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Dynamic global vegetation models (DGVMs) suffer insufficiencies in tracking biochemical
cycles and ecosystem fluxes. One important reason for these insufficiencies is that
DGVMs use fixed parameters (mostly traits) to distinguish attributes and functions
of plant functional types (PFTs); however, these traits vary under different climatic
conditions. Therefore, it is urgent to quantify trait covariations, including those among
specific leaf area (SLA), area-based leaf nitrogen (Narea), and leaf area index (LAI) (in
580 species across 218 sites in this study), and explore new classification methods that
can be applied to model vegetation dynamics under future climate change scenarios.
We use a redundancy analysis (RDA) to derive trait–climate relationships and employ
a Gaussian mixture model (GMM) to project vegetation distributions under different
climate scenarios. The results show that (1) the three climatic variables, mean annual
temperature (MAT), mean annual precipitation (MAP), and monthly photosynthetically
active radiation (mPAR) could capture 65% of the covariations of three functional traits;
(2) tropical, subtropical and temperate forest complexes expand while boreal forest,
temperate steppe, temperate scrub and tundra shrink under future climate change
scenarios; and (3) the GMM classification based on trait covariations should be a
powerful candidate for building new generation of DGVM, especially predicting the
response of vegetation to future climate changes. This study provides a promising route
toward developing reliable, robust and realistic vegetation models and can address a
series of limitations in current models.

Keywords: trait covariations, trait–climate relationships, Gaussian mixture model, vegetation modeling,
vegetation sensitivity

INTRODUCTION

Vegetation determines the fluxes of energy and water and the variation in CO2 to and from
terrestrial ecosystems (van Bodegom et al., 2014). As an essential tool in vegetation modeling,
dynamic global vegetation models (DGVMs, see Prentice and Cowling, 2013) typically use fixed
values to distinguish differences in the structure and function of plant functional types (PFTs) and
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do not permit these traits to vary or adapt in time and space.
However, these traits not only vary but also generally show
more variation within PFTs than between PFTs (Cunningham
and Read, 2002; van Bodegom et al., 2012). A growing number
of studies have rejected PFT classifications because of their
insufficiency in describing continuous variation in traits in nature
and its low accuracy in modeling ecological processes (van
Bodegom et al., 2012; Pavlick et al., 2013; Yang et al., 2015).
Ecologists and modelers have attempted to find new methods to
improve or replace the PFT framework in DGVMs. One of the
most feasible methods is using the relationships between plant
functional traits and climate to replace the fixed values of PFTs.
Therefore, it is urgent to discuss trait covariation (providing
continuous trait variation for ecological processes in the next
generation of trait-based DGVM) and the relationships between
traits and vegetation types (an important output of trait-based
DGVM), especially under future climate scenarios.

Considerable progress has been achieved toward improving
the framework of current DGVMs or modeling vegetation
distributions based on trait–climate relationships. To overcome
the limitations that arise due to fixed or constant traits in PFTs,
Verheijen et al. (2013) allowed three key functional traits to vary
within PFTs via trait–climate relationships, which enabled more
variation in vegetation responses to be included in DGVMs.
Pavlick et al. (2013) simulated the performances of a large
number of random plant growth strategies, each depicted by a set
of 15 traits that represent various ecosystem functions including
carbon allocation, ecophysiology, phenology and vegetation
dynamics. Similarly, Scheiter et al. (2013) presented a trait-
and individual-based vegetation model that permitted individual
plants to adopt a combination of trait values. Another individual-
and trait- based DGVM, the Lund-Potsdam-Jena managed model
with flexible individual traits (LPJmL-FIT), incorporates five
traits to describe the performance of trees and achieves a
more realistic representation of functional diversity at a regional
scale (Sakschewski et al., 2015). Although these approaches
have been criticized because some traits are not measurable
or because of weak trait–environment relationships, they have
provided different perspectives on the construction of new trait-
based DGVMs.

