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Forest carbon density is an important indicator for evaluating forest carbon sink
capacities. Accurate carbon density estimation is the basis for studying the response
mechanisms of forest ecosystems to global climate change. Airborne light detection
and ranging (LiDAR) technology can acquire the vertical structure parameters of
forests with a higher precision and penetration ability than traditional optical remote
sensing. Combining top of canopy height model (TCH) and allometry models, this
paper constructed two prediction models of aboveground carbon density (ACD) with
94 square plots in northwestern China: one model is plot-averaged height-based power
model and the other is plot-averaged daisy-chain model. The correlation coefficients (R2)
were 0.6725 and 0.6761, which are significantly higher than the correlation coefficients
of the traditional percentile model (R2 = 0.5910). In addition, the correlation between
TCH and ACD was significantly better than that between plot-averaged height (AvgH)
and ACD, and Lorey’s height (LorH) had no significant correlation with ACD. We also
found that plot-level basal area (BA) was a dominant factor in ACD prediction, with
a correlation coefficient reaching 0.9182, but this subject requires field investigation.
The two models proposed in this study provide a simple and easy approach for
estimating ACD in coniferous forests, which can replace the traditional LiDAR percentile
method completely.

Keywords: LiDAR, AGB, ACD, allometry model, NPC, CHM, TCH

INTRODUCTION

Forest carbon storage accounts for 82.5% of terrestrial vegetation carbon storage, which is the main
component of the vegetation carbon sink (Cusack et al., 2014; Kauranne et al., 2017). Accurate
calculations of forest carbon stocks are a hot topic in the field of forest carbon sink research. At
present, large-scale estimations of forest carbon sinks are mainly realized by means of traditional
optical remote sensing. Generally, the relationship between field survey data and remote sensing
extraction parameters is established first and then extrapolated to the whole research scope; this
technique is essentially remote sensing-assisted sampling surveying (Drake et al., 2003; Chi et al.,
2017; Koju et al., 2018).

Frontiers in Plant Science | www.frontiersin.org 1 July 2019 | Volume 10 | Article 917

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2019.00917
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2019.00917
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2019.00917&domain=pdf&date_stamp=2019-07-10
https://www.frontiersin.org/articles/10.3389/fpls.2019.00917/full
http://loop.frontiersin.org/people/627903/overview
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00917 July 10, 2019 Time: 14:1 # 2

Hao et al. Estimating the Aboveground Carbon Density

Traditional optical remote sensing can extract the spectral
information and horizontal structure information of vegetation.
However, with increasing biomass, saturation occurs easily,
which affects the estimation accuracy of forest carbon storage
(Zhao et al., 2016). Light detection and ranging (LiDAR) detects
the distance between a sensor and target by emitting laser pulses
and receiving reflections from the ground object. Thus, LiDAR
can acquire high-precision three-dimensional information of the
object. Furthermore, LiDAR has a certain penetrating ability and
can obtain vertical structure information of forests, improving
the estimation accuracy of forest height and structure and forest
carbon storage (Dubayah and Drake, 2000; Naesset and Bjerknes,
2001; Hudak et al., 2002; Gwenzi and Lefsky, 2014).

With the big-data progress and increasing storage space in
recent years, airborne LiDAR has become an important means of
forest resource surveys and carbon storage research (Guo et al.,
2017; Swetnam et al., 2017). Data processing methods are mainly
divided into plot-based inversion and individual tree-based
inversion. However, due to the large number of trees, complex
spatial structure of forests and canopy shielding effect, single-
tree segmentation algorithms are not yet mature. Therefore,
developing plot-based inversion methods is indispensable (Ayrey
et al., 2017; Dechesne et al., 2017).

