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Autophagy is a catabolic process for bulk and selective degradation of cytoplasmic
components in the vacuole/lysosome. In Saccharomyces cerevisiae, ATG genes were
identified as essential genes for autophagy, and most ATG genes are highly conserved
among eukaryotes, including plants. Although reverse genetic analyses have revealed
that autophagy is involved in responses to abiotic and biotic stresses in land plants, our
knowledge of its molecular mechanism remains limited. This limitation is partly because
of the multiplication of some ATG genes, including ATG8, in widely used model plants
such as Arabidopsis thaliana, which adds complexity to functional studies. Furthermore,
due to limited information on the composition and functions of the ATG genes in
basal land plants and charophytes, it remains unclear whether multiplication of ATG
genes is associated with neofunctionalization of these genes. To gain insight into the
diversification of ATG genes during plant evolution, we compared the composition of
ATG genes in plants with a special focus on a liverwort and two charophytes, which
have not previously been analyzed. Our results showed that the liverwort Marchantia
polymorpha and the charophytes Klebsormidium nitens and Chara braunii harbor
fundamental sets of ATG genes with low redundancy compared with those of A. thaliana
and the moss Physcomitrella patens, suggesting that multiplication of ATG genes
occurred during land plant evolution. We also attempted to establish an experimental
system for analyzing autophagy in M. polymorpha. We generated transgenic plants
expressing fluorescently tagged MpATG8 to observe its dynamics in M. polymorpha
and produced autophagy-defective mutants by genome editing using the CRISPR/Cas9
system. These tools allowed us to demonstrate that MpATG8 is transported into
the vacuole in an MpATG2-, MpATG5-, and MpATG7-dependent manner, suggesting
that fluorescently tagged MpATG8 can be used as an autophagosome marker in
M. polymorpha. M. polymorpha can provide a powerful system for studying the
mechanisms and evolution of autophagy in plants.
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INTRODUCTION

Autophagy is a highly conserved catabolic process in eukaryotes
for degrading and recycling cytoplasmic components. Among
several types of autophagy reported thus far, the molecular
mechanisms and physiological significance of macroautophagy
have been the most intensively studied (Mizushima et al.,
2011). During macroautophagy (hereafter simply referred to as
“autophagy”), a cup-shaped membrane sac called the isolation
membrane or phagophore elongates and sequesters cytoplasmic
components, and its edge is closed to form a double-membrane-
bounded structure called the autophagosome (Baba et al.,
1994). The outer membrane of the autophagosome fuses with
the vacuolar/lysosomal membrane, and a single-membraned
structure called the autophagic body is released into the luminal
space of the vacuole/lysosome to be degraded by lytic enzymes
(Takeshige et al., 1992; Baba et al., 1994, 1995). In addition to
bulk degradation, certain substrates, including organelles, are
selectively recognized and degraded by autophagy (Johansen and
Lamark, 2011). In Saccharomyces cerevisiae, autophagy-related
processes are also involved in biosynthetic delivery; the newly
synthesized precursor form of aminopeptidase I is transported
into the vacuole by small double-membrane-bounded vesicles
(Baba et al., 1997), which are formed through a mechanism
similar to autophagy (Harding et al., 1996; Scott et al., 1996).

In the 1990s, several groups identified APG/AUT/CVT
genes (later unified under the name ATG) as essential genes
for autophagy or autophagy-related processes in S. cerevisiae
(Tsukada and Ohsumi, 1993; Thumm et al., 1994; Harding, 1995;
Klionsky et al., 2003). Atg proteins are initially recruited to and
function at the preautophagosomal structures or phagophore
assembly site (PAS) in a hierarchical manner (Suzuki et al.,
2001, 2007). Based on their functions, the essential genes for
autophagosome formation in S. cerevisiae are classified into four
groups: (1) the Atg1 complex, (2) phosphatidylinositol 3-kinase
(PI3K) complex, (3) Atg9 cycling system, and (4) ubiquitin-
like conjugation systems. The Atg1 complex, consisting of Atg1,
Atg13, Atg17, Atg29, and Atg31, is one of the most upstream
Atg factors and is recruited to the PAS under the regulation of
various cellular signals (Noda and Ohsumi, 1998; Suzuki et al.,
2007; Kamada et al., 2010). The Atg1 complex phosphorylates
various substrates, including Atg9, and acts as a scaffold for
downstream Atg proteins (Suzuki et al., 2007, 2015; Papinski
et al., 2014; Harada et al., 2019). The PI3K complex comprises
Atg6, Atg14, Vps15, and Vps34. The PI3K complex generates
phosphatidylinositol 3-phosphate (PI3P) at the PAS, which leads
to recruitment of PI3P-binding proteins such as the Atg2–
Atg18 complex (Kihara et al., 2001; Obara et al., 2008). The
Atg9 cycling system involves Atg2, Atg9, and Atg18. Atg9 is
a multimembrane-spanning protein that shuttles between the
PAS and mobile structures derived from the Golgi and provides
a membrane source during the early step of autophagosome
formation (Mari et al., 2010; Yamamoto et al., 2012). The Atg2–
Atg18 complex is recruited to the edge of the isolation membrane
with Atg9 and probably regulates recycling of Atg9 from the
PAS (Reggiori et al., 2004; Graef et al., 2013; Suzuki et al.,
2013). Atg2 was also recently shown to have membrane tethering