It is widely recognized that modeling the vegetation
distributions with Gaussian Mixture Models (GMMs) based on
plant trait covariations is indispensable for our understanding
of climate change impacts on ecosystems and it is a key output
of the new generation of DGVMs (Sitch et al., 2008; van
Bodegom et al., 2014). This method has been successfully applied
in modeling vegetation distributions under historical climate
conditions (Yang et al., 2016), although the response of vegetation
to future climate scenarios for China based on the method of
co-located trait–climate relationships remains unclear.

In this paper, we examined a suite of leaf traits using co-located
measurements and quantified the contributions of climate to
predict the vegetation distribution in China. Our analysis was
based on an extensive data set (Geng et al., 2017; Wang et al.,
2018). We focused on three leaf traits, i.e., leaf area index
(LAI), specific leaf area (SLA), and leaf nitrogen per unit area
(Narea), which together capture many functions of plants, such

as carbon investment, photosynthetic ability, and sustaining the
leaf temperature (Wright et al., 2004, 2017). We performed
multivariate analysis to quantify the co-located trait–climate
relationships; then, we trained a GMM with corresponding trait–
vegetation relationships; and finally, we examined the response
of vegetation to a changing climate. The objectives of this study
were to (1) quantify the trait covariations resulting from climate,
(2) investigate the relationships between vegetation types and
trait covariations, and (3) predict the distribution and response
of vegetation to changing climatic conditions.

MATERIALS AND METHODS

Study Area
China contains a wide range of vegetation types, from tropical
rainforest to boreal coniferous forests and alpine vegetation
(Figure 1; Hou, 2001). China is home to more than 33,000
vascular plant species and among the world’s richest countries
in terms of plant biodiversity (López-Pujol et al., 2006). Annual
average temperatures range from −21.0◦C to 26.0◦C and increase
from north to south. Annual precipitation ranges from 0 to
2250 mm and decreases from southeast to northwest. A steep
climate gradient and abundant plant species make China an ideal
region to analyze the response of vegetation to changing climates.

Leaf Traits and Site Distributions
We selected two plant functional traits [SLA (m2/kg) and Narea
(g/m2)] and one structural trait of plant communities (LAI) in
this study. From 2003 to 2013, we collected 1,192 functional trait
observations from 580 species across 218 sites (Geng et al., 2017;
Wang et al., 2018), which occupied the main climate space in
China (Figure 1 and Supplementary Table S2) and the dominate
species in the sampling sites were selected. The sampling sites
could be classified into seven main regions. The northernmost
region was Mohe and the main vegetation types was boreal forest.
Sites from Changbai to Inner Mongolia were distributed across an
aridity gradient (Prentice et al., 2011). Sites from Inner Mongolia
were distributed along the 400 mm equivalent precipitation line
(Geng et al., 2017). The northwestern sites were distributed
in Mount Altai and Mount Tian in the Xinjiang Autonomous
Region. The southwestern sites were located in Xishuangbanna
(XSBN) and the main vegetation types are subtropical and
tropical forests.

Leaf area (LA) is a key trait that links plant form, function,
and environment (Blonder et al., 2012). LA determines light
interception and LA differences are associated with variations
in within-leaf support investment and determine leaf chemical
and structural characteristics (Niinemets et al., 2007). We used
continuous records for LAI from 8-day Moderate Resolution
Imaging Spectroradiometer (MODIS) data (MOD15A2, 549
periods) to replace the LA; these data were averaged, and
the effect of cloud-contaminated or aerosol-contaminated
reflectance was removed using the methods proposed by
Myneni et al. (2007).

Specific leaf area is the ratio of LA to dry mass and represent a
key index variable of the leaf economic spectrum (LES) through
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FIGURE 1 | Geographical and climatic coverage of the trait dataset. The individual sites are shown as red dots superimposed on a simplified vegetation map of
China; these sites have been grouped into seven named regions (Hou, 2001).

its inverse relationship with leaf longevity (Wright et al., 2004).
High-SLA leaves have a low investment cost but are also short
lived and susceptible to herbivory, while low-SLA leaves are
robust but expensive to construct (Coley et al., 1985). Narea has
often been considered an index of photosynthetic capacity, has
been shown to vary with climate and is generally high in more
arid environments (Wright et al., 2002, 2004, 2005; Prentice et al.,
2011; Dong et al., 2017). The average values of SLA and Narea
were calculated for all species in each site without consideration
of species abundance.