There are two main approaches for the estimation of carbon
density based on plots. One approach is the use of a variety
of machine learning algorithms to establish the relationship
between measured carbon density and LiDAR percentile metrics,
which can make full use of the information contained in the
point cloud to obtain increasing precision (Zhao et al., 2011;
McRoberts et al., 2016). However, the modeling process is a black
box operation, and the prediction results are difficult to explain.
The other approach is the establishment of LiDAR inversion
models directly based on allometry models (Mascaro et al., 2011;
Asner and Mascaro, 2014). The premise of this method is that
there is a similar allometric growth law for plot-level biomass
and single-tree biomass. The key to this approach is finding
the appropriate allometric growth model and the corresponding
LiDAR extraction parameters.

A multiple linear regression model based on LiDAR
percentiles is a popular method for estimating forest carbon
density or biomass, which is widely used and has acceptable
precision in different forest area (e.g., Boudreau et al., 2008;
Zhao et al., 2009; Ferraz et al., 2016; Jimenez-Berni et al.,
2018). Among them, Naesset and Gobakken (2008) explained
88% variation in aboveground biomass (AGB) and 85%
belowground biomass using LiDAR derived variables in boreal
forest (1395 circular sample plots with size 200–400 m2);
Levick et al. (2016) used similar methods to obtain the
fitting accuracy of 92% in 1 ha plots and 68% in 0.05 ha
plots in temperate forest; Cao et al. (2016) established two
regression models for estimating the AGB using multi-temporal
LiDAR data of subtropical forest with R2 of 0.74 and 0.79
in 0.09 ha plots, respectively; Dubayah et al. (2010) estimated
AGB in tropical forest with an R2 of 0.90 in 0.5 ha plots.
Previous studies have demonstrated that the accuracy and
form of percentiles models are closely related to the LiDAR
instruments (Naesset, 2009; Silva et al., 2017) and plot size

(Maltamo et al., 2011; Mascaro et al., 2011) except for intrinsic
characteristics of forest.

In this study, we attempt to find a simple plot-based
LiDAR extraction parameter, establish allometry models of the
aboveground carbon density (ACD) of the northern coniferous
forest, and evaluate the accuracy of these models. The objectives
of this study are (1) the selection of the best parameter for ACD
prediction from the following three plot-based LiDAR extraction
parameters: top of canopy height (TCH), AVG (plot-averaged
height), and Lorey’s height (LorH); (2) the proposal of direct and
indirect fitting models of TCH and ACD and comparison of their
accuracy and (3) calculation of the ACD of the study area with
the proposed models and comparisons of the results and spatial
distribution characteristics.

MATERIALS AND METHODS

Study Area
The study was conducted 50 km southwest of Zhangye City,
Gansu Province, Northwest China (Figure 1). The study area
is approximately 264 ha, and its centre is at 100◦15′E, 38◦32′N.
The elevation ranges from 2700 to 3200 m, the annual rainfall
is 200 to 500 mm, and the monthly average temperature is 5.4
to 19.6◦C. The main vegetation is natural pure Qinghai spruce
(Picea crassifolia) forest, which has both naturally renewed young
trees and tall over-ripe old trees. The ecoregion classification is
“cascade pure conifer forest.”

LiDAR Data and Processing
The LiDAR data used in this study were acquired on June 2008
using a LiteMapper 5600 instrument that recorded up to five
returns per pulse, along with their intensity. The average flight
altitude was 3560 m, the relative height over ground was 760 m,
and the flight speed was 227 km/h. The laser scanner adopted
RIEGL LMS-Q560, and the wavelength was 1550 nm. The laser
pulse width was 3.5 ns, and the laser pulse divergence angle was
less than or equal to 0.5 mrad. The LiDAR point cloud used the
WGS84 coordinate system and the UTM projection zone 47 in
the northern hemisphere. To increase the point density, the flight
was repeated seven times over the study area with a side overlap of
approximately 90%. As a result, the average point cloud interval
was decreased to 0.54 m, and the average point cloud density
was 3.43/m2.

