
fpls-10-00926 July 17, 2019 Time: 15:42 # 1

ORIGINAL RESEARCH
published: 17 July 2019

doi: 10.3389/fpls.2019.00926

Edited by:
Kelly R. Thorp,

United States Department
of Agriculture (USDA), United States

Reviewed by:
Steven Anderson,

Texas A&M University, United States
Khairul Nizam Tahar,

Universiti Teknologi MARA, Malaysia

*Correspondence:
Guijun Yang

guijun.yang@163.com

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 21 March 2019
Accepted: 01 July 2019
Published: 17 July 2019

Citation:
Han L, Yang G, Dai H, Yang H,

Xu B, Feng H, Li Z and Yang X (2019)
Fuzzy Clustering of Maize

Plant-Height Patterns Using Time
Series of UAV Remote-Sensing

Images and Variety Traits.
Front. Plant Sci. 10:926.

doi: 10.3389/fpls.2019.00926

Fuzzy Clustering of Maize
Plant-Height Patterns Using Time
Series of UAV Remote-Sensing
Images and Variety Traits
Liang Han1,2,4, Guijun Yang2,3* , Huayang Dai4, Hao Yang2,3, Bo Xu3, Haikuan Feng3,
Zhenhai Li2,3 and Xiaodong Yang2,3

1 College of Architecture and Geomatics Engineering, Shanxi Datong University, Datong, China, 2 Key Laboratory of
Quantitative Remote Sensing in Agriculture of Ministry of Agriculture, Beijing Research Center for Information Technology in
Agriculture, Beijing, China, 3 National Engineering Research Center for Information Technology in Agriculture, Beijing, China,
4 College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing, China

The application of high-throughput phenotyping (HTP) techniques based on unmanned
aerial vehicle (UAV) remote-sensing platforms to study large-scale population breeding
opens the way to more efficient acquisition of dynamic phenotypic traits and provides
new tools that should help close the gap between genotyping and traditional field-
phenotyping methods. Toward this end we used a field UAV-HTP platform to deploy a
RGB high-resolution camera to acquire time-series images. By using three-dimensional
reconstructed point cloud models, we developed a repeatable processing workflow
to extract plant height from time-series images. The plant height determined by the
UAV-HTP platform correlated strongly with that measured manually. The plant heights
estimated at various growth stages form temporal profiles that give insights into changes
and trends in genotyping. Based on fuzzy c-means clustering analysis, we extract the
typical dynamic patterns in phenotypic traits (i.e., plant height, average rate of growth of
plant height, and rate of contribution of plant height) hidden in the temporal profiles. The
fuzzy c-means clustering and set-intersection operation were first applied to analyze the
temporal profile to identify how plant-height patterns change and to detect differences
in phenotypic variability among the genotypes. The results revealed the capacity of UAV
remote sensing to easily evaluate field traits on multiple timescales, for a few breeding
plots or for 1000s of breeding plots.

Keywords: FCM, temporal profile, maize, plant height, clustering

INTRODUCTION

Maize (Zea mays L.) is one of the most important grain crops in China. According to a report by the
National Bureau of Statistics in China, the planting area and grain yield of maize in 2017 were 35.45
million hectares and 21.58 million tons (National Bureau of Statistics of China, 2017), respectively,
ranking it first among the major crops. China’s maize imports are expected to increase gradually
to 7.2 million tons by 2024 and 2025 (United States Department of Agriculture (USDA), 2015).
Genetic breeding has contributed to increasing maize yield and to ensuring global food security.
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New technologies to accelerate breeding through improving
genotyping and phenotyping methods are currently in demand
(Tester and Langridge, 2010).

An accelerated breeding pipeline to obtain breeding-target-
related agronomic traits is a key to developing improved varieties
(Shakoor et al., 2017). High-throughput phenotyping (HTP)
techniques based on unmanned aerial vehicles (UAV-HTPs) in
field breeding programs have gradually become promising tools
with which to acquire phenotype traits with high temporal and
spatial resolution, affordable cost, and non-invasive remote-
sensing methods (Araus and Cairns, 2014). UAV-HTP can
identify and access both simple and complex phenotypic traits,
which are the key breeding targets for genetic breeding and
include grain yield (Kefauver et al., 2017; Herrmann et al., 2019),
above-ground biomass (Han et al., 2019), lodging resistance (Han
et al., 2018a), senescence (Makanza et al., 2018), and plant height
(Pugh et al., 2018; Wang et al., 2019).

Plant height in maize is an important agronomic trait because
it is highly heritable (Peiffer et al., 2014), easy to measure, and
influences the stalk lodging (Li et al., 2007). Previous research
has shown that plant height correlates highly with biomass or
grain yield, so it is used for estimating biomass (Salas Fernandez
et al., 2009; Han et al., 2019) and grain yield (Yin et al.,
2011; Barrero Farfan et al., 2013; Geipel et al., 2014). Manually
measuring plant height in the field is usually only done at the
end of growth. However, the expression of each quantitative
trait locus (QTL) controlling plant height depends on the time
at which the measurements are made and on the space where
they are made (Yan et al., 2003; Wang et al., 2015). Pauli et al.
(2016) found that the correlation between HTP canopy traits,
including plant height, and agronomic traits varies over time.
Measuring plant height throughout crop growth can provide
new insights to genetic breeding, but it is time consuming
(Chang et al., 2017).