Climate Data
For future climates, a set of scenarios known as Representative
Concentration Pathways (RCPs) have been widely adopted
by climate and ecology researchers to provide a range of
possible futures for analyzing vegetation dynamics (Moss et al.,
2010; Gao et al., 2016). RCPs were used for new climate
model simulations under the framework of the Coupled Model
Intercomparison Project Phase 5 (CMIP5) of the World Climate
Research Programme (Stocker et al., 2013). Compared with
previous scenarios, RCPs consider more changing information
needed by policy makers (Moss et al., 2010), and the projected
global mean surface temperature increases range from 1.5◦C
by 2100 for the lowest of the four RCPs (RCP3-PD and
RCP2.6) to 4.5◦C for the highest one (RCP8.5) (Meinshausen
et al., 2011). The lowest, medium and highest RCPs, namely

RCP2.6, RCP4.5, and RCP8.5 respectively, were selected in this
study (Table 1).

Three earth system models, IPSL-CM5A-MR, MPI-ESM-MR,
and NorESM1-M (Supplementary Table S1) were selected, and
the climatic data were downloaded from the CMIP5 website1.
These data included the mean annual temperature (MAT,
◦C), mean annual precipitation (MAP, mm/day) and monthly
photosynthetically active radiation (mPAR, W · m−2

· day−1).
mPAR was calculated by SPLASH v1.0 (Davis et al., 2017)
with surface down-welling shortwave radiation (rsds) data.
All the climatic data were interpolated into 0.085◦

× 0.085◦

with the tools in ANUSPLIN4.4 (Hutchinson and Xu, 2013).
To adjust the bias of future climate models, anomalies were
calculated as the differences between the model’s data from
2006 to 2014 and historical data from 2006 to 2014. A time
series of future climate was produced by subtracting the
anomalies (Figure 2). This strategy preserved the continuity and
stability between the future model’s data and the historical data
(Cramer et al., 2001).

For historical climatic data between 1987 and 2014, the
MAT and MAP were derived from 756 meteorological stations
and interpolated toa 0.085◦

× 0.085◦ resolution (approximately
10 km) using ANUSPLIN4.4. mPAR was extracted from a dataset
of reconstructed PAR in China (Tang et al., 2017), which has a

1https://esgf-node.llnl.gov/projects/cmip5/
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TABLE 1 | Information on the RCPs used in this study.

Type Radiative forcing Concentration (ppm) Trends Model and providing
institute

Increase in global mean
temperature change for 2081–2100

relative to 1986–2005

RCP2.6 Peak at ∼3 W m−2

before 2100 and then
decline

Peak at ∼490 CO2

equivalents before
2100 and then decline

Peak and then
decline

IMAGE, NMP1 0.3∼1.7◦C

RCP4.5 ∼4.5W m−2 at
stabilization after 2100

∼650 CO2 equivalents
and then stabilization
after 2100

Stabilization
without overshoot

GCAM, PNNL2 1.1∼2.6◦C

RCP8.5 >8.5 W m−2 in 2100 >1370 × 10−6 CO2

equivalents in 2100
Rising MESSAGE, IIASA3 2.6∼4.8◦C

1 IMAGE, Integrated Model to Assess the Global Environment, Netherlands Environmental Assessment Agency, Netherlands. 2GCAM, Global Change Assessment Model,
Pacific Northwest National Laboratory, United States. 3MESSAGE, Model for Energy Supply Strategy Alternatives and their General Environmental Impact, International
Institute for Applied Systems Analysis, Austria.

FIGURE 2 | Anomaly of mean annual temperature (A, MAT), mean annual precipitation (B, MAP), and monthly photosynthetically active radiation (C, mPAR) from
2006 to 2100. The blue line stands for RCP8.5, the red line stands for RCP4.5, and the green line stands for RCP2.6. The shadows stand for the 95% confidence
intervals.
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high accuracy because it is derived from observed meteorological
data and MODIS aerosol optical depth (AOD) data and calibrated
by data from 39 ChinaFLUX sites.