Subsequently, a set of metrics (Table 1) was derived from
the point cloud using the LAStools software package1. The main
processing steps were as follows: (1) the point cloud was filtered
and classified to ground, trees and noise; (2) the normalized
point cloud (NPC, also referred to as height above ground) was
calculated; (3) height percentiles, density percentiles and canopy
cover (CC) were derived from the NPC corresponding to each
plot; (4) the digital surface model (DSM) and digital elevation
model (DEM)were interpolated from the first echo and the last
echo of the point cloud, respectively. The canopy height model
(CHM) was the difference of the first two. (5) The TCH was

1http://www.lastools.org
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FIGURE 1 | Study area and 94 plots.

extracted from the CHM based on each plot (the mean value of
400 pixels per plot).

In addition, in order to explore the effect of CHM pixel size
on ACD prediction, we generated 10 CHMs from NPC, with
pixel sizes from 1 to 10 m. When the pixel location of CHM
corresponds to a laser point, the point’s height value is used
as the pixel value. If the location corresponds to multiple laser
points, the average value of height is used as the pixel value.
For the pixels without corresponding laser point, inverse distance
weighted (IDW) is adopted for interpolation, which can ensure
smooth transition between the target pixel and surrounding
pixels (Montealegre et al., 2015).

Field Data and Processing
To calibrate and validate the models, the plot data were acquired
simultaneously with the LiDAR data. A total of 94 square plots
(20 m × 20 m), which included 5734 trees, were used. The
four corners and the centre of each plot were measured using
differential GPS (DGPS), and the error was less than 10 cm. For
each tree with a diameter at breast height (DBH) greater than
5 cm, the tree type, diameter, height to crown base, crown width
in cardinal directions, crown class, and crown transparency were
measured. DBH was measured on all trees using a diameter tape,
and the heights of all trees were measured using a laser ranging
hypsometer with theoretical accuracy up to the decimeter level.

TABLE 1 | Metrics derived from LiDAR and field investigation data.

LiDAR Metric Description Origin Source

TCH Top of canopy height of plot CHM (canopy height model)

h25. . .h95 Height percentiles NPC (normalized point cloud)

d25. . .d95 Density percentiles

CC Canopy closure

AvgH Average height of plot Field investigation

LorH Lorey’s height of plot

BA Base area of plot

Considering the canopy occlusion and human error, the average
accuracy of the measured tree height was better than 0.5 m.

Using the species-specific allometry Eqs 1–4 in the study area
(Wang et al., 1998; He et al., 2013), tree biomass components
(stem, branch, foliage and fruit) were calculated from DBH and
height. The AGB of each tree was equal to the sum of the AGB
components and was then summed to obtain the AGB of each
plot. These equations were constructed by destructive sampling
and the fitting precision reached 0.9887, 0.9568, 0.8662, and
0.9340, respectively. Because the study area is a nature reserve
and pure spruce forest with little human disturbance, it is believed
that the field-estimated AGB of this study can also achieve such
accuracy. Finally, the AGB was converted to the ACD using the
conversion coefficient of 0.5034, which was attained using the
potassium dichromate oxidation method on samples by Wang
et al. (2000) in the same area. Additionally, Lorey’s height (LorH;
Table 1) was also calculated based on each plot using Eq. 5, and
the LorH values were compared with the TCH values extracted
from LiDAR. For the same purpose, the average height (AvgH) of
the plots was also calculated.

Biomass_stem = 0.0478×
(
D2
×H

)0.8665 (1)

Biomass_branch = 0.0061×
(
D2
×H

)0.8905 (2)

Biomass_foliage = 0.2650×
(
D2
×H

)0.4701 (3)

Biomass_fruit = 0.0342×
(
D2
×H

)0.5779 (4)

LorH =
∑

BAiHi/
∑

BAi (5)

where D is DBH, H is tree height, BAi and Hi are the basal
area and the height of the ith tree, respectively, and a and b are
regression fitting coefficients.
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Plot Allometry Models
The use of an allometry model is the main means of
forest biomass calculation. This type of model is obtained
by the regression of the sample forest harvesting and tree-
measuring metrics and is a single-tree model for specific
tree species in a specific region. The present work imitates
the form of single-tree models at the plot level to find a
suitable plot-level LiDAR metric to replace traditional tree-
measuring metrics.