and lipid transfer activities, which are crucial for expansion
of the isolation membrane (Chowdhury et al., 2018; Gomez-
Sanchez et al., 2018; Kotani et al., 2018; Osawa et al., 2019).
Furthermore, mammalian WIPI2b, which is homologous to
Atg18, interacts with and recruits ATG16L1a (homologous to
Atg16) to regulate the site of lipidation of LC3 (homologous to
Atg8) (Fujita et al., 2008b; Dooley et al., 2014). Two ubiquitin-
like conjugation systems involve Atg3, Atg4, Atg5, Atg7, Atg8,
Atg10, Atg12, and Atg16. Atg12 is conjugated to Atg5 by E1-
like Atg7 and E2-like Atg10, and Atg12–Atg5 forms a complex
with Atg16 (Mizushima et al., 1998, 1999; Shintani et al., 1999;
Tanida et al., 1999; Kuma et al., 2002). Atg8 is cleaved by
Atg4, and glycine is exposed at its C-terminus (Kirisako et al.,
2000). This glycine is conjugated with phosphatidylethanolamine
through the actions of E1-like Atg7, E2-like Atg3, and the E3-
like Atg12–Atg5–Atg16 complex (Ichimura et al., 2000; Hanada
et al., 2007). Lipidated Atg8 is recruited to the autophagosomal
membrane, which functions in expansion and closure of the
isolation membrane (Abeliovich et al., 2000; Nakatogawa et al.,
2007; Fujita et al., 2008a; Xie et al., 2008; Tsuboyama et al.,
2016). Atg8 also interacts with cargo receptors/adaptors via Atg8-
interacting motifs (AIMs) or LC3-interacting regions (LIRs),
which mediate the effective degradation of cargos (Noda et al.,
2010; Nguyen et al., 2016; Padman et al., 2019). A recent study
also demonstrated that ubiquitin-interacting motif (UIM)-like
sequences are also recognized by Atg8 (Marshall et al., 2019).

Most ATG genes are also conserved in plants, and deletion
of many ATG genes in Arabidopsis thaliana results in defective
autophagy, suggesting that ATG proteins in A. thaliana have
the same functions as those in S. cerevisiae and mammals
(Doelling et al., 2002; Hanaoka et al., 2002; Yoshimoto et al.,
2004; Thompson et al., 2005; Xiong et al., 2005; Inoue et al.,
2006; Phillips et al., 2008; Chung et al., 2010; Suttangkakul et al.,
2011; Li et al., 2014; Young et al., 2019). Genetic analyses have
revealed that autophagy is involved in responses to abiotic and
biotic stresses (Doelling et al., 2002; Liu et al., 2005, 2009; Xiong
et al., 2007; Zhou et al., 2013; Chen et al., 2015). Whereas almost
all atg mutants of A. thaliana are fertile under favorable growth
conditions, autophagy is required for male gamete differentiation
in Oryza sativa and Physcomitrella patens (Kurusu et al., 2014;
Sanchez-Vera et al., 2017). Furthermore, selective degradation
of various organelles, including peroxisomes, by autophagy has
been reported (Kim et al., 2013; Shibata et al., 2013; Yoshimoto
et al., 2014); the molecular mechanisms of this phenomenon,
however, remain largely unknown (Yoshimoto and Ohsumi,
2018). The difficulty in studying autophagy in plants is partly due
to the genetic redundancy of key ATG genes in model plants,
including A. thaliana. For example, A. thaliana, O. sativa, and
P. patens harbor nine, four, and six ATG8 homologs, respectively,
which makes it difficult to unravel the functions of ATG8
proteins in these plants (Kellner et al., 2017). Although functional
differentiation among mammalian ATG8 homologs has been
reported (Weidberg et al., 2010), it remains completely unknown
whether each ATG8 homolog in plants acts at a different step
in autophagy. The significance of the duplication of ATG genes
during plant evolution also remains obscure, since information
from basal land plants and algal species remains sparse. To obtain
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more insights into the diversification and evolution of autophagy
in the plant lineage, information from charophytes, the closest
living relatives of land plants, and from additional bryophytes
would be needed.