Redundancy Analysis and Trait
Prediction
Redundancy analysis (RDA) is a method of extracting the
variation in a set of response variables that can be explained by
a set of explanatory variables (Borcard et al., 1992). Through
calculating eigenvectors and eigenvalues of the covariance matrix
of the combination of response variables and explanatory
variables, information concerning a number of constrained
axes (RDA axes) and unconstrained axes (principal component
axes) can be obtained. The constrained axes represent the
part of the response variables (trait here) explained by the
explanatory variables (climate here), which can be used to
predict trait variations under future climate scenarios. Traits
were only measured in the dominant species. The SLA and
Narea values were the averaged values for a species, and the
LAI value is the average value at the community level. The
three climatic variables were represented by the average values
at the sampling sites.

GMM Classification and Simulation
Steps
Gaussian functions and their combinations are widely applied in
bio-statistics to describe complex distributions and classifications
(for algorithm details, see Witte et al., 2007 and Yang et al.,
2016). Once Gaussian density distributions are ascertained
in the discriminant classification, we can easily obtain the
classification probability associated with each class. A GMM
is a combination of several Gaussian components that do not
require any arbitrary and potentially restrictive assumptions in
the form of probability density functions, and it is an effective
vegetation classifier in trait-based modeling (Laughlin et al., 2015;
Yang et al., 2016).

A GMM was employed and revised in this study (Witte
et al., 2007; van Bodegom et al., 2014; Yang et al., 2016).
Several steps were taken (Supplementary Figure S1): (a) a RDA
was conducted, and trait–climate relationships were built (¬);
(b) a GMM was trained by the relationships between traits
and vegetation types and then validated by natural vegetation
maps (∼®);(c) future trait patterns were calculated based
on the trait-climate relationships from the RDA (¯); and (d)
taking the predicted future traits as inputs, the future vegetation
distributions were obtained by the GMM classifier (°∼±).

Climate was one of most important drivers of trait variations
(Yang et al., 2019), and trait values were always considered to
filter the results of climate changes (Webb et al., 2010). Compared
with single trait variations, trait covariation showed a trade-
off among traits under changing climatic conditions. On the
one hand, trait covariations determined the ecosystem structure
and function of ecosystems, which would provide more credible
parameters for the ecosystem processes than the fixed ones, on
the other hand, trait covariation can simultaneously provide
reasonable ranges for each vegetation type, which would help us

to classify the trait combinations into different vegetation types
using trained GMM.

RESULTS

Comparisons of Three Climate Scenarios
The three RCPs differed greatly in temperature, which was
highest in RCP8.5, especially after 2050, followed by that
in RCP4.5 and RCP2.6 (Figure 2A). The variations in
temperature increased considerably before 2050. After 2050, the
temperature in RCP8.5 showed a continuous increasing trend.
The temperature in RCP2.6 was relatively stable after 2050,
and the temperatures in RCP4.5 remain intermediate between
those in RCP2.6 and RCP 8.5. Among the three climate models,
NorESM1-M had the highest temperature values under RCP2.6
and RCP4.5, followed by IPSL-CM5A-MR and MPI-ESM-MR;
however, the temperature in IPSL-CM5A-MR was higher than
that in the two other models under RCP8.5.

The annual mean precipitation did not differ greatly
among the four climate models (Figure 2B). The annual
mean precipitation was 611 mm under RCP2.6, 626 mm
under RCP4.5, and 648 mm under RCP8.5. Under the
three climatic scenarios, NorESM1-M had the highest
annual mean precipitation, followed by MPI-ESM-MR
and IPSL-CM5A-MR. The annual mean precipitation
increased from 2006 to 2040 and remained relatively
stable during 2041–2100. For precipitation, mPAR was
relatively stable from 2006 to 2020 and then quickly
increased from 2020 to 2030 before finally stabilizing at a
relatively high level (Figure 2C). Under RCP2.6 and RCP4.5,
NorESM1-M presented the highest mPAR, followed by
MPI-ESM-MR and CanESM2. Under RCP8.5, IPSL-CM5A-
MR had the highest mPAR, followed by MPI-ESM-MR
and NorESM1-M.