Previous studies have shown that the use of HTP technologies
to monitor multi-temporal crop height and growth has
various advantages (Holman et al., 2016; Duan et al., 2017;
Kronenberg et al., 2017; Malambo et al., 2018; Thompson
et al., 2019). For example, Liebisch et al. (2015) used a
Zeppelin airship as a remote-sensing platform to acquire
multi-sensor and multi-temporal images throughout the maize
growth season and found that the traits of various genotypes
differ clearly. However, they gave no detailed agronomic
interpretation. Pugh et al. (2018) used unmanned aerial systems
to determine plant height in maize and sorghum and formed
high-resolution temporal growth curves that provided new
physiological insights and applications for phenotyping. Many
clustering algorithms have been adopted in the literature
to extract expression patterns from time-series data, such
as density-based clustering for analyzing the electrical load
profile (Yang et al., 2018), hierarchical clustering for genetic
diversity (Tagliotti et al., 2018), and fuzzy clustering for
gene expression (Olsen et al., 2006; Collins et al., 2013;
Piening et al., 2018).

In the present study, we used a UAV-based high-throughput
platform to collect RGB images in a field breeding program and
a method to extract plant-height information from the images.

The plant height acquired at different growth stages and from
different genotypes can be combined to form temporal profiles,
which offer novel insights into the diversity of gene expression.
The specific objectives for this study included (i) developing
a repeatable processing workflow to extract plant height from
time-series images, (ii) investigating the accuracy of plant-height
estimates by comparing them with field measurements, and (iii)
detect differences in phenotypic variability among the genotypes.

MATERIALS AND METHODS

Field Experiments
The maize-breeding experiments were conducted in 2017 at
the research station of Xiao Tangshan National Precision
Agriculture Research Center of China, Changping District of
Beijing City (115◦50′17′′–116◦29′49′′ E, 40◦20′18′′–40◦23′13′′
N). The experimental field was approximately 27 m wide and
210 m long, comprising 800 breeding plots in total, with each
plot being 2 m (3 rows) wide and 2.4 m long (Figure 1a).
The single factor experiment design was applied to explore
the differential expression of maize genotypes. Eight hundred
breeding plots were divided into four sub-populations according
to the genetic background: mixed, TEM (temperate) and TST
(tropical and subtropical) and DH (doubled-haploid). The first
three sub-populations, i.e., 482 breeding plots, were used to
search for patterns in the temporal profiles of the plant height.
Since the ground truth data included the DH subpopulation, its
samples were also used as the validation dataset. The experiment
used a solid row and column configuration with a row spacing
of 0.6 m and a column spacing of 0.8 m. Eight hundred
plots were planted on May 15, 2017 at a seeding density of 6
plants m−2.

Prior to the first flight, 16 ground control point (GCP) markers
consisting of 45 cm × 45 cm black and white square planks
were evenly distributed in the experimental field, and the XYZ
coordinates of each GCP marker were measured by using a
differential global positioning system (DGPS, South Surveying
& Mapping Instrument, Co., Ltd., Guangzhou, China) with
millimeter accuracy (Figure 1b). According to the row number
from south to north, about every 10 rows set up a group of
sampling plots, for a total of nine groups with eight plots in each
group. The sampling plots in campaigns 2–4 were the same (see
Table 1). Some sampling plots (19.4%, i.e., 56:288) were excluded
due to abnormal growth or lodging, so the sample size of ground
truth varied at different observation date. Three plants were
selected at random in the center of the sampling plots to measure
plant height at four time points. The manual measurement of
plant height was done by using a telescopic leveling rod. The
mean height of the three plants was used as the canopy height
of the given sampling plot for ground truth.

UAV Campaigns and Image Processing
A UAV (DJI Spreading Wings S1000, SZ DJI Technology, Co.,
Shenzhen, China) equipped with a RGB high-resolution camera
(DSC-QX100, 5472 × 3648 pixels, Sony Electronics, Inc., Tokyo,
Japan) was used to capture the RGB images after sowing at five
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FIGURE 1 | Maize breeding experiment at Xiao Tangshan National Precision Agriculture Research Center, Changping, 2017. (a) Study area. (b) Ground control
points (GCPs) measurement using a differential global positioning system. (c) UAV platform.

time points (Figure 1c). ISO and shutter speed were fixed at 160
and 1/2000, respectively. Flight paths over the experimental area
were determined by using the DJI PC ground station (SZ DJI
Technology, Co., Shenzhen, China) to ensure substantial overlap
(i.e., 80% forward and 75% side) with two different flight altitudes
above ground level (AGL),i.e., 40 and 60 m, and a flight speed
of 6 m/s, yielding six strips. To classify the ground point cloud
and build the digital elevation model (DEM), the flight altitude
AGL for the first flight on June 8, 2017 was 40 m, yielding a
ground-sampling distance of 0.72 cm. The corresponding image-
acquisition dates and maize growth stage are given in Table 1.