In this study, we identified homologs of ATG genes in
the basal land plants Marchantia polymorpha and P. patens
and the charophytes Klebsormidium nitens and Chara braunii.
A comparison among these species, as well as Chlamydomonas
reinhardtii and A. thaliana, indicated that M. polymorpha
shares a common set of ATG genes with low redundancy
compared with those of other land plants; this finding suggested
that M. polymorpha would be a good system to investigate
the molecular mechanisms and physiological significance of
autophagy in land plants. Many molecular genetic techniques and
cell biological tools have been established for M. polymorpha (Era
et al., 2009; Ishizaki et al., 2016; Kanazawa et al., 2016; Minamino
et al., 2018), which would also be a good reason to use this plant
for autophagy studies. In this study, as the first step toward the
study of autophagy in M. polymorpha, we generated transgenic
plants expressing fluorescently tagged MpATG8 proteins to
monitor autophagosomes and produced the autophagy-defective
mutants Mpatg2, Mpatg5, and Mpatg7 to analyze the effect of
defective autophagy on thallus development and their responses
to nutrient starvation. Our results indicated that the number
of ATG genes gradually increased during plant evolution. We
also succeeded in monitoring the dynamics of MpATG8, which
was transported into the vacuole in an MpATG2-, MpATG5-,
and MpATG7-dependent manner. These tools would be useful
for future studies to understand the basic mechanisms and
physiological significance of autophagy in plants.

RESULTS

Identification of Orthologs of Core
Autophagy Machinery Components in
Plants
Extensive studies using S. cerevisiae have revealed that ATG1–10,
12–14, 16–18, 29, and 31, and VPS15 and VPS34 are required
for autophagosome formation (Mizushima et al., 2011). Although
some ATG genes are highly duplicated in angiosperms, the
precise significance of the expansion of ATG genes remains
obscure. To gain insight into this phenomenon, we searched the
genome sequences of charophytes (K. nitens and C. braunii) and
bryophytes (M. polymorpha and P. patens) for homologs of ATG
genes, a number of which were then compared with those of
A. thaliana and C. reinhardtii. As a query, we used the sequences
of the ATG genes of A. thaliana (Shemi et al., 2015; Liu et al.,
2018). We also examined ATG11 and ATG101. ATG11 is not
required for starvation-induced bulk autophagy but is essential
for selective autophagy in S. cerevisiae (Kim et al., 2001); Atg11
interacts with Atg1 and cargo receptors, which is crucial for
selective autophagy (Yorimitsu and Klionsky, 2005; Farre et al.,
2008; Okamoto et al., 2009). Atg101 forms a complex with ULK1
(homologous to Atg1) in mammalian cells, although S. cerevisiae
does not harbor a homolog of ATG101 (Hosokawa et al., 2014;

Mercer et al., 2014). In A. thaliana, ATG11 and ATG101 are
thought to form a complex with ATG1, and the atg11 mutant
exhibits similar phenotypes to those of other atg mutants (Li
et al., 2014), suggesting that ATG11 and ATG101 are involved
in general autophagy in plants. Therefore, ATG11 and ATG101
were also included among the “core autophagy machinery
genes” in this study.

As shown in Table 1, almost all core autophagy machinery
genes were highly conserved among the plants we investigated,
although ATG16 homologs in C. reinhardtii (Shemi et al., 2015)
and ATG2 and ATG10 homologs in C. braunii were not detected.
Homologs of ATG17, ATG29, and ATG31 were not detected in
this study, consistent with previous studies (Kawamata et al.,
2005; Li et al., 2014). While a considerable number of ATG
genes are present in A. thaliana and P. patens, C. reinhardtii,
charophytes, and M. polymorpha possess only one gene for each
core autophagy machinery component, with a few exceptions;
multiple genes for ATG8 and ATG18 exist in the genomes of
these plants with lower redundancy than A. thaliana and P. patens
(Table 1). Thus, core autophagy machinery genes have seemingly
expanded gradually during plant evolution.