Linking Trait Covariations Into the
Prediction of Vegetation Distributions
The three climatic variables explained 65% of the trait variation
(Table 2). The first two successive RDA axes (Figure 3) described
the patterns of trait variation with climate, and showed the
between-site patterns of trait covariation imposed by climatic
gradients. The first RDA axis was overwhelmingly dominant
and related to the gradient of PR from steppe to moist
forests. The LAI varied along this gradient, with large leaves
characteristic of wetter environments. The second RDA axis
accounted for 2% of trait variation and was related to the
covariation of the mean growing-season temperature and daily
temperature along the latitudinal gradient from the boreal zone
to the tropics. Trait variation on this axis resembled that of
the LES: warmer, high-irradiance climates were characterized
by plants with lower SLA and higher Narea than plants in
low-irradiance climates. The third RDA axis explained little
trait variation.

The RDA showed that climate was the major determinant of
trait variation for most of the traits examined. At the species
level, the calibrated accuracy (adjusted R2 between observed
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TABLE 2 | Trait loadings, eigenvalues, and the percentage of trait variation
explained by successive RDA axes (constrained by climate) and residual
principal components.

RDA1 RDA2 RDA3 PC1 PC2 PC3

ln SLA −0.118 −0.699 0.706 −0.600 0.150 0.786

ln Narea 0.282 0.658 0.699 0.733 −0.290 0.615

ln LAI −0.952 0.281 0.120 −0.320 −0.945 −0.064

Eigenvalue 1.393 0.047 0.000 0.437 0.211 0.097

Explained (%) 62.640 2.217 0.000 20.090 9.937 4.594

Cumulative (%) 62.640 64.860 64.860 85.470 95.406 100

Loadings >0.5 in magnitude are shown in bold.

and predicted values) was satisfactory at 0.16 for SLA, 0.3
for Narea, and 0.84 for LAI (Supplementary Figure S2). The
average adjusted R2 across traits was 0.43, which was higher
than that obtained by Yang et al. (2019). Once the climatic
variables were corrected for, we could predict the trait variation
based on the trait–climate RDA relationships. We predicted the
historical trait distributions with the climatic data from 2006
to 2014 (Supplementary Figure S3). Classified by vegetation
types (Figure 4), tropical, subtropical and temperate forests had
high SLA values, while tundra and alpine steppe usually had
low SLA values. Alpine steppe, tundra and temperate steppe
had higher Narea values, and tropical and subtropical forests
had lower Narea values. Tropical and subtropical forests had a
higher LAI, while temperate steppe and alpine steppe had a lower
LAI. The vegetation types were characterized by different trait
combinations, which make it possible to classify trait prediction
values into different vegetation types with the help of GMM.

Vegetation Distributions in the Three
RCPs
For the GMM-based discriminant analysis, the distribution of
vegetation derived from a natural vegetation map, together with
the predicted historical trait patterns, were used to train the
GMM classifier. Once the GMM density function was confirmed,
the probability layers of each vegetation type were obtained
according to the Gaussian density functions. The SLA-Narea-
LAI combination had a high accuracy in predicting vegetation
distributions, and its overall accuracy was 75.14% and kappa
coefficient was 69.27%. Desert and water (no vegetation region)
were masked in this study. The optimal classification by the
GMM and its comparison with a natural vegetation map are
shown in Supplementary Figure S4. The good performance of
the GMM made it possible to predict the vegetation distributions
under different climate conditions.

Vegetation exhibits differently responses to climate change
(Figure 5A). Under RCP2.6, the area of the tropical forest
complex increases in the three periods (Figure 5B). Compared
with the current vegetation distributions (Supplementary
Figure S4A), the subtropical forest complex also shows an
increasing trend during the three periods, although as time
passes, the increase weakens. Similar to the temperate forest
complex, the area of boreal and alpine forests changes little
compared with the historical vegetation distributions. Temperate

FIGURE 3 | Climate-related trait dimensions from the redundancy analysis:
gray circles are species-site combinations and colored dots signify named
regions as defined in Figure 1. The traits are SLA, specific leaf area; Narea,
leaf nitrogen per unit area; and LAI: leaf area index. The climatic variables are
mean annual temperature (MAT), daily precipitation (MAP), and monthly
photosynthetically active radiation (mPAR) (in color).

scrub and temperate steppe decrease slightly with time. Alpine
steppe expands north, causing rapid tundra shrinkage.