An idealized and simple tree allometry equation for special
species is:

AGB = aDb (6)

Since DBH is the most easily accessible and accurately
measurable tree indicator, and there is an intrinsic relationship
between the DBH and tree height, the model is widely used
(Chave et al., 2005).

However, Eq. 6 cannot explain the variability of diameter
and tree height growth caused by tree age, forest density, site
conditions and management measures; the introduction of the
tree height factor is necessary.

AGB = aDb1Hb2 (7)

where H represents the tree height (m), and a, b1, and b2 are
fitted coefficients.

The essence of LiDAR is ranging, which can directly estimate
tree height. Therefore, this paper applies Eqs 6 and 7 to Eqs 8 and
9, which are plot-averaged height-based allometry models, and
fits the equations as follows:

ACD = aHb (8)

ACD = aBA′b1TCHb2 (9)

where ACD represents the aboveground carbon density
(Mg C ha−1), and H represents AvgH, LorH, or BA computed
from field-measured data and TCH extracted from the CHM.
BA’ is the fitted result in Eq. 10.

BA′ = a+ bTCH (10)

Percentile Model
Light detection and ranging is highly sensitive to the three-
dimensional structure of forest, because laser pulses can
penetrate the canopy and then record all echo signals
from the ground to the canopy surface. Therefore,
a series of LiDAR metrics, such as height percentile,
density percentile, variation coefficient, etc., have been
successively extracted to capture key information of forest
canopy (Nilsson, 1996; Lefsky et al., 2002; Naesset, 2002;
Nelson et al., 2004).

In this study, the height and density percentiles
extracted from the NPC were used to regression fit the
ACD calculated from the field investigation data. The
model is as follows, and the independent variables are
described in Table 1. The prediction results of this model

(Eq. 11) were compared with the prediction results of
the allometry models (Eqs 8, 9) proposed in this paper.

lnACD = β0+ β1lnh25+ β2lnh50+ β3lnh75+ β4lnh90+
(11)

β5lnh95+ β6lnd25+ β7lnd50+ β8lnd75+ β9lnd90+

β10lnd95+ β11lnCC+ ε

Model Fitting and Evaluation
All models in this study were fitted by the least squares
(OLS) method (Meng et al., 2018). This method is simple
and reliable, avoiding the algorithm differences of different
fitting methods and making the fitting results more contrasting.
All power models were first converted to a linear model by
natural log transformation for regression fitting to correct both
non-normality and heteroscedasticity. Then, the correlation of
coefficients (R2) and back-log root-mean-squared errors (RMSE)
were employed to compare the performance of the models,
and 10-fold cross-validation analysis was used to evaluate the
stability of the models.

Model Application
The study area was divided into a 20 m × 20 m grid
using GIS software (Figure 2). The size and direction of
the grid were the same as those of the field plots in order
to reduce possible errors. Then, LiDAR parameters were
extracted using each grid from the CHM and NPC and
introduced into the allometry models (Eqs 8, 11) proposed
in this paper for calculation. Thereby, ACD distribution maps
of the study area were obtained, compared and evaluated.
Since there was no point cloud at the boundary of the study
area, grid incompleteness due to cropping did not affect the
final prediction.

RESULTS

Field Investigation Data Analysis
Using the comparison between the simple power-law model
(Eq. 8) of ACD and the three plot-averaged metrics (AvgH,
LorH, and BA)calculated from the field inventory, we found
that the BA explains 91.8% of the variation in ACD, which is
much higher than the 39.5% explained by AvgH and 10.1%
explained by LorH (Table 2), and the convergence of BA
is much better than that of AvgH and LorH (Figure 3),
which indicates that BA is the optimal plot-averaged indicator
for the inversion of ACD. It is not surprising that BA is
a stronger predictor of AGB than height is, because BA
can be measured with a lot better accuracy than height,
and because DBH is weighted higher than tree height in
Eq. 7. We also found that the exponent b is close to 1
(b = 1.0300), which indicates that the ACD is nearly linearly
related to BA, and the cross-validated R2 value (0.9182)
is reduced by 0.004 compared with the model-fitted R2

(0.9143), which indicates that the model using BA tends
to be applicable and stable. This result means that, when
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FIGURE 2 | Fishnet for the study area.