After acquiring images by using the UAV with a RGB camera
at multiple different time points, the images were processed
by using Agisoft PhotoScan (version 1.3, Agisoft LLC, Saint
Petersburg, Russia) to generate orthomosaics and digital surface
models (DSMs) with the GCPs. The GCPs were used to
optimize the camera position and orientation data, which led to
better results for generation Agisoft (2018). A semi-automated
processing workflow was applied to export a short time series
(five time points) of orthomosaics and DSMs according to the
days after sowing (DAS) (Figure 2A).

TABLE 1 | Timing of measurement campaign.

Campaign AGL (m) Time points Plant height Growth stage∗

1 40 2017-06-08 (24) − V4

2 60 2017-06-29 (45) 2017-06-29 (45) V10

3 60 2017-07-11 (57) 2017-07-11 (57) V14

4 60 2017-07-28 (74) 2017-07-29 (75) VT

5 60 2017-08-04 (81) 2017-08-03 (80) R1

The date and days after sowing (DAS) are given for each campaign. AGL, above
ground level. ∗The leaf collar method of Ritchie et al. (1993) was used for staging
maize plant growth.

Point Cloud Classification and
Plant-Height Extraction
CSM and DEM Generation
Crop surface models (CSMs), which are widely used to obtain
plant-height information from various crops, were introduced by
Bendig et al. (2014) for barley, Han et al. (2018a) for maize, De
Souza et al. (2017) for sugarcane, and Holman et al. (2016) for
wheat. They can be obtained by subtracting the DEM from the
DSMs. As mentioned above, the DSM can be generated directly
and then exported by using the Agisoft Photoscan software.

The difficulty of this study is how to build a DEM. Several
studies extracted soil point elevations from a DSM that was not
covered by vegetation and built a DEM by using Kriging spatial
interpolation (Yue et al., 2017; Han et al., 2018a) or inverse-
distance-weighted interpolation (Brocks and Bareth, 2018). To
ensure an accurate DEM, we manually picked up a large number
of soil points when using the interpolation method to build a
DEM, which was time consuming and offered a low degree of
automation. With the help of the Agisoft Photoscan software,
we introduced an alternative approach to build a DEM with
a triangulation-based ground classifier. The goal was to divide
early low-vegetation-cover dense point clouds (on June 8, 2017)
into ground point clouds and the rest and build the DEM based
only on classified ground point clouds. The adaptive triangulated
irregular network ground classifier in the Agisoft Photoscan
software is an iterative algorithm that works basically as follows
(Serifoglu Yilmaz et al., 2018): (1) breaking dense point clouds
into cells of a certain size (cell size) and detecting the lowest
points of each cell, (2) triangulating these points to obtain an
approximate ground model, and (3) adding new points to the
ground class, providing that it satisfies two conditions: (i) limiting
its distance from the ground model to a given maximum distance,
and (ii) keeping the angle between the ground model and the line
connecting this new point with a point from ground class within a
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FIGURE 2 | Agisoft Photoscan processing workflow and export for orthomosaic and DSM. (A) Five-step semi-automated processing workflow. (B) Orthomosaics
with zoomed views of area (red rectangle) show differences in maize growth at the plot scale. For example, some plots were lodged at 57DAS, and some plots had
tassels at 74DAS, whereas others did not. GCP, ground control point; DSM, digital surface model; DAS, days after sowing.

certain maximum angle. This third step is repeated until all points
are checked. These parameters (cell size, maximum distance, and
maximum angle) are adjusted until we get an acceptable point
cloud classification. Blanks left after the exclusion of non-ground
points can be filled with nearest neighbor point interpolation.
For campaign 1, we used a trial-and-error method to find an
acceptable point cloud classification result with a cell size of
20 cm, a maximum angle of 1.5◦, and a maximum distance of
3 cm, and then built the DEM based only on the classified ground
point clouds. Figure 3 illustrates the workflow for building a
DEM-based point cloud classification.

Plant Height Estimation
After building the CSMs, they were processed via ArcMap
software (version 10.2, Esri, Inc., Redlands, CA, United States)
and ENVI software (version 4.5, Esri, Inc., Redlands, CA,
United States) to extract plant-height information. Up to this
point, the CSM has been a raster image mixed with soil
background and plant-height information for the various vertical
levels. Using the mean to calculate plant height at the plot
level may result in underestimation, especially in areas where

vegetation coverage is low. To solve this problem, we used
an image-segmentation method based on vegetation index (i.e.,
normalized green-red difference index) to segment plants from
bare soil. NGRDI values for soils are always recorded as negative
(Shimada et al., 2012). The NGRDI was calculated by using

NGRDI =
green− red
green+ red

(1)

where green and red are the reflection in the green band and red
band of the remote-sensing images, respectively.

The orthomosaic image was operated on in both bands
to obtain the NGRDI image, and then NGRDI image was
binarized to separate vegetation and non-vegetation areas by
using ENVI software. The vegetation areas were converted
into a vector map as areas of interest, which served as a
mask to extract the plant-height information from the CSM,
yielding a new CSM based only on images of vegetation.
The pixels in the new CSM were aggregated to filter out
low-level plant-height information. The Zonal statistics tool
in ArcMap software was used to calculate the mean of the
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FIGURE 3 | Workflow for building DEM based on point cloud classification. (A) Full extent of dense point cloud and DEM. (B) Expanded views of area (red
rectangle). DEM, digital elevation model.

FIGURE 4 | Workflow for plant-height extraction at plot level. AOI, areas of interest.

above results per plot by using the areas of interest. Figure 4
shows the corresponding workflow for plant-height extraction
at the plot level.

Where Green and Red are the reflection in the green band and
red band of the remote-sensing images, respectively.

Temporal Profiles Phenotypic Traits
The plant-height dataset was constructed by using the plant-
height extraction method described in Section “Point Cloud

Classification and Plant-Height Extraction” and the time
series of UAV orthomosaic, which provided five time-point
profiles. The temporal profile revealed that dynamic changes
in plant height at different development stages were regarded
as a phenotypic trait in our study. Breeders and agronomists
are interested not only in the changes in plant height, but
also in the distribution of plant-height increments during the
different development stages. Therefore, two other temporal
profile traits were derived (Han et al., 2018b): the average
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growth rate of plant height (AGRPH) and the contribution
rate of plant height (CRPH). The following equations
were used to calculate AGRPH and CRPH, respectively:

AGRPHPkTi =
PHPkTi+1−PHPkTi

Ti+1−Ti (2)

CRPHPkTi =
PHPkTi+1 − PHPkTi

PHPkT4

× 100% (3)

where subscripts Pk and Ti represent plot k and time point
i, respectively. AGRPH is the ratio of plant-height increment
to day increment between two adjacent time points and
represents the increment per day. CRPH is the percent
contribution of plant-height increment to the final plant
height and reflects the incremental distribution at different
development stages.

Clustering of Temporal Profiles
During data preparation before clustering, the raw dataset with
the three traits were cleaned by deleting abnormal records that
stemmed from abnormal growth or lodging on July 11. Outliers
were treated by using the capping-flooring approach. Outliers
were capped at a certain value above the 98th percentile value or
floored at a certain value below the 2nd percentile (Pyle, 1999).

We are interested in whether genotypes can express
phenotypic traits in similar patterns, so the temporal profiles
were clustered by using the fuzzy c-means (FCM) clustering
algorithm. This study uses the R package ‘e1071’ (version 1.7-
0) to implement this algorithm (David et al., 2018), which is
based on the open-source statistical language R (R Core Team,
20181). Fuzzy c-means is a data-clustering algorithm in which
each profile belongs to more than one cluster with varying
degrees of membership in the range [0, 1]. The centroid of a
cluster is the mean of all points weighted by their degree of
belonging to the cluster (Kesemen et al., 2016). It uses Euclidean
distance as the distance metric. With the FCM algorithm, the
difficulty lies in choosing suitable values for the parameters C,
which defines the optimal number of clusters, and M, which
defines how fuzzy the cluster is. The greater M is, the fuzzier
the cluster will be in the end. Pal and Bezdek (1995) obtained
the optimal range of m from the experimental study of clustering
validity as [1.5, 2.5], and considered that the median M = 2 was
acceptable in general. Bezdek (1993) found that M = 2 had the
clearest physical meaning. The FCM parameter was therefore
set to M = 2 for the following analysis. The parameter C was
chosen by computing six indices, and the best number of clusters
is determined by using the majority rule (Charrad et al., 2014).
The majority rule is an unweighted voting rule with a threshold of
50%. The six indices used were the partition coefficient (PC), the
partition entropy coefficient (PE), the Xie-Beni index (XB), the
Fukuyama-Sugeno index (FS), the fuzzy hyper volume (FHV),
and the partition density index (PD). Table 2 describes these
indices in detail.

1https://www.R-project.org/

Based on FCM clustering analysis, typical dynamic patterns of
phenotypic traits (i.e., PH, CRPH, or AGRPH) that are hidden in
the temporal profiles were extracted and are represented by the
plots of the cluster centroids. The R package ‘UpSetR’ (version
1.3.3) visualized the dataset intersections (Conway et al., 2017).
The intersections of clusters and genetic backgrounds were used
to identify and explain typical dynamic patterns. When a genetic
background dominates a cluster, the centroid profile of the cluster
was chosen as the typical dynamic pattern of a phenotypic trait
with this genetic background. The following two inequalities were
used to identify the dominant genetic background.

(1) More than one third of the samples in a cluster from a given
genetic background, which is called the ClusterProportion.

Cluster Pr oportion =
NGincluster

NCtotal
≥

1
3

Where NGincluster is the sample size in the cluster from a given
genetic background, NCtotal is the sample size of the cluster.

(2) Samples from a given genetic background in a cluster
accounted for more than 2/3 of the total sample from this genetic
background, which is called the TotalProportion.

Total Pr oportion =
NGincluster

NCtotal
≥

2
3

where NGtotal is the total sample size from a given
genetic background.