Recently, Pang et al. (2019) reported that ATG10 has been lost
in quite a few lineages of eukaryotes, including Pichiaceae and
the SAR supergroup, which comprises stramenopiles, alveolates,
and Rhizaria. As summarized in Table 1, we detected an ATG10
homolog in K. nitens but not in C. braunii. We also looked for
ATG10 homologs in other charophytes whose genome and/or
transcriptome information was available (Spirogyra pratensis,
Nitella mirabilis, Coleochaete orbicularis, and Mesostigma viride)
and found that these algae, except for N. mirabilis, possess
ATG10 homologs. This distribution of ATG10 suggested that
secondary loss of ATG10 occurred in Charophyceae (Table 2).
The ATG10 protein is an E2-like enzyme required for covalent
linkage between the C-terminal glycine residues of ATG12 and
ATG5 (Mizushima et al., 1998; Shintani et al., 1999; Suzuki et al.,
2005; Phillips et al., 2008; Chung et al., 2010). In Toxoplasma
gondii and Komagataella phaffii, which do not possess ATG10
homologs, ATG12 forms a noncovalent complex with ATG5,
which does not require the C-terminal glycine of ATG12 (Pang
et al., 2019). Intriguingly, the ATG12 of C. braunii does not
harbor glycine at the C-terminus, although the glycine residue
is conserved at the C-terminus of N. mirabilis ATG12 (Table 2).
These features could reflect a similar mechanism of complex
formation between ATG12 and ATG5 in C. braunii; ATG12 might
form a noncovalent complex with ATG5.

A. thaliana and Nicotiana tabacum are reported to possess
two types of ATG18: conventional ATG18, which is similar to
yeast and mammalian ATG18, and plant-unique ATG18, which
harbors the BCAS3 domain at the C-terminus (Xiong et al., 2005;
Zhou et al., 2015). All of the land plant species we analyzed in
this study harbor both types of ATG18, whereas C. reinhardtii
does not possess plant-unique ATG18 (Table 3). We then
investigated whether plant-unique ATG18 is found in other
chlorophytes. Although we did not detect ATG18 with the BCAS3
domain in Dunaliella salina, Volvox carteri, Micromonas pusilla,
Ostreococcus lucimarinus, and Ostreococcus tauri, Coccomyxa
subellipsoidea harbored this type of ATG18. Canonical ATG18
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TABLE 2 | ATG10 and ATG12 homologs in charophytes.

Species Class ATG10 C-terminal Gly in ATG12

M. viride Mesostigmatophyceae 1 +

K. nitens Klebsormidiophyceae 1 +

C. braunii Charophyceae ND −

N. mirabilis Charophyceae ND +

C. orbicularis Coleochaetophyceae 1 +

S. pratensis Zygnematophyceae 1 +

“ND,” not detected in our analysis; +, conserved; −, not conserved.

TABLE 3 | ATG18 homologs in Viridiplantae.

ATG18

Species Class BCAS3-domain
lacking

BCAS3-domain
containing

C. reinhardtii Chlorophyceae 2 ND

K. nitens Klebsormidiophyceae 2 1

C. braunii Charophyceae 1 1

M. polymorpha Marchantiopsida 3 1

P. patens Bryopsida 4 4

A. thaliana Magnoliopsida 5 3

D. salina Chlorophyceae 2 ND

V. carteri Chlorophyceae 2 ND

C. subellipsoidea Trebouxiophyceae 2 1

M. pusilla Mamiellophyceae 2 ND

O. lucimarinus Mamiellophyceae 2 ND

O. tauri Mamiellophyceae 2 ND

“ND,” not detected in our analysis.

homologs were found in all of these species (Table 3). Therefore,
ATG18 containing the BCAS3 domain seems to have been
acquired before the emergence of Streptophyta, which was also
supported by the result of phylogenetic analysis (Figure 1).