TABLE 2 | Summary for ACD estimation using AvgH, LorH, and BA.

Model Model parameters R2 Jackknifing R2 RMSE (Mg C ha−1)

a b

ACD = aAvgHb 8.7899 0.8026 0.3945 0.3587 13.5561

ACD = aLorHb 7.8821 0.6691 0.1014 0.0614 15.9938

ACD = aBAb 1.6528 1.0345 0.9182 0.9143 5.5440

we want to obtain the ACD of plots, we can discard the
exhaustive field inventory data and only need to perform
spatially explicit point-based measurements using the relascope
or prism method.

Moreover, although AvgH and LorH are the most
commonly used plot-averaged height indicators, when they
were applied in Eq. 8 to predict ACD, the effect was poor,
with R2 values of 0.3954 and 0.1014, respectively, and RMSE
values of 13.5561 (Mg C ha−1) and 15.9938 (Mg C ha−1),
respectively; the results with AvgH are slightly better than
those with LorH (Table 2). This suggests that the plot-
averaged height alone does not account for the variation
in the ACD. Therefore, the plot-level ACD estimation
(EACD) based on LiDAR should exclude the AvgH and

LorH steps and directly fit ACD with LiDAR-extracted
metrics (Figure 3D).

TCH Models and the Comparisons
The plot-level LiDAR metric (TCH) was taken into the ideal
simplest allometry (Eq. 8) and was subjected to log changes and
linear fits. The result showed that TCH could explain 67.25%
of the variation in ACD (Figure 4A), suggesting that TCH is
a simple and effective predictor of ACD from LiDAR and that
the classic allometry model (Eq. 6) can be extended from the
tree-level to the plot-level scale.

Using regression by ordinary least squares, we modeled
variation in BA to TCH for 94 plots, with resulting values of
R2 = 0.6066 and RMSE = 5.1749 m2 ha−1 (Eq. 10, Figure 4B,
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FIGURE 3 | The linear relationship between ln(AvgH) and ln(ACD) (A), ln(LorH) and ln(ACD) (B), ln(BA)and ln(ACD) (C). The shadowed region shows the 95%
confidence interval. (D) Boxplots of the field-surveyed BA and predicted BA using plot-averaged height (AvgH) and Lorey’s height (LorH).

and Table 3). By substituting this regression result into Eq. 9, the
EACD could be generated without field inventory data. However,
in a comparison of the fitting results, we found that the scatter
plots were almost the same (Figures 4C,D); R2 only increased by
0.0036, and RMSE increased by 0.1163 Mg C ha−1 (Table 3). This
strongly suggests that the daisy-chain method of TCH cannot
achieve the same ACD prediction as the field-measured BA.
Therefore, if we only use LiDAR-extracted TCH, the height-
diameter model (Eq. 9) and height model (Eq. 8) have no essential
difference in accuracy. Thus, this paper ultimately chose Eq. 8 as
the final allometry model, and the parameter H used TCH.

Percentile Model and a Comparison of
Results
The following result (Eq. 12) was obtained by the multiple
regression fitting of the surveyed ACD of 94 plots and the LiDAR
percentile metrics listed in Table 1.

lnACD = 1.896+ 0.033lnh25+ 12.106lnd95 (12)

The ACD in the study area is closely related to h25 and d95.
These two parameters can explain 59.1% of the ACD variation,
with a RMSE of 11.6304 Mg C ha−1 (Figure 5A), and the
prediction accuracy is lower than the 67.25% of Eq. 8 using TCH.
It demonstrated that the height allometry model proposed in this
paper can replace the traditional LiDAR percentile model with
improved precision.