RESULTS

Reconstruct Digital Surface Model and
Orthomosaic
To evaluate the accuracy of geolocation of DSMs and
orthomosaics, Table 3 summarizes the root mean squared
errors (RMSEs) of GCPs (in cm) and the two performance
indices for restructuring the DSM. The point cloud density
can impact the quality or accuracy of the DSM, which is
based on point clouds. The smaller the resolution value is,
the higher is the resolution of DSM and the more accurate
the DSM is depicted. The total GCP error, calculated by using
the ground truth of GCPs (measured by using a DGPS; see
section “Field Experiments”) and their reconstructured locations
in the UAV images, varied over campaigns from 1.45 to 6.56 cm
and were considered reasonable and acceptable, taking into
account the flight altitude and allowing for error (<10 cm)
(Roth and Streit, 2017; Malambo et al., 2018). The lower
the AGL is, the smaller are the total errors, the higher is
the DSM resolution, and the larger is the point density. In
the latter two campaigns, the GPS marks were more easily
occluded by leaves and pollen, resulting in poor geolocation
accuracy (i.e., the total error is 6.56 and 6.10 cm, respectively).
Because the errors in both the horizontal and vertical direction
increased significantly, it is reasonable to suspect that GPS
markers were inadvertently and slightly moved during the
field activities. Errors in horizontal direction strongly affected
the geolocation of automatic areas of interest extracted from
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TABLE 2 | Six indices for determining cluster size.

Indices Temporal profiles Proposed cluster size Criteria

Fuzzy hyper volume (FHV) PH 2 Minimum value of the index. Small FHV indicates presence of compact clusters based
on concepts of hyper volume and density (Gath and Geva, 1989).

CRPH 2

AGRPH 2

Partition density (PD) PH 2 Maximum value of the index. PD is the general partition density. According to the
physical definition of density; larger value of PD indicates better clustering (Gath and
Geva, 1989).

CRPH 2

AGRPH 2

Xie-Beni (XB) PH 2 Minimum value of the index. XB measures the average intra-cluster fuzzy compactness
against the minimum inter-cluster separation. The optimal cluster size is reached when
the minimum of XB is found (Xie and Beni, 1991).

CRPH 2

AGRPH 2

Fukuyama-Sugeno (FS) PH 2 Minimum value of the index. Small FS indicates compact and well-separated clusters
(Zanaty, 2012).

CRPH 2

AGRPH 2

Partition coefficient (PC) PH 2 Maximum value of the index. The closer the index is to 1.0, the crisper the clustering.
When PC is close to 1/C, no clustering trend exists in the data (Zanaty, 2012).

CRPH 2

AGRPH 2

Partition entropy (PE) PH 2 Minimum value of the index. Ranges over the interval [0, logC]. When a PE is close to
upper bound, and no clustering trend exits in the data (Krawczyk and Cyganek, 2017).

CRPH 2

AGRPH 4

PH, plant height; AGRPH; the average growth rate of plant height; CRPH, the contribution rate of plant height.

TABLE 3 | Summary of geolocation accuracies and performance of reconstructed DSM.

Campaign X error (cm) Y error (cm) Z error (cm) Total error (cm) Resolution (cm/pix) Point density (points/cm2)

1 0.94 0.98 0.48 1.45 1.44 47.9

2 1.15 1.39 0.64 1.92 2.65 14.2

3 1.28 1.46 0.73 2.08 2.71 13.7

4 5.44 2.08 2.34 6.56 2.46 16.5

5 4.90 1.56 3.29 6.10 2.23 20.2

The XYZ error is in a certain direction and the total error is the root mean square error (RMSE) of the GCP markers. The RMSE is used to evaluate the geolocation accuracy
of orthomosaics and DSMs. The resolution and point density serve to evaluate the performance of the reconstructed DSM.

orthomosaics (see section “Point Cloud Classification and Plant-
Height Extraction”) and further affected the accuracy of plant-
height extraction.

Plant-Height Estimation and Validation
By using the method in Section “Point Cloud Classification
and Plant-Height Extraction,” the plant height of 400 plots
containing a natural population was extracted from the five-
time-point series orthomosaic. Figure 5 shows the distribution
of three phenotypic traits before treating outliers. Outliers
occurred most frequently in the first campaign, because the
plant height was low at that time (the mean plant height
was less than 20 cm) and plants were sparse, which is not
conducive to UAV remote-sensing observation due to apparent
noise artifacts actually caused by sparse plant representation.

Most of the outliers were removed after applying the capping-
flooring treatment.

We used Kruskal–Wallis test to determine whether there
was a significant difference in each trait among the three
genetic backgrounds. Kruskal–Wallis test found no significant
differences in overall PH and CRPH among the three genetic
backgrounds (p > 0.05, Figure 6 from right side). In terms of a
specific growth stage, there were significant differences in each
trait among the three genetic backgrounds (Figure 6 from left
side). The most obvious finding to emerge from the test was that
observing traits from time dimension was easy to find differences
in phenotypic traits among different genetic backgrounds.