Dynamics of MpATG8 in M. polymorpha
Because of the low genetic redundancy of ATG components
(Table 1) and molecular genetic tools available (Ishizaki et al.,
2016), M. polymorpha is expected to be a good model
for understanding the fundamental molecular mechanisms of
autophagy in land plants. As the first step of the autophagy
study using M. polymorpha, we generated transgenic plants
expressing fluorescently tagged MpATG8 proteins under the
regulation of their own promoters. ATG8 localizes to the isolation
membrane during autophagosome formation and stays on the
inner membranes of autophagosomes until their degradation in
the vacuole/lysosome in various organisms, including A. thaliana
(Kirisako et al., 1999; Kabeya et al., 2000; Yoshimoto et al., 2004;
Izumi et al., 2015). Therefore, fluorescently tagged MpATG8 is
expected to be a good tool to visualize autophagosome dynamics
in M. polymorpha. As shown in Figure 2A, monomeric Citrine
(mCitrine)-tagged MpATG8a and MpATG8b were localized
to punctate structures distributed throughout the cytosol.
Fluorescence was also detected in the nucleus (asterisks in
Figure 2A), which might reflect a function of the nucleus as a
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FIGURE 1 | Phylogenetic analysis of ATG18 in Viridiplantae. The maximum-likelihood phylogenetic analysis was performed using amino acid sequences of ATG18 in
Viridiplantae. Bootstrap probability with at least 50% support is indicated as percentage on each branch. At, A. thaliana; Pp, P. patens; Mpo, M. polymorpha; Cb,
C. braunii; Kn, K. nitens; Cr, C. reinhardtii; Ds, D. salina; Vc, V. carteri; Cs, C. subellipsoidea; Mpu, M. pusilla; Ol, O. lucimarinus; Ot, O. tauri.

reservoir of MpATG8 as reported in mammalian cells (Huang
et al., 2015). As autophagic bodies bearing ATG8 transported
to the vacuolar lumen are generally degraded immediately by
vacuolar enzymes (Kirisako et al., 1999; Huang et al., 2000), we
treated transgenic M. polymorpha with concanamycin A (concA),
which inhibits acidification of the vacuole and inactivates
vacuolar lytic enzymes, to visualize autophagic bodies in the
vacuole (Yoshimoto et al., 2004). After treatment with concA,
both mCitrine-MpATG8a and mCitrine-MpATG8b were visible
as punctate structures in the vacuole (Figure 2C). Vacuolar
localization was not observed in mock-treated cells, suggesting
that these punctate structures are autophagic bodies. We then
investigated whether MpATG8a and MpATG8b are localized
to the same structure. We expressed monomeric RFP (mRFP)-
tagged MpATG8a and mCitrine-MpATG8b in the same plant and
observed strong colocalization at the same punctate structures in
the cytosol; colocalization was also observed in the vacuole in
concA-treated cells, suggesting that MpATG8a and MpATG8b
are localized to the same autophagosomes/autophagic bodies
(Figures 2B,D). These observations indicated that MpATG8a
and MpATG8b behave in a similar manner to ATG8 in other
organisms, and these molecules with fluorescent tags would be
useful as autophagosome markers.

Generation of atg Mutants of
M. polymorpha by Genome Editing
To investigate the physiological significance of autophagy in
M. polymorpha, we generated Mpatg5, Mpatg7, and Mpatg2
mutants (hereafter referred to as Mpatg5-1ge, Mpatg7-1ge,
and Mpatg2-1ge, respectively) by genome editing using the
clustered regularly interspaced short palindromic repeats
(CRISPRs)-associated endonuclease Cas9 (CRISPR/Cas9) system
(Sugano et al., 2014, 2018). ATG5, ATG7, and ATG2 are required

for autophagosome formation, and deletion of these genes
causes defects in autophagy in various organisms, including
S. cerevisiae, mammals, and A. thaliana (Tsukada and Ohsumi,
1993; Mizushima et al., 2001; Doelling et al., 2002; Kuma
et al., 2004; Komatsu et al., 2005; Thompson et al., 2005; Inoue
et al., 2006; Velikkakath et al., 2012). The mutations detected
in Mpatg5-1ge, Mpatg7-1ge, and Mpatg2-1ge result in frame
shifts, and functional full-length proteins cannot be produced
in these mutants (Figure 3). To investigate whether autophagy
occurs in these mutants, we observed the dynamics of mCitrine-
MpATG8a in these mutants. In wild-type (WT) plants, mCitrine-
MpATG8a was localized to the punctate structures in the
cytoplasm and vacuolar lumen (Figures 2A,C, 4A). In contrast,
vacuolar localization of mCitrine-MpATG8a was not observed
in any of the Mpatg mutants, while mCitrine-MpATG8a was
observed as puncta in the cytoplasm (Figures 4A,B). We then
performed a cleavage assay of mCitrine-MpATG8a in the Mpatg
mutants. As ATG8 is rapidly degraded in the vacuole, whereas
mCitrine/YFP is more resistant to lytic enzymes, translocation
of mCitrine-MpATG8 to the vacuole can be monitored by
examining the accumulation of free mCitrine by immunoblotting
(Shintani and Klionsky, 2004; Chung et al., 2010). In WT, two
bands were observed via immunoblotting using an anti-green
fluorescent protein (GFP) antibody, at approximately 43 and
27 kDa (Figure 4C). The 43 kDa band represented full-length
mCitrine-MpATG8a, and the 27 kDa product represented free
mCitrine. In contrast, only the 43 kDa product was detected in
Mpatg mutants, confirming that mCitrine-MpATG8a was not
transported into the vacuole in these mutants (Figure 4C). This
result indicated that Mpatg5-1ge, Mpatg7-1ge, and Mpatg2-1ge are
defective in autophagy and that MpATG8 is transported into the
vacuole in an MpATG5-, MpATG7-, and MpATG2-dependent
manner in M. polymorpha.
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FIGURE 2 | Subcellular localization of MpATG8 members. (A) MpATG8a and MpATG8b were localized to punctate structures in the cytosol, indicated by
arrowheads. Fluorescence was also detected in the nucleus, indicated by asterisks. (B) mRFP-MpATG8a and mCitrine-MpATG8b colocalized to the punctate
structures in the cytosol. Arrowheads indicate punctate compartments with mRFP-MpATG8a and mCitrine-MpATG8b. (C) MpATG8-positive puncta observed in the
vacuoles upon concA treatment. The asterisk and arrowheads indicate the nucleus and puncta in the vacuole, respectively. (D) Colocalization of mRFP-MpATG8a
and mCitrine-MpATG8b at punctate structures in the vacuole upon concA treatment. Arrowheads indicate punctate compartments with mRFP-MpATG8a and
mCitrine-MpATG8b in the vacuole. The insets are magnified images of the boxed regions. Green, magenta, and blue show fluorescence from mCitrine, mRFP, and
autofluorescence of chlorophyll, respectively. Scale bars = 10 µm.

We then observed the macroscopic phenotypes of Mpatg
mutants. Under normal laboratory conditions, the proximal
regions of the thalli of all Mpatg mutants exhibited a yellowish

chlorotic phenotype, which is similar to the early senescence
phenotype of atg mutants of A. thaliana (Doelling et al.,
2002; Hanaoka et al., 2002; Figure 5A). Thus, autophagy
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FIGURE 3 | Mutations in Mpatg5-1ge, Mpatg7-1ge, and Mpatg2-1ge. Domain structures of the MpATG5, MpATG7, and MpATG2 proteins and sequences of the
mutations in MpATG5, MpATG7, and MpATG2 introduced by genome editing. All three mutations result in frame shifts. Underlining indicates protospacer adjacent
motif (PAM) sequences. Inserted, deleted, and substituted bases are shown in red.

appears to also be required for preventing early senescence in
M. polymorpha. We then investigated whether Mpatg mutants
are hypersensitive to nutrient starvation, as reported for atg
mutants of A. thaliana (Doelling et al., 2002; Hanaoka et al.,
2002). We cultured thalli of M. polymorpha in liquid 1/2×
Gamborg’s B5 medium under continuous light (control) or
in 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) under
the dark condition, which induces both bulk autophagy and
piecemeal autophagy of chloroplasts in A. thaliana (Izumi et al.,
2010), and measured chlorophyll contents. Consistent with
the early senescence phenotype shown in Figure 5A, Mpatg
mutants exhibited lower chlorophyll contents after incubation in
1/2× Gamborg’s B5 medium for 3 days under continuous light

compared with WT, confirming that autophagy plays critical roles
in preventing early senescence in M. polymorpha (Figures 5B,C).
We also found that Mpatg mutants cultured in 10 mM MES
for 3 days under dark condition exhibited significantly lower
chlorophyll contents than that in WT cultured in 10 mM MES
(Figure 5D). These data indicated that autophagy is required for
normal response to nutrient starvation in M. polymorpha.

DISCUSSION

ATG genes were first identified in S. cerevisiae, and most ATG
genes have now been shown to be conserved in various lineages
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FIGURE 4 | Generation of atg mutants of M. polymorpha. (A) MpATG8a was localized to punctate structures (arrowheads) throughout the cytosol in WT,
Mpatg5-1ge, Mpatg7-1ge, and Mpatg2-1ge. Bars = 10 µm. (B) mCitrine-MpATG8a was not detected in the vacuole in Mpatg5-1ge, Mpatg7-1ge, and Mpatg2-1ge

after concA treatment. Arrowheads indicate punctate structures in the vacuole. The insets are magnified images of the boxed regions. The green and blue
pseudocolors indicate fluorescence from mCitrine and autofluorescence of chlorophyll, respectively. Scale bars = 10 µm. (C) Five-day-old thalli of WT, Mpatg5-1ge,
Mpatg7-1ge, and Mpatg2-1ge expressing mCitrine-MpATG8a were subjected to immunoblotting using the anti-GFP antibody.

of eukaryotes. In this study, we showed that charophyte species
and M. polymorpha also possess a set of genes for the core
autophagy machinery with lower redundancy than those of
P. patens and A. thaliana. This result suggests that the core
autophagy machinery has been expanded during land plant

evolution. Some of the ATG genes, such as ATG8 and ATG18,
are reported to have multiplied in various organisms, including
land plants. Intriguingly, M. polymorpha also harbors multiple
ATG8 and ATG18 genes, and the plant-unique ATG18 group
comprising the BCAS3 domain is conserved in M. polymorpha,
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FIGURE 5 | Phenotype of atg mutants of M. polymorpha. (A) 26-day-old thalli grown on 1/2× Gamborg’s B5 medium under continuous light. Scale bar = 2 cm.
(B) Chlorophyll contents of 5-day-old WT or Mpatg mutant thalli before incubation in liquid 1/2× Gamborg’s B5 medium or 10 mM MES. (C) Chlorophyll contents of
WT and Mpatg mutants after incubation in liquid 1/2× Gamborg’s B5 medium for 3 days under continuous light. (D) Ratios of chlorophyll contents in Mpatg mutants
to those in WT, which were incubated in liquid 1/2× Gamborg’s B5 medium under continuous light for 3 days (N, non-starvation) or in 10 mM MES (pH 5.5) for
3 days under dark condition (S, starvation). The boxes and solid lines in the boxes show the first quartile and third quartile, and median values, respectively. The
whiskers indicate 1.5× interquartile ranges. p-Values were calculated by Welch’s t-test. n, the number of samples (three thalli were treated as one sample for correct
measurement of the fresh weight).

some charophytes, and the chlorophyte C. subellipsoidea. The
distribution of the plant-unique ATG18 suggests that this type
of ATG18 was acquired before the emergence of Streptophyta,
and secondary losses of this gene occurred independently
during plant evolution, although its molecular function remains
unknown. Moreover, it remains unclear whether the members
of ATG8 and ATG18 are functionally differentiated in plants.

In A. thaliana, knockdown of ATG18a, one of eight ATG18
homologs, results in similar but weaker phenotypes to those
of mutants of other ATG genes, suggesting that ATG18a plays
a major role in autophagy, although the other seven ATG18
homologs could have a partly redundant function (Xiong et al.,
2005; Kang et al., 2018). In addition to its localization to the
PAS, Atg18 of S. cerevisiae is also localized to the vacuolar
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membrane via phosphatidylinositol 3,5-bisphosphate binding
and acts in retrograde transport from the vacuole, which is
independent of autophagy (Dove et al., 2004; Efe et al., 2007).
ATG18 homologs in A. thaliana might also have autophagy-
independent functions. In mammals, two groups of ATG8-
related proteins, the LC3 and GABARAP/GATE-16 subfamilies,
are both localized to the autophagosomes but play distinct roles
in autophagosome formation (Kabeya et al., 2004; Weidberg
et al., 2010). The LC3 group is involved in the elongation of
the phagophore membrane, whereas GABARAP/GATE-16 plays
an essential role in a later stage of autophagosome maturation
(Weidberg et al., 2010). Caenorhabditis elegans possesses two
ATG8 homologs: LGG-1 and LGG-2. LGG-1 is involved in the
formation of autophagosomes. In contrast, LGG-2 mediates the
maturation of autophagosomes and facilitates their tethering
with lysosomes through interaction with VPS39 (Manil-Segalen
et al., 2014). In plants, distinct binding affinities of potato ATG8
members with PexRD54, an effector protein in the pathogenic
fungus Phytophthora infestans, have been reported (Dagdas et al.,
2016). Thus, the plant ATG8 and ATG18 groups could comprise
functionally differentiated members; this possibility should be
verified in future studies.

Although most of the core machinery of autophagy is
conserved in plants, ATG10 homologs were not detected in two
charophyte species. Loss of ATG10 has been observed in various
lineages of eukaryotes, some of which utilize a noncovalent
complex of ATG5 and ATG12 without the C-terminal glycine
residue (Pang et al., 2019). Given that ATG10 mediates covalent
linkage between ATG12 and ATG5 at the C-terminal glycine
residue of ATG12, secondary loss of ATG10 could be associated
with conversion from covalent to noncovalent ATG12–ATG5
complexes during evolution, which could be followed by deletion
of the glycine residue of the C-terminus of ATG12. Consistent
with this notion, we did not detect ATG10 homologs in
two charophyte species, one of which (C. braunii) possesses
ATG12 without C-terminal glycine (Tables 1, 2). Further
characterization of ATG12 and ATG5 in C. braunii would be
needed to verify the possible convergence of the ubiquitin-like
conjugation system involving ATG12 and ATG5 across a wide
range of eukaryotic lineages.

M. polymorpha has been recognized as a new model for
analyzing the developmental processes of land plants (Bowman,
2016; Bowman et al., 2017; Ishizaki, 2017). This plant would also
be useful for analyses of molecular mechanisms of autophagy
due to its low genetic redundancy and widely available molecular
genetic tools (Ishizaki et al., 2016; Bowman et al., 2017). In
the interest of understanding the molecular mechanisms of
autophagy in plants, it would be beneficial to reveal the molecular
functions of ATG8 members, given that nonplant ATG8 acts
at various steps of autophagy, such as expansion and closure
of the isolation membrane, cargo recognition, and transport
of autophagosomes to the vacuole/lysosome (Abeliovich et al.,
2000; Nakatogawa et al., 2007; Fujita et al., 2008a; Kimura et al.,
2008; Xie et al., 2008; Noda et al., 2010; Manil-Segalen et al.,
2014; Nguyen et al., 2016; Tsuboyama et al., 2016). Although
several ATG8-interacting proteins, such as ATI1/2, ATI3, DSK2,
NBR1, ORM1/2, PUX, RPN10, and TSPO, which are involved

in autophagy induced by certain stresses, have been identified
(Svenning et al., 2011; Vanhee et al., 2011; Honig et al., 2012;
Zhou et al., 2013, 2014, 2018; Hachez et al., 2014; Michaeli et al.,
2014; Marshall et al., 2015, 2019; Hafren et al., 2017; Nolan et al.,
2017; Yang et al., 2019), it remains unclear how various substrates
are selectively targeted by autophagy in plants (Yoshimoto and
Ohsumi, 2018). Given that M. polymorpha possesses fewer copies
of ATG8 than other model plants, this plant would be useful
for revealing the molecular functions of ATG8 members and
functional diversification of ATG8 in land plants.

In this study, we succeeded in visualizing autophagosomes
using fluorescently tagged ATG8 proteins in M. polymorpha.
Both MpATG8a and MpATG8b were localized to punctate
structures in the cytosol and vacuole. Deletion of MpATG2,
MpATG5, or MpATG7 resulted in defective transport of
MpATG8a into the vacuole, indicating that vacuolar transport
of ATG8 is autophagy-dependent in M. polymorpha, as reported
in other organisms. Punctate localization of MpATG8a was also
detected even in the Mpatg mutants, and similar localization is
also observed in Arabidopsis atg mutants (Yoshimoto et al., 2004;
Kang et al., 2018). ATG8/LC3 is reported to be incorporated
into protein aggregates in an autophagy-independent manner
in mammalian cells (Kuma et al., 2007; Tanida et al., 2008).
Therefore, it is highly likely that MpATG8a also aggregates in
the cytosol independently of autophagic activities in the Mpatg
mutants. It would be also possible that some population of
fluorescently tagged MpATG8a/b-positive puncta observed in
WT plants represents unfunctional protein aggregates, which
should be verified in future studies.

The autophagy-defective mutants of M. polymorpha exhibited
an early senescence-like phenotype and hypersensitivity to
nutrient starvation (Figure 5), which resembles the phenotypes
observed in atg mutants of other plants (Doelling et al., 2002;
Hanaoka et al., 2002; Mukae et al., 2015; Wada et al., 2015).
In A. thaliana, salicylic acid (SA) signaling is involved in early
senescence in atg mutants (Yoshimoto et al., 2009). Although the
relevance of SA signaling to the senescence of Mpatg mutants
remains unknown, autophagy might play a common role in
preventing senescence among land plants.

A forward genetic approach using M. polymorpha would
also be effective to reveal the molecular mechanisms of
autophagy in land plants, as in other systems (Tsukada and
Ohsumi, 1993; Thumm et al., 1994; Harding, 1995; Tian
et al., 2010; Morita et al., 2018). Its haploid-dominant life
cycle and low genetic redundancy could make this plant
even more amenable to forward genetic analyses than other
model plants, including A. thaliana (Ishizaki et al., 2016).
Screening of mutants defective in autophagy and functional
analyses of obtained factors would facilitate understanding of
the molecular mechanisms of autophagy in land plants. In
conclusion, M. polymorpha is a suitable system for analyzing
autophