. The typical configuration
for wheat is a set of 3 RGB cameras (two cameras viewing
at 0◦ from vertical and one at 45◦).

2. A VIS-NIR spectroradiometer (MMS1, ZEISS, and Ger)
with a measurement range of 380–1,100 nm covered by
256 pixels feed by a large core optical fiber of numerical
aperture 0.2. The resulting full field of view at a sensing
distance of 1.50 m is 60 cm. It allows the quantification of
the light reflected by the crop canopy and the biochemical
composition of plants via vegetation indices traits. The
typical configuration for wheat is 3 spectroradiometers
(two sensors viewing at 0◦ and one at 45◦).

LiDARS (LMS 400-1000, Sick, and Ger.) scan at 650 nm
with detection ranging from 70 to 300 cm. This sensor allows
the characterization of the 3D structure of the canopy and the
estimation of plants height. The acquisition is continuous for a
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given microplot with a scanning frequency of 290 Hz and an
angular step of 0.2◦. The resulting transversal and longitudinal
resolutions are, respectively, of 5 mm and 1 mm for a scanning
speed of 0.3 m.s−1 at a sensing distance of 1.5 m. The typical
configuration for wheat is 2 LiDARS (both viewing at 0◦).

Acquisition, Data Calibration
The level and stability of the sensing chain including
illumination, geometric configuration, light transmission
and sensor response functions were set up to optimize signal
to noise ratio of low level data and were documented. Every
day of acquisition, controls were performed systematically
against a secondary calibration surface and tracked by the
National Institute of Standards and Technology (NIST) through
Spectralon R© (Labsphere, NH, United States) in accordance with
good practice for uncertainty management (GUM). This data
were used to correct the white balance of RGB cameras and to
calculate physical units of reflectance. Acquisition was optimized
to maximize the sampling within the microplot and to allow
full acquisition of the platform in 1 day with a two-sensors bay.
During the 2017 campaign an operation speed of 0.3 m.s−1

was chosen allowing three acquisitions of each RGB image and
of VIS-NIR reflectance measurements. LiDAR acquisition was
carried out all over the plot area.

Processing and Interpretation
For RGB cameras, a white balance process was first applied to
adjust intensities of the red, green, and blue channels at a same
intensity on a reference gray panel. This standardization was
important for a robust color based image analysis.

The first use a RGB images was the calculation of the green
cover fractions (GCF) at 0◦ and 45◦. A support vector machine
algorithm trained on a reference dataset, was used to classify
for each image the green and non-green pixels and determine
the percentage of green elements for a given viewing angle
(Dutartre et al., 2015).

The green cover fractions at 0◦ and 45◦ were used to estimate
the Green Area Index (GAI) and Average Leaf Angle (ALA). Both
variables were estimated by inverting a simple Poisson model
using the measured gap fractions Po, calculated as (1-GCF). The
model used to relate Po to GAI is:

Po
(
θp
)
= e

−
G(θp,θl)
cos(θp)

. GAI

Where θp is the viewing angle, θl is the mean leaf angle and
G(θp,θl) is the function that expresses the projected area of the
leaves for a particular configuration. We assumed that the G
function follows an ellipsoidal leaf angle distribution (Campbell,
1986, 1990). The model was inverted using a look up table
minimization procedure (Weiss et al., 2000, 2004) to retrieve the
more likely combination of GAI and ALA.

For spectroradiometers, a calibration measurement on a
spectrally characterized reference surface was done before each
data acquisition session. The reflectance at the crop level
was then obtained by dividing the canopy reflectance by the
calibration measurement. At the plot level, the averages of
the normalized reflectances were computed.spectroradiometer

Satisfactory signal to noise ratio (giving a threshold of 20) ranges
from 450 to 820 nm. Then physically expressed reflectance was
sampled by Gaussian filters corresponding to bands needed for
calculation of the vegetation indexes. Three vegetation indexes
from remote sensing literature were selected for their asserted
link with different phenological aspects of the aerial part of
monitored crop. The vegetation indices calculations were made
with a 3 nm Full Width Half Maximum (FWHM) for all bands.
The Normalized Difference Vegetation Index (NDVI; initially
proposed by Rouse et al., 1974) is a basic and robust indicator
of the amount of vegetation in the field. It correlates firstly with
the cover fraction in the direction of sight and secondly with GAI.

NDVI =
R800− R670
R800+ R 760

The Meris Terrestrial Chlorophyll Index (MTCI) was initially
proposed by Dash and Curran (2004) in order to extend
the accuracy of red-edge position estimation on crops with
higher chlorophyll content. Initially designed to exploit Medium
Resolution Imaging Spectrometer built into the platform, it
showed a better capacity than other red-edge based indexes to
estimate chlorophyll content for higher LAI values when the
canopy is closed.

MTCI =
R754− R709
R709− R681

The Modified Chlorophyll Absorption Ratio Index (MCARI2)
proposed by Haboudane et al. (2004) is a non-dimensional
empirical index targeting green LAI of crop canopies for
precision agriculture purposes. It is tailored by modeling in
order to minimize the effect of leaf chlorophyll content on the
prediction of green LAI. By construction, it is a non-normalized
index and its value is sensitive to reflectance spectra intensity
contrary to previous indexes.

MCARI2 = 1.5×
2.5× (R800− R670)− 1.3× (R800− R550)√

(2× R800+ 1)2 − (6× R800− 5×
√
R670)− 0.5

Plant height (cm) was estimated from the analysis of the 3D
point cloud generated from the combination of the LiDAR scans
of height (z) and the (x,y) positioning of the sensor, recorded
by the gantry’s encoders. The plot mean height was calculated
using the algorithm developed by Madec et al. (2017). It first
consisted in clustering the point cloud to separate the ground
from the vegetation. The maximum peak in the z-distribution of
the non-vegetation points was assigned as the ground level. This
distance was subtracted from the 3D point cloud resulting into
a distribution of the height values. The height of the canopy was
then defined as the height value corresponding to 99.5% of the
cumulated height distribution of the vegetation points.

After statistical and physical validation against expected
intermediate values and validation of biophysical values in
order to control non-divergence in case of inversion techniques,
data were uploaded and shared through a dedicated database
named PhenX (Piquemal, 2017) allowing statistical analyses
following good practices in plant experiments. The temporal
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evolution of each estimator could then be analyzed by fitted
parametric models. Deduced parameters and the integration of
deduced models over specific phenological periods could then
produce meaningful indicators of ideotype-variability (as the area
under the curve).

RESULTS: STUDY IN 2017

The PhénoField R© Platform
Characterization and Environmental
Monitoring
The use of the mobile rainout shelters from 23rd February to 26th
June 2017 reduced detected precipitations under the protected
area for the WD environment. During these 4 months, the
sum of precipitations collected by the 2 pluviometers outside
the protected area reached 161–190 mm (Figure 4A) and
was around 15 mm under it, except for the first pluviometer
under the protected area in a south west position that received
50 mm (Figure 4A). This surplus of precipitation in this
position was probably due to precipitations brought by the
prevailing southwesterly winds but did not significantly affect
the yield of the first plot under WD condition (red and yellow
point, Figure 4A).

During the period of use of the mobile shelters, PAR and
air temperature were also affected with a 49% linear decrease
in the PAR and a 0.85◦C global increase in the air temperature
(Supplementary Figure S3). These effects only occurred during
protection with the rainout shelters which represented less than
8% of the 4 months of rain interception including half of this
time at night. As a result, accumulation of the daily PAR was
reduced by 3.5% and, by contrast, it led to a 1.8% increase in the
cumulative degree days (Figures 4B,C).

Stress Management and Indicators
For each soil layers, LA: plowed horizon, S: cambic horizon, C1
and C2: calcaric material (C1: cryoturbed limestone C2: sandy

FIGURE 5 | Relationship between water content and pF on PhénoField soil
horizons; LA: plowed horizon, S: cambic horizon, C1 et C2: calcaric material
(C1: cryoturbed limestone; C2: sandy calcaric material).

calcaric material), Figure 5 shows pF curve results. PhénoField R©

soil water content could vary between 12 and 27%.
Mapping the soil characteristics revealed an important

variability of the WHC over the site with a WHC varying from
102 to 275 mm (Figure 6). On the crop trial protection area,
during 2017, WHC varied from 133 to 263 mm. Application
of WD conditions on such soil variability was monitored by
tensiometers. Before wheat trial protection by mobile rainout
shelters on 23rd February, the WHC was filled and thus contained
a mean water quantity of 184 mm. Rain interception led to a rapid
increase of the soil water tension at 60 cm in WD conditions
at the end of March (Figure 7A, red curve), 3 weeks earlier
than in WW conditions. The threshold of 80 cbars to trigger
irrigation and avoid water stress was reached several times and
induced irrigation in the WW conditions and hence led to a rapid
decrease in the soil water tension (Figure 7A). The threshold
of 120 cbars which expresses no water stress for wheat in

FIGURE 4 | Precipitation levels (mm, blue bars) and yield mean (t/ha, red dots for N+ environment and yellow dots for N0) of the 4 plot-lines using their location from
the beginning of the protected area (m, red dotted lines) in water-deficit condition (A), cumulative daily PAR (B), and cumulative degree days (C) during the crop
protection from rain (from 02/23/2017 to 06/25/2017).
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FIGURE 6 | Characterization of the soil water holding capacity (mm) on the
PhénoField R© platform with rectangles representing a span in each of the eight
shelters and for the four positions.

PhénoField R© conditions, was reached at the end of April (between
04/25/2017 and 05/05/2017) for the WD conditions (Figure 7A).

The linear relationship between the gravimetric measurement
and TDR values allowed good calibration of the TDR probes
(Supplementary Figure S1). This calibration performed in, 2017,
needs to be confirmed through other soil samples in the coming
years. As such, these fixed probes will estimate control-plot
plants’ water consumption (mm/day).

A summary of rainfall, irrigation and nitrogen fertilization per
month is reported (Supplementary Table S1). Two irrigations
were performed on WD during March and April to increase
nitrogen uptake just after the fertilizer application. These
irrigations represent a small quantity of water (15 mm) and have
no impact on soil tension at 60 cm depth as shown in Figure 7A.
In total, according to weather station and irrigation data, the
wheat received 478 mm of water input in WW conditions and
only 211 mm in WD conditions (Figure 7B).

Combining the soil mapping and the weather measurements,
CHN model helped us to monitor daily soil water deficit under
each rainout shelter (Figure 8). Considering repetition one of
BREEDWHEAT trial which was located under shelters number
1 and 2 as an example, CHN model simulated water available to
plant roots during plant cycle. Here we can see that at this place
on PhénoField R© platform, WHC was about 155 mm. These results
are consistent with probe measures as described above.

In another way, the CHN model allowed us to calculate abiotic
stress factors induced on crops per replicate (Figure 9). The water
stress factor stimulated by CHN showed an important effect of

FIGURE 7 | Soil water tension at 60 cm (A) and water supply (B) in
well-watered (blue) and water-deficient conditions (red) during crop growth.

water deficiency on the LAI, which began at the end of April with
slight heterogeneity between replicates (Figure 9A). With regard
to the nitrogen stress factor, it affected the wheat biomass with
greater heterogeneity between replicates (Figure 9B).

Stress Impact
With regard to variety behavior, both water and nitrogen
deficiency significantly reduced the yield (Figure 10A). The
WHC was filled at the end of February. Up until the end of
March (Z30 stage), this 184 mm of water allowed crop growing
in optimal conditions without watering. Tilling was carried out
in good conditions with good root development. The lack of
267 mm of water reduced the yield from 11.4 t.ha−1 in WW
N+ conditions to 8 t.ha−1 in WD N+ condition. This water
deficit was rather strong and resulted in a 30% decrease in yield.
Along the same lines, yield from WW N+ conditions decreased
to 9.7 t.ha−1 in WW N0 conditions (15% decrease in yield). The
interaction of both stresses (WD N0) led to a yield of 8.3 t.ha−1,
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FIGURE 8 | Soil water deficit level for well-watered conditions (A), for WD water-deficit conditions (B) using CHN Model outputs.

FIGURE 9 | Impact of water (A) and nitrogen (B) deficiency on, respectively, leaf area index (LAI) and total biomass where WW, well-watered conditions; WD,
water-deficient conditions; N+, optimum nitrogen supply; and N0, without nitrogen supply. Stress indicators calculated with the crop model CHN.

which is not significantly different from the WD N+ conditions.
During this experiment, yield potential under water deficiency
was reduced by 30%; consequently, even if we did not bring
nitrogen input on the WW N0 condition, soil nitrogen amounts
supplied by the soil were sufficient to maintain an equivalent yield
between WD N + and WD N0. Yield reduction between WW
N+ and WW N0 is linked to a significant ear density reduction
due to nitrogen stress (Figure 10D) with partial compensation
linked to an increase in thousand kernel weight (Figure 10C).
A yield decreasing due to water deficit with no change in supplied
nitrogen logically caused an increase of the protein concentration
in the grain (Figure 10B). Significant differences of agronomical
traits under water and nitrogen deficiency are also shown in

Supplementary Table S2 (yield, grains protein content, thousand
kernel weight Plants density, Grains.m−2 calculated with three-
factor ANOVAs).