To validate the accuracy of the plant-height estimates, the
mean height extracted from UAV images of the sampled plots
(i.e., PHuav) was compared with the mean height as determined
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FIGURE 5 | Boxplots showing distribution of phenotypic traits before treating outliers. Boxplots are based on three traits from 400 plots. The solid line in the box
indicates the median and the purple square is the mean. The red points are outliers. PH, plant height; PH, plant height; AGRPH, average growth rate of plant height;
CRPH, contribution rate of plant height; DAS, days after sowing.

by manual measurements with rulers (i.e., PHgrd). Figure 7A
compares PHuav with PHgrd and shows that the two have
a strong and statistically significant (p-value < 2.0 × 10−16)
linear relationship, with R2 = 0.95 (RMSE = 14.1 cm). The
UAV measurements underestimate the plant height significantly
in campaigns 4 (74DAS) and 5 (81DAS), which may be
because PHgrd was measured at the top of the tassels after
tasseling. However, reconstructing the point cloud of the tassels
from UAV images at an AGL of 60 m is difficult because
of their small spindles and complex branches. Figure 7B
shows that, unlike regression statistics along the growing
season, for the individual observation time point, the linear
relationship between manual and UAV based heights is weak.
In terms of R-squared (R2, the coefficient of determination),
there is an increasing trend toward the linear relationship
from campaigns 2 (45DAS) to 5 (81DAS), with the gradual
closure of the canopy.

Because of differences in genotypes, maize in different plots
may be in different development stages. For example, the TEM
population was in the flowering stage while the TST population
was still in the vegetative stage (Figure 2B). This heterogeneity
in the development of maize may also lead to a high RMSE
(18.7 cm in Figure 7B). Due to the tall stature of terminal maize
growth, last season height measurements may be biased or less

accurate due to difficulties in taking consistent measurement
above eye level. Any analysis of the correlation between UAV
measurements and manual measurements may be challenging
because it assumes that the manual measurements are correct
and that the UAV measurements must therefore reproduce them
(Pugh et al., 2018). Therefore, due to the subjectivity of observers,
the high RMSE may reflect the subjectivity of the manual
observers and shows that three repeated manual measurements
may not be sufficient in this study.

Determination of Cluster Size
The size of clusters c was varied between 2 and 15. We iterated
500 times to ensure convergence and explored the combination
of clustering size and fuzzy parameter M = 2 and found the
optimal partition with C = 2 and M = 2 based on the majority
rule. For clustering temporal profiles of PH and CRPH traits,
we obtained a consistent optimal cluster size from the six fuzzy
clustering indices (i.e., C = 2), but for clustering temporal profiles
of AGRPH, five fuzzy clustering indices proposed C = 2, but PE
proposed C = 4 (Figure 8 and Table 2).

Detecting Typical Temporal Profiles
For each trait, 400 temporal profiles from three genetic
backgrounds fell into different clusters after FCM clustering,
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FIGURE 6 | The difference in three traits based on different genetic backgrounds. Kruskal–Wallis test was used to determine whether there was a significant
difference in each trait among the three genetic backgrounds (i.e., mixed, TEM, and TST). The white plus sign indicates the mean. The following convention for
symbols indicates statistical significance: p > 0.05 (ns); ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001; ∗∗∗∗p ≤ 0.0001. PH, plant height; AGRPH, average growth rate of
plant height; CRPH, contribution rate of plant height; DAS, days after sowing. TEM, temperate; TST, tropical and subtropical.

and each profile was assigned a membership grade for the
clusters. To better understand the dynamic pattern of each
trait, we join the clustering centroids at five time points by a
polyline to form a typical temporal profile. Data visualization
analyses reveal a number of typical patterns. For the profiles
of PH observed in clusters A and B (Figure 9), the upward
trends are similar, except for the large differences in plant
height between the 74DAS (mean = 195.4 versus 237.8 cm)
and 81DAS (mean = 210.4 versus 262.8 cm). Although the
TST population accounted for 48.5% of cluster B, the total

proportion was only about 58% (100:172), so we conclude
that no dominant genetic background exists in cluster B, and
no further explanation is needed (Figure 12A). These results
suggested that the typical temporal profile of PH was not
conducive to detecting plant height variations among different
genotypes of maize.

For the profiles of CRPH observed in clusters A and B
(Figure 10), the TST population accounts for 60.5% in cluster
A, and the total proportion is as high as 80.2% (138:172),
so we conclude that the TST population forms the dominant
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FIGURE 7 | Scatter plot of plant height extracted from UAV images (PHuav) versus manual ground measurements made with rulers (PHgrd). (A) Along the growing
season. (B) Individual observation time point. The blue solid line represents the regression line and the red solid line has unity slope. The cross tabulation at the
upper-right corner shows the frequency distribution of sampled plots according to four genetic backgrounds and four time points. DAS, days after sowing; TEM,
temperate; TST, tropical and subtropical.

genetic background of cluster A. The typical temporal profile
of cluster A is thus used to represent the dynamic pattern
of the CRPH traits in the TST population (Figure 12B). At
the second, third, and fourth time points, the CRPH of the

TST population remains above 25%, especially at the fourth
time point (17-day interval), where the CRPH increases to
over 30%. This indicates that the TST population was in the
vegetative stage from the second to the fourth time points.
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FIGURE 8 | Determining optimal size of clusters based on six fuzzy-clustering indices. The blue vertical dashed line indicates the optimal size of clusters for PH,
CRPH, and AGRPH. To ensure that six indices can be presented simultaneously in the same coordinate system, some indices are scaled (i.e., PE, XB, PD, and FHV).
The figures in brackets are scaling coefficients. PH, plant height; AGRPH, average growth rate of plant height; CRPH, contribution rate of plant height; FHV, fuzzy
hyper volume; PD, partition density; XB, Xie-Beni; FS, Fukuyama-Sugeno; PC, partition coefficient; PE, partition entropy.

FIGURE 9 | Clustering temporal profiles of PH. Temporal profiles are assigned to clusters A and B by fuzzy c-means clustering. Each trace is color coded according
to its membership in the respective cluster (see color bar). The right plot shows a polyline formed joining the clustering centroids at five time points that is used to
identify the dynamic pattern of the PH trait. PH, plant height; DAS, days after sowing.
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FIGURE 10 | Clustering temporal profiles of CRPH. Temporal profiles are assigned to clusters A and B by fuzzy c-means clustering. Each trace is color coded
according to its membership in the respective cluster (see color bar). The right plot shows a polyline formed joining the clustering centroids at five time points that is
used to identify the dynamic pattern of the CRPH trait. CRPH, contribution rate of plant height.

FIGURE 11 | Clustering temporal profiles of AGRPH. Temporal profiles are assigned to clusters A and B by fuzzy c-means clustering. Each trace is color coded
according to its membership in the respective cluster (see color bar). The right plot shows a polyline formed joining the clustering centroids at five time points that is
used to identify the dynamic pattern of the AGRPH trait. AGRPH, average growth rate of plant height.
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FIGURE 12 | Intersections between clusters and genetic backgrounds. (A) PH trait. (B) CRPH trait. (C) AGRPH trait. Pie chart shows the population of the three
genetic backgrounds (i.e., mixed, TEM, and TST) in a cluster. Colored dumbbell and column represent the intersection and the dominant genetic background in a
cluster, respectively. PH, plant height; AGRPH, average growth rate of plant height; CRPH, contribution rate of plant height; TEM, temperate; TST, tropical and
subtropical.

Because the plant height will reach its maximum when a plant
enters into the reproductive stage (at or shortly after growth
stage VT) from the vegetative stage (Mcwilliams et al., 1999).
When planted in the northern temperate regions, the effective
accumulated temperature for the TST population is insufficient,
so it takes a longer to enter the reproductive growth stage from
the vegetative growth stage. In other words, the growth cycle
is usually prolonged. The consequence is that the accumulated
temperature for reproductive growth is insufficient to produce
high grain yields (Hatfield and Prueger, 2015). These results
suggested that the typical temporal profile of CRPH could
detect the difference of plant height increment among different
genotypes of maize.

For the profiles of AGRPH observed in clusters A and B
(Figure 11), TEM population accounts for 43.3% in cluster
A and 80.2% (110:137) in total (Figure 12C). Therefore, we
conclude that the TEM population is the dominant genetic
background of cluster A, and the typical temporal profile of
the cluster may be used to explain the dynamic pattern of
the AGRPH trait in the TEM population. The phenomenon
whereby the growth rate observed in the TEM population first
increases and then decreases from the vegetative growth stage
to reproductive growth stage. Although the total percent of
the mixed population in cluster A is 76.9% (70:91), we cannot
reasonably explain the dynamic pattern of the AGRPH trait due
to the unclear source of the genetic background. These results
suggested that the typical temporal profile of AGRPH could

detect the difference of plant height growth rate among different
genotypes of maize.

DISCUSSION

Factors Affecting Accuracy of Maize
Plant-Height Extraction
Although it achieved higher accuracy and lower estimation error,
the accuracy with which the maize plant height is extracted can
still suffer from uncertain factors. First, misclassification may
cause some classified dense points to not represent the real
ground when creating a DEM, resulting in an underestimate
of plant height (Geipel et al., 2014). Unfortunately, the GCPs
markers were not placed in time before seedling emergence
after sowing. Although the vegetation coverage was low, the
plants were small, and the soil could be exposed over large
areas on June 8th, 2017, which could minimize the possibility of
misclassification, it is clear that collecting remote-sensing images
and creating a DEM before emergence can completely avoid the
problem of misclassification. When planting in a heterogeneous
field or canopy closure, less soil is exposed and this method is
more prone to misclassification.

Second, GCP distribution and stability factors have a certain
impact on the accuracy with which plant height is extracted.
Tonkin and Midgley (2016) report that the distribution and
quantity of GCPs strongly influence the quality of a model’s
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FIGURE 13 | Characteristics of canopy development and changes in point cloud density. The positions of the eight plots in the example are given in Figure 2 (blue
rectangles). The position of the high-density point cloud changes as the maize canopy develops. The dotted line represents the boundary of a plot.

reconstruction (e.g., DEM and DSM). To facilitate an accurate
reconstruction, GCPs should be located at the edge or outside
of the study area, and the quantity of GCPs should be sufficient
(James and Robson, 2012). Han et al. (2018a) found uneven
topographic changes in the southern part of the study area,
which should be considered to increase the number of GCPs
appropriately in this part. To collect UAV remote sensing time-
series images, it is recommended to periodically check whether
the GCP markers have moved. If so, they should be accurately
restored their original position before making the UAV flight.

Third, the characteristics of the development of the maize
canopy structure could introduce errors to varying degrees
during the different growth stages. From a horizontal perspective,
Figure 13 shows that high-density point cloud locations do not
always appear at the top of the canopy, but shift continuously
as the canopy develops. At the second time points (45DAS),
the number two maize plot shows an optimal canopy structure
for extracting plant height; that is, high-density point clouds
have all gathered at the top of the canopy to form a horizontal
structure like a balance beam. However, in most cases, depending
on the canopy structure, high-density point clouds may appear
at any vertical position, which is the most essential cause
of underestimation.

The best way to avoid this problem is to remove the low-level
point cloud in the vertical direction while maintaining the high-
level canopy spatial structure, so as to ensure that multiple plants
in a plot can participate in the plant-height calculation. Han et al.
(2019) has presented a method for extracting plant height that
takes into consideration the maize canopy structure. The core
steps of this method include the spatial Kriging interpolation

based on multiple neighboring maximum pixels from multiple
plants. In comparison, we adopt a simpler aggregation analysis
method whereby we aggregate pixels within a certain window
size by using the maximum value, and then calculate the mean
of these local maxima, which serves as the representative plant
height at the plot scale. The biggest difference between the two
approaches is that our method does not use the spatial Kriging
interpolation. Compared with the percentile height method (Li
et al., 2015; Kronenberg et al., 2017; Malambo et al., 2018), the
distinct advantage of extracting plant height by considering the
canopy spatial structure is to ensure that multiple plants in a plot
can participate in the calculation, which theoretically reduces the
errors caused by the high-density point cloud at low levels (see,
e.g., Plot 2 at 81DAS in Figure 13) or caused by outliers when the
growth of maize plants are uneven at the plot scale.

Clustering of Temporal Profiles
To search for patterns in the temporal profiles of these traits
(i.e., PH, CRPH, and AGRPH), we explored several clustering
methods and found that FCM as a soft clustering method
is more suitable for our analysis than is a hard clustering
method such as k-means or hierarchical clustering. The initial
points of the k-means clustering algorithm are randomly
selected, which can cause unstable clustering results. Bubeck
et al. (2012) showed that the initialization strongly influences
the k-means clustering results. Hierarchical clustering does
not require us to pre-specify the number of clusters to be
produced, but once the clusters are merged or divided, it
cannot be corrected and the quality of the clustering is limited
(Oded and Lior, 2010).
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One major shortcoming of these hard-clustering methods is
that they make an either-or decision regarding the temporal
profile clustering (Kim et al., 2006). Many genotypes may
have the same temporal profile. FCM clustering provides
more information regarding the degree of membership of each
temporal profile to each cluster of genotypes. The main advantage
of the FCM is its ability to handle noisy data (Halkidi et al.,
2001). The shortcomings of the FCM are that the clustering
result is sensitive to M and the best value of M depends
on the dataset used. Therefore, the value of M should be
interpreted with caution.

Distance measures quantify the dissimilarity between the two
clusters. In this study, we use the Euclidean distance. Han et al.
(2018b) used a shape-based distance metric to cluster these
traits and obtained more-typical temporal profiles (called “typical
curves” in their article). However, due to the excessive number
of typical temporal profiles, the agronomic interpretation of
the clustering solutions is not clear. Based on our research,
typical temporal profiles can better identify genetic differences at
different stages of crop development.

Note that temporal resolution affects the interpretation of
temporal profiles. Changing temporal resolution may lead to
changes in dynamic trait patterns. It is impractical to measure
these traits at high frequencies during the crop growth cycle, and
may even have a negative impact on breeding (Araus and Cairns,
2014). Therefore, careful consideration and understanding of the
appropriate time points for phenotyping field traits is critical
for their evaluation (Shakoor et al., 2017). In view of this, our
future work will focus on determining the best remote-sensing
observation time scale to identify stable and reliable dynamic
patterns of traits, according to the crop growth cycle.

CONCLUSION

This study identifies dynamic patterns of maize plant height
from a short time series of UAV orthomosaic in a field breeding
program. First, by using the reconstructed three-dimensional
point cloud model based on RGB images and a new method for
extracting plant height, we estimate plant heights from different
genotypes at five time points, thereby forming multi-temporal
profiles that provide insights into the changes and trends in
plant height. Second, based on FCM clustering analysis, typical
dynamic patterns of three phenotypic traits (i.e., PH, CRPH,
and AGRPH) hidden in temporal profiles were extracted and
represented by plotting the cluster centroids. Based on our
research, typical temporal profiles regarded as traits could allow
better identification of genetic differences at different stages of
crop development. Typical temporal profiles could enable new
ways to understand phenotypic traits, as demonstrated herein

by the three highly detailed traits reflecting plant height. This
concept can be extended from traits involving temporal plant
height to other traits, such as spectral vegetation index, canopy
coverage, or biomass.

Although the capacity of UAV remote sensing to scale
phenotyping up from a few to 1000s of breeding plots allows
breeders to effortlessly assess the development of field traits on
multiple time scales and thereby accelerate the breeding of novel
traits, limitations remain that must be considered. For example,
some sensors are expensive, and data processing takes a long time.
In particular, another urgent issue is whether the phenotypic
features obtained by remote sensing by UAV can be accurately
marked by QTL analysis.
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