Figure 5B illustrates the difference between the predicted
values and the survey values of ACD. The median values of the
MLR model and the TCH model are near 52 Mg C ha−1, which is
slightly lower than the measured ACD. Furthermore, the range
of predicted values of the TCH model is slightly smaller than
the surveyed value range, which is larger than the range of the
MLR model. Therefore, compared with the MLR model, the TCH
model has a wider prediction range and can represent larger and
smaller values of ACD.

Model Application
All grid values in the study area were calculated using our
proposed TCH allometry model and percentile model, and then
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FIGURE 4 | (A) Linear relationship between ln(TCH) and ln(ACD). (B) Linear relationship between TCH and the basal area (BA). The shadowed region shows the
95% confidence interval. (C) ACD estimated using top of canopy height (TCH) from LiDAR compared to field-surveyed ACD. (D) ACD estimated using TCH and BA
predicted from TCH compared to field-surveyed ACD. The black line is a 1:1 reference line.

TABLE 3 | Summary for ACD estimation using TCH only or TCH and BA’ in pairs.

Model Model parameters R2 Jackknifing R2 RMSE (Mg C ha−1)

a b1 b2

ACD = aTCHb1 11.6592 0.8436 – 0.6725 0.6585 10.1427

BA’ = a+b1TCH 6.7117 3.6516 – 0.6066 0.5882 5.1749 (m2 ha−1)

ACD = aBA’b1TCHb2 0.9393 1.1977 0.0018 0.6761 0.6022 10.2590

maps of ACD were produced. Figure 6 shows that the spatial
distribution of the two maps is very similar. The high-density
area of the map from the percentile model is slightly larger than
that of the map from the TCH model (blue circle), and the low-
density area demonstrates the opposite trend (blue rectangle). In
addition, the density distribution percentages of the two maps
are basically the same as those shown in the two pie charts.

According to the grid statistics, the average ACD from the
TCH model is 41.49 Mg C ha−1, and the maximum value is
104.70 Mg C ha−1, which is slightly larger than the values of 40.13
and 95.46 Mg C ha−1 from the percentile model. This resulted
in an overall aboveground carbon reserve of the study area of
5535.54 Mg for the TCH model and 5433.06 Mg for the percentile
model; the difference between the two models is only 1.89%.
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FIGURE 5 | (A) Estimated ACD values of the percentile model versus the field investigation. (B) Boxplots of field-surveyed ACD and ACD estimated using the
percentile model and TCH model.

FIGURE 6 | Study area carbon density map predicted using the TCH model (A) and percentile model (B). Square is low density area, Round is high density area.
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Although the accuracies of the TCH and the MLR models are
not much different, the TCH model is much simpler and easier
than the MLR model.

DISCUSSION

Our original purpose was to find a suitable plot-averaged LiDAR
parameter and use existing allometry models to quickly and
accurately predict the forest carbon density. The exponential
model of TCH captures 67.25% of ACD changes (Table 3) and
has a higher accuracy than the traditional percentile model of
this study. We also realized that the accuracy of our prediction
is relatively low. The possible reasons are (1) the plot size of
20 m × 20 m is relatively small, and the edge effect is obvious;
(2) point cloud density is not enough, and the conical crown
of spruce is not captured accurately and (3) the penetration

rate of point cloud is insufficient, and the detection of lower
wood is limited. However, for the research objective, we did
effectively improve the accuracy of LiDAR’s prediction of ACD,
simplify the prediction steps and solidify the form of the
prediction model.

Moreover, since the TCH is derived from the mean of the
CHM based on the plots, the TCH is also subject to the pixel
size. We extracted 10 CHMs from the LiDAR point cloud, with
pixel sizes from 1 to 10 m, and then extracted the corresponding
TCHs to fit the ACD. As the pixel size increased, R2 continually
decreased, and the RMSE continually increased (Figure 7). This
result indicated that the smaller the CHM pixel is, the better the
fitting effect of TCH will be. This study was limited to a point
cloud density of 3.43/m2, so the minimum pixel size was 1 m. In
addition, we found that when the pixel sizes were 5 and 7 m, the
fitting effect fluctuated slightly, but this fluctuation did not affect
the overall law. The reason for this finding requires further study.

FIGURE 7 | Fitting trends of TCH and ACD under different CHM precisions. (A) Declining R2; (B) Increasing RMSE.

FIGURE 8 | (A) 3D scatter plot of the normalized point cloud (NPC) in plot 1. (B) Boxplots of TCH, AvgH and LorH. White bullet is mild outliers of boxplot.
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Similarly, fitting accuracy is also limited by the size of the plot
and the number of samples. A larger plot size means a smaller
boundary effect, and a larger plot number means a smaller outlier
influence (Ni et al., 2014; Gwenzi and Lefsky, 2017). However,
larger plots are more expensive and time-consuming than smaller
plots, so finding an optimal plot size and number in coniferous
forest will be an important task for future study.

The three-dimensional visualization of the point cloud in plot
no. 1 (Figure 8A) suggests that the forest point cloud includes
the crown, some of the lower layer, some of the trunks and the
woodland gap. Therefore, the TCH data derived from the point
cloud also contain the above information. However, the average
height of the plot (AvgH) ignores the forest gap and is therefore
slightly higher than the TCH (Figure 8B). Although LorH is
widely used for the estimation of forest biomass (Mitchard
et al., 2012; Gwenzi and Lefsky, 2016), LorH is mainly used to
evaluate site quality and mostly reflects the largest trees in the
forest; therefore, its value is larger than that of TCH and AvgH
(Figure 8B), and LorH is not applicable for fitting the ACD
of irregular and mixed forests. This explains why TCH is the
optimal ACD predictor.

We also recognized a flaw in the ACD prediction at the plot
scale. Whether in the field measurement phase, the plot-based
TCH extraction phase, or the final ACD prediction phase, our
resolution is fixed at 20 m × 20 m. This inevitably leads to
the conversion of the continuous ACD distribution in nature
into a discontinuous distribution, which may cause a large
jump phenomenon at the boundary. Therefore, selecting the
appropriate interpolation algorithm to restore the continuity
of the ACD will help improve the prediction accuracy of our
proposed models (Loquin and Strauss, 2010; DeWitt et al., 2017).
In addition, we only adopted linear regression fitting based on
the least squares method in this paper, and although this method
is simple and practical, it is not necessarily the best method. With
the rise of machine learning in LiDAR research (Zhou et al., 2017;
Jin et al., 2018; Lin et al., 2018), it will be necessary to compare
various machine learning algorithms in future research to find
the best way to fit the allometry models.

Finally, we must emphasize that although our proposed TCH-
based allometric approach is an efficient LiDAR-assisted ACD
prediction method, the allometry model used for plot calculation
is generally targeted to a specific region and species (Picard
et al., 2015; Duque et al., 2017), so it is necessary to re-select an
appropriate allometry model for other tree species and ecological
regions when our method is used. Moreover, developing a
general ACD prediction model based on LiDAR for forests
across ecological regions and species will be the focus of our
future research.

CONCLUSION

Using the traditional allometry growth model theory, this paper
proposed two models based on TCH extracted from LiDAR

data. The first model was a simple power model (only using
TCH) based on the diameter allometry, and the second model
was a daisy-chain model (TCH → BA′ → ACD) based on
diameter-height allometry. A comparison of the results suggested
there was little difference in the fitting accuracy and error
distribution between models. In addition, this paper compared
the traditional LiDAR percentile method with the proposed
method and found that the latter method had a higher precision,
fewer parameters, more concise steps and more stable forms than
the former method. Furthermore, the implicit hypothesis in our
study, the traditional allometry model of individual trees can be
extrapolated to the plot scale, was confirmed. The LiDAR-assisted
ACD estimation method proposed in this study will accelerate
the application of airborne LiDAR technology in forest carbon
density measurements and provide an accurate data basis for
forest ecosystem research.
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