Looking at plant height based on LIDAR data, both water
and nitrogen stresses significantly reduced the wheat height
at the beginning of the grain-filling period (Figure 11A). In
this trial, water deficiency, during the stem elongation stage
(between Zadok 30 and Zadok 55), reduced maximum plant
height by 15 cm (WW N+ compared to WD N+ conditions).
This impact was stronger than nitrogen deficiency which reduced
plant height by 7 cm (WW N0 compared to WW N+ conditions).
As shown on yield, there was no significant difference between
WD N+ and WD N0 plant height. Unlike yield components
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FIGURE 10 | Yield (t.ha−1; A), grain protein content (%; B), thousand kernel weight (g, C) and ear density (µ.m−2; D) under well-watered (WW) and water deficient
(WD) conditions with and without nitrogen (N+, N0). Letters represent significant differences (Tukey post hoc test, p < 0.05).

that constitute destructive and final measurements, the temporal
evolution of plant height for each stress condition may be
very informative of plant behavior, indicating at what time the
stress starts to impact plant growth. Figure 11A suggests that
nitrogen deficiency begun at the end of March (the green curve
is lower than the other one). At the beginning of the wheat
growth cycle, the GPAI made it possible to distinguish the WW
and WD modalities. Looking at GPAI curves (Figure 11B),
nitrogen impacted also wheat behavior just after stem elongation,
in both conditions WW and WD. This kind of stress during
stem elongation could explain why the impact on ear density is
significant (Figure 10D).

Considering tensiometers at more than 120 cbar (Figure 7A)
and the water stress factor impacting LAI simulated by CHN
(Figure 9A), the lack of available water could affect the potential
plant growth from the end of April. Two weeks later, just
before the heading date, temporal height measurement showed
a decrease of wheat growth due to drought stress (gap between
WW N+ and WD N+, Figure 11A). According to this
representation, water stress deficit begun in the middle of May
(during heading stage) and so this is consistent with drought
impact seen on thousand kernel weight (Figure 10C).

The Green Plant Area Index was calculated from the RGB
cameras by using both nadir and angle view. It is an integrative
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FIGURE 11 | Mean of wheat height (cm) (A) and green plant area index (B) during the growing season under well-watered conditions with and without nitrogen input
(WW N+ and WW N0) and water deficient conditions with and without nitrogen input (WD N+ and WD N0, N = 44, ±SE). Letters represent significant height
differences on 30th May (Tukey post hoc test, p < 0.05).

trait linked to the LAI that makes possible discrimination
between WW and WD modalities at the beginning of stem
elongation and also between N+ and N0 modalities (Figure 11B)
during stem elongation. Strangely, at the beginning of the wheat
development, the WD modality had a higher GPAI than the WW
modality. At the end of the cycle, GPAI measurements showed an
entry in senescence earlier for modalities under water deficiency
from mid-May, while WW modality entered senescence from end
of May/early June. GPAI was also affected by the nitrogen input
with lower GPAI in N0 modalities compared to the N+ ones,
especially in WW conditions.

Green fraction temporal evolution is also based on RGB
Cameras data. Figure 12A shows a decrease of green fraction
induced by nitrogen deficiency. The impact on bread wheat
begun at the end of March (beginning of stem elongation),
illustrated by the separation between WW N+ (blue curve) and
WW N0 (green curve). The maximum level of green fraction
decreased by 20% between the two treatments (Figure 12A).
These observations are consistent with the impact of a nitrogen
stress factor modeled by CHN (Figure 9B). Examining the
water deficiency impact on green fraction, the maximum level
was almost the same during the growing period, but the fall
of green fraction began earlier on WD N+ (middle of May)
than on WW N+ (middle of June) (Figure 12B). This could
explain poor grain filling and smaller grain on WD than on WW
(Figure 10C) and it is consistent with LIDAR, tensiometers and
modeling with CHN. As blue, green and orange curves represent
the mean data of each modality (respectively, WW N+, WW
N0, and WD N+), gray curves represent all varieties, showing
genetic variability.

Using spectroradiometer data, as for other HTP variable
acquired with time sequences, the area under the curve (AUC)
of the MTCI index was calculated during grain filling (between
flowering and maturity stage). Figure 13 shows that there was
a positive and strong relationship between this trait and the
quantity of nitrogen in the grain.

Looking at parameters of curves such as the maximum value,
Figure 14 shows a correlation between the maximum height of
the plant (at the beginning of grain filling) and yield. This linear
correlation is lower at earlier stages.

Another way to analyze these data could be the difference
between two modalities (optimal and stressed). In Figure 15,
we could observe different behavior of varieties under nitrogen
or water stress. This figure highlights the linear correlation
between maximal plant height and yield under nitrogen and
water stress. This correlation was lower in water stress condition
than in nitrogen stress condition. We could also observe a
higher diversity of varieties behavior under nitrogen stress than
under water stress.

DISCUSSION

Field Based Infrastructure Capabilities
PhénoField R© is a prototypical platform built in 2014. This field
based phenotyping infrastructure (using rainout shelters, soil
water sensors, and fine soil characterization) is offering various
research possibilities on drought tolerance without other impact
on the environment. Adjustments and development of methods
are needed for its operation to better serve the needs of several
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FIGURE 12 | Green fraction (%) during the growing season (A) with the mean of well-watered conditions with nitrogen input (WW N, in blue) against well-watered
conditions without nitrogen input (WW N0, in green) and (B) with the mean of well-watered conditions with nitrogen input (WW N, in blue) against water deficient
conditions with nitrogen input (WD N+, in orange, N = 44, ±SE) and curves of all varieties (in gray).

FIGURE 13 | Relationship between the N grain yield and the area under the MTCI curve between flowering and maturity under well-watered conditions with and
without nitrogen input (WW N+ and WW N0) and water deficient conditions with nitrogen input (WD N+, N = 66).

research topics. Based on data acquired during 2017, we should
be able to take into account experimental limits.

During BREEDWHEAT 2017, the control of water stress
levels were allowed by the monitoring of soil water tension and
soil humidity. It helps us to avoid plant water stress for WW
conditions. In addition, the control system of the rainout shelters
allowed automatic interception of up to 92% rainfall (Figure 4A).
The remaining 8%, which was a very small amount of water, was

probably due to the movement time from the garage position to
the protection position of the shelters (although a slight inflow
of water was detected on the edge of the first southwest plot of
the protected area). Prevailing southwesterly winds seemed to
cause 35 mm of precipitations under the first meter protected by
the shelters, though without affecting the yield of this microplot-
line. Based on these results, we could move the whole microplot
positioning under the rainout shelter 40 cm forward to the
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FIGURE 14 | Correlation between yield (t.ha−1) and plant height during
grain filling.

FIGURE 15 | Mean of yield loss related to plant height loss at maturity stage
between WW N+ and WW N0 (Nitrogen stress impact in green points) and
WD N+ and WD N+ (Water stress impact in blue points).

northeast in order to avoid this small rainfall entry and fully
protected the field trial.

During the raining period, crop protection by shelters
induced a PAR decrease and an overall air temperature
increase (Supplementary Figure S3). Such secondary effects were
generally reported as being due to the use of shelters with values
close to those reported by Paajanen et al. (2011) who noticed
a 44% reduction in the PAR due to shelters. In this way, the
automatic control of shelters limited these side effects by reducing
the time of protection. The result acquired in 2017 was that
the cumulative PAR decreased by 3.5% and the temperature
increased by 1.8%. These results inspire us to continue measuring
how shelters impact the environment over time and to use
their automatic movement in order to reduce protection time.
Moreover, these effects seem to be very low on wheat growth
but the expected impact on other crops must be simulated using
the check plots. That is why we should use the CHN model to
simulate what could be the impact on other crops.

Mapping soil characterization is important to understand soil
heterogeneity in order to take it into account in the interpretation
of agronomic variables (Di Virgilio et al., 2007). The WHC map
showed significant variability typical of the soil of this region.
Indeed, the clay-silt soils developed on Beauce limestone have a
variability of thickness within very short distances (sometimes
metric, Seger et al., 2017). It is important to consider this
variability during crop management because crops growing on
limited WHC are more subject to drought and will probably
require more irrigation. The simultaneous use of the WHC
map, the CHN model, tensiometers and TDR probes allows
monitoring and control of limiting factors applied to the crops.
However, work should be carried out to characterize root depth
in order to refine the map of the WHC, and so define a map of
the water accessible to the plant. The ultimate goal is to access to
microplot scale data to characterize crop water consumption for
each microplot tested on PhénoField R©.

High Throughput Phenotyping to
Characterize Drought and Nitrogen
Stress Impact
PhénoField R© uses high throughput field based phenotyping
development to characterize responses of crop to abiotic stresses.
The example of the BREEDWHEAT field trial conducted in 2017
demonstrated the capacity of the system to characterize drought
and nitrogen stress impact on wheat growth, with accuracy
needed to differentiate treatments like wheat varieties.

In this trial, water and nitrogen deficiency have different
impact on agronomical traits but we have a significant
difference between varieties on all agronomical traits
(Supplementary Table S2).

In our case, the application of drought during the stem
elongation period (Figure 8) negatively affected the yield of the
wheat (Figure 10). Drought continued to severely affect yield
during grain-filling, inducing earlier green fraction decreasing
that could be considered as an indicator of earlier leaf senescence
(Figure 12). Drought also leads to a significant reduction
in the thousand kernel weight (Figure 10). Such results are
often reported and well described in literature (e.g., Estrada-
Campuzano et al., 2008) with effects depending on the stress
intensity and on the plant-growth stage at the time of application
(Fahad et al., 2017). In the same way, induction of nitrogen
deficiency led to a reduction in the yield compared to the
optimum nitrogen conditions (at WW conditions). It is also
consistent with literature relating the yield loss to a diminution
of ear density (e.g., Le Gouis et al., 2000). The performance of
different bread wheat varieties for yield and yield components
varied and could be relatively contrasted in similar conditions.
Indeed, it should be interesting for variety characterization to
observe the impact of these differences on grain yield.

Differences linked to stress conditions were also noticed
with the embedded sensors LIDARs, RGB cameras and
spectroradiometers. First of all, these sensors provided temporal
information on wheat varieties and crop management systems.
The height calculated with the LIDARs could be a good
indicator of the onset and magnitude of the plant’s stress
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(Madec et al., 2017) but also of the date of the starting
point of stress impact. Similarly, the RGB cameras enable
estimations of the GF (Figure 12) and GPAI (Figure 11B).
The GPAI has been reported to be a relevant variable for
several key processes involved in canopy functioning (Baret
et al., 2010), especially the stay-green of the LAI which
participates in biomass accumulation. It is acknowledged that
wheat genotypes that sustain flag-leaf photosynthesis for longer
periods produce better yields (Christopher et al., 2008); therefore,
the start and rate of senescence of flag leaves in wheat can
be used as an indicator of stress resistance for determining
resistance to stress (Larbi and Mekliche, 2004). PhénoField R©

sensors and the actual processing data are not allowing us
to look at flag leaf alone but rather the plot canopy. Here,
nitrogen deficiency had a negative effect earlier than drought
as shown on GPAI (Figure 11B) but also on plant height
(Figure 11A). Strangely, at early stage (end of winter), the WD
modality had a GPAI higher than that of the WW modality
(Figure 11B). A lack of nitrogen probably link to irrigation
on WW and a loss due to nitrogen leaching could explain the
effect on GPAI of the latter modality. The spectroradiometer
data are currently used to extract common vegetation indexes
(as NDVI, MCARI2, or MTCI). These vegetation indexes
are complementary and used differently depending on the
phenological stage. They can be related to yield components
and nitrogen content (Dash and Curran, 2004; Walsh et al.,
2018) as it was reported here with the correlation between
the MTCI AUC and the nitrogen grain yield (Figure 13).
Such indexes could, as the MTCI, discriminate the response
of wheat varieties to stress and so, explain varietal behaviors
(Basso et al., 2016).

In addition to temporal analyses, curves parameters whether
they are directly read on a drawn curve direct or calculated from
a fitted curve, could also be an alternative way of analyzing data
in high throughput phenotyping systems. Nevertheless, stress
indicators such as areas under the curve shown previously,
appear to be more relevant than using point values to explain
performance from high-throughput phenotyping data.

It seems that these variables that describe the behaviors
of varieties will enrich breeding methodologies in order to
accelerate genetic progress especially given the predictions
that climate change will bring about more drought and heat
stress in the majority of wheat environments (Barros et al.,
2014). High throughput phenotyping (HTP) is particularly
fast compared to manual measurements and provides a non-
destructive method for accessing physiological and biochemical
trait responses to environmental conditions (Araus et al.,
2018) at each development stage. The development of the
HTP system has originally focused on measurements of large
numbers of plants in controlled environments. This approach
provided advanced knowledge of the plants’ physiological
processes. Nonetheless, studying plant responses in controlled
environments representing field environments has well-known
limitations (White et al., 2012). So, developing a field platform
like the PhénoField R© platform represents a novel type of tool
dedicated to assess the responses of crops to stress scenarios by
using the HTP techniques in the field.

CONCLUSION AND OUTLOOK

As shown with 2017 dataset, the automated movement of the
8 rainout shelters demonstrated its performance to control
water and nitrogen deficiency on bread winter wheat field
trials without other significant impact on the trial environment.
This data set is limited on genotype number to perform 3
replicates and 4 stress conditions. PhénoField R© platform, with
its large plot capacity, could also provide genetics’ field trials
with more than 300 genotypes under sole drought conditions
and enhance knowledge on physiological analyses, varieties
tolerance evaluation or genomic regions controlling these
complex traits. 2017 was the 1st year using field HTP with a
data-processing pipeline that still has to be improved. However,
it showed promising results, especially with the dynamics of
sensor traits allowing the calculation of relevant indicators of
abiotic stresses.

The actual set of sensors allows testing of many traits
and new parameters to select the best way to discriminate
modalities as varieties under nitrogen or water deficiency. The
possibilities to analyze the 2017 data set are really important
and we are aware that only a small part was explored in
this paper. Nevertheless, our first objective was to demonstrate
the PhénoField R© platform’s capacity to efficiently conduct the
test protocols (intensity and duration of stress). Conducting
trials on field HTP induced significant soil environment
genotype interactions and, mapping the spatial variation of soil
characteristics (as well as WHC soil resistivity) is essential for
incorporating field variability into crop management and for
the interpretation of experimental results. Acquisition of field
phenotyping data is now a well-established process, allowing
weekly data registration from spectroradiometers, LiDARs and
RGB cameras. Acquisition of measurements for the entire
platform amounts to about 100 GB per day and only a minor
part of it is used to calculate the height, GPAI or vegetation
index presented here. In future publications, we will explore
more in details curve parameters in regards to agronomic
data. Moreover, since 2018, the inversion of radiative models
available in PhénoField R© data processing chain allows access
to the chlorophyll content, which is even more relevant than
the vegetation indexes in qualifying nitrogen stresses. Indeed,
the calculation of the commonly used vegetation indexes
only used 1% of the available spectra and exploitation of
other wavelengths could highlight other physiological processes
(Araus et al., 2018).

PhénoField R© is also a platform acting as a field HTP
reference used to calibrate and develop innovative phenotyping
tools such as the set-up of new sensors. Thus, measurements
by drones can be compared to the acquisition of gantries.
Drones will allow complementary sampling to intercept
diurnal variation and data acquisition faster than with
embedded sensors and could be applied on multiple
experimental sites. Alternatively, root phenotyping techniques
such as Minirhizotrons, using scanner-based methods,
could be tested in parallel with gantry measurements
in order to access correlated traits between root and
above-ground biomass.

Frontiers in Plant Science | www.frontiersin.org 15 July 2019 | Volume 10 | Article 904

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00904 July 13, 2019 Time: 15:29 # 16

Beauchêne et al. PhénoField R©, Field HTP Platform

Indeed, PhénoField R© is connected to other HTP platforms in
order to enhance knowledge on genotyping using environment
interactions. As part of the PHENOME-EMPHASIS/France
network, PhénoField R© is highly connected to other French field
platform like Pheno3C (INRA, Clermont-Ferrand), but also
to controlled platform like PhenoArch (INRA Montpellier).
Phénomobile which consists of field mobile HTP robots and
ALPHI (A Light Innovant PHenotyping), a system using a
boom and a tractor with inbuilt sensors, are also used in the
same network4. Such connections between these tools involve a
common sensor set, an identical processing data chain and a large
amount of data to handle and offer huge possibilities for breeding
or other research programs.
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