Under RCP4.5, the tropical forest complex shows an obvious
deceasing trend (Figure 5C) and is replaced by the subtropical
forest complex. Both the subtropical forest complex and
temperate forest shift north show an increasing trend in the area.
Boreal forest shrinks as time passes and alpine forest first expands
and then decreases in area from 2051 to 2075. Temperate scrub
and temperate steppe shrink during all three periods. The area of
temperate steppe changes little during the three periods. Similar
to the patterns observed under RCP2.6, alpine steppe shifts north,
causing tundra to shrink quickly and shift north.

Under RCP8.5, tropical forest shifts north, although its area
changes little. From 2076 to 2100, the area of tropical forest
increases by nearly 30% (Figure 5D). The subtropical forest
complex shifts north and always expands rapidly. Temperate
forest also expands, but its rate of increase is much lower than that
of the tropical forest complex. Boreal forest, which is located in
northeastern China, almost disappears in this scenario, although
the alpine forest occupies a larger area on the Tibetan Plateau,
causing the shrinkage of alpine steppe and tundra.

Among the three climatic scenarios, the subtropical forest
complex, temperate forest and alpine steppe all show an
increasing trend, while temperate scrub, temperate steppe and
tundra show a decreasing trend. The most obvious increase
occurred in the subtropical forest because it is broadly adapted
to warm and humid climatic conditions, while tundra is the
most sensitive vegetation type under such conditions. The most
dramatic changes in vegetation distributions occur under the
RCP8.5, for which the average rate of change reaches 25.20%,
followed by RCP4.5 (22.10%) and RCP2.6 (16.50%).
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FIGURE 4 | Trait statistics for each vegetation type. The box depicts the 25th, 50th, and 75th percentiles, and the top and bottom lines stand for the range (the
whiskers). The gray circles stand for the outliers. (1) Tropical forest complex; (2) Subtropical forest complex; (3) Temperate forest complex; (4) Boreal and alpine
forests; (5) Temperate scrub; (6) Temperate steppe; (7) Alpine steppe; and (8) Tundra.

DISCUSSION

Linking the Trait Covariations Into
Changes of Vegetation Distribution
Our simulations focused on trait variations (especially trait
covariations) and vegetation distributions. We first predicted
the trait covariations based on the trait–climate corresponding
relationships and then classified the trait combinations into
different vegetation types. This method had been validated by
several studies (van Bodegom et al., 2014; Yang et al., 2016), and it
has been improved in two aspects: one was that trait covariations
were used in this study to provide more information about plant
strategies, e.g., tundra vegetation simultaneously had the highest
Narea and low SLA, indicating its high photosynthetic capacity
and expensive investment in leaf construction; the other aspect
was that the GMM could quantify the relationships between
continuous trait changes and vegetation types and improve the
classification accuracy for each vegetation type. Previous studies
have focused on vegetation sensitivity under future climate
scenarios and our results showed high consistency with these

former studies (Wang et al., 2013; Yang et al., 2016);
for example, both tropical forests and subtropical
forests shifted to the north under the scenarios in
which temperature increased, and the area of the boreal
forest and tundra decreased. Although the vegetation
distributions and PFTs were not necessary in the process of
ecological models, they were still important outputs of the
vegetation dynamic model.

Ecological and Modeling Significance of
Leaf Traits
Our analyses of leaf traits, including the SLA, Narea, and
LAI, could be treated as two important dimensions of
trait covariation (Yang et al., 2019). The three plant traits
used in this study have important ecological and modeling
significance. SLA and Narea are included in the universal leaf
economic spectrum. SLA is an essential variable in vegetation
models because it determines the relationship between the
LA available for light interception and photosynthesis and
the amount of photosynthate required for leaf construction
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FIGURE 5 | (A) Projected vegetation patterns under different representative concentration pathways (RCPs) during three different periods. (B–D) Proportion of
vegetation area changes under RCP2.6, RCP4.5 and RCP8.5 compared with an historical vegetation map (Supplementary Figure S4A). (1) Tropical forest
complex; (2) Subtropical forest complex; (3) Temperate forest complex; (4) Boreal and alpine forests; (5) Temperate scrub; (6) Temperate steppe; (7) Alpine steppe; (8)
Tundra; and (9) No vegetation (masked).

(Niklas et al., 2007). Compared with the leaf N concentration
per unit mass (Nmass), Narea can be expressed more accurately
as the sum of a metabolic component proportional to
photosynthetic capacity and a structural component proportional
to the leaf mass per area (LMA, LMA = 1/SLA) (Dong
et al., 2017). Narea is a key variable for modeling because
it determines the N demand of leaf construction. This
variable is represented in many recent vegetation models
that include an interactive N cycle (Zaehle et al., 2014;
Stocker et al., 2016). The LES reflects the linkage between
high construction costs and long payback times of leaves
with low SLA (McMurtrie and Dewar, 2011; Funk and
Cornwell, 2013). More broadly, the LES is a universal feature
of functional diversity within communities (see e.g., Hallik
et al., 2009; Pierce et al., 2013) and as such, should be
represented in models.

The LAI, which is equally significant to the LA, is expected to
increase with precipitation and temperature due to energy-
balance constraints (Wright et al., 2017). According to
these constraints, leaf temperature is usually lower than air
temperature under warm, well-watered, mid-day conditions
(Tair between 25 and 30◦C); otherwise, leaf temperature is
higher than air temperature. At night, leaf temperature is
usually lower than air temperature. By specifying the lower
and upper thermal limits for leaf damage, we can predict
the maximum LA in any climate. LA is an important target
for modeling because (a) it contributes to the determination
of the temperature at which photosynthesis, respiration

and evaporation from the leaf surface take place, and (b)
it climatically determines shifts in leaf size that should
be linked to major changes in community composition.
Three traits are co-located and present trait covariations
effectively, which is important information for balancing traits
in vegetation modeling.

Challenges and Future Directions
This work highlights two challenges for modeling. The
first is the “challenge of predictability” – the extent to
which trait values can be predicted from independent
information, including environmental factors and/or others.
Recent research has mainly focused on the prediction
of community-mean trait values. In fact, some trait
variation, even in such a climatically wide-ranging data
set, is not predictable by climate alone, and some other
factors, such as site microclimate, life form, and family
(phylogeny), are also important contributors to the trait
variations (Yang et al., 2019). Nonetheless, climate emerges
as a powerful control that allows empirical trait–climate
relationships derived from data in China to be applied globally
(Yang et al., 2019).

The second modeling challenge is the “challenge of functional
diversity.” Trait-based models can represent the co-existence
of multiple trait combinations. Moreover, this diversity
confers increased resilience in model communities in the
face of environmental change (Sakschewski et al., 2016). The
challenge is to find a generally applicable method to specify
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the range of allowable trait combinations that is
consistent with observed patterns of trait variation
within sites. Ultimately, vegetation models should be
able to predict, for example, experimentally determined
relationships between species diversity and ecosystem
function (e.g., Isbell et al., 2015), although this potential has
yet to be realized.

CONCLUSION

In conclusion, trait-based vegetation modeling provides a
promising route toward ecosystem and land-surface models
that are “reliable, robust, and realistic” (Prentice et al.,
2015), and it can tackle a wider range of scientific questions
than current models. Field measurements of key traits are
valuable in providing information for trait-based model
development, although despite the availability of large plant-
trait data compilations (e.g., Kattge et al., 2011), the number
of sites that include all of any specified set of plant traits
is often disappointingly small because different groups
typically collect data on different sets of traits. A limited
amount of comparative work has been performed, such as
on photosynthetic traits that are particularly important for
vegetation modeling. Moreover, there remains a need for
more extensive and co-located collections and analyses of
plant functional traits (notably, stem hydraulic properties),
which may be equally important for functional ecology and
vegetation modeling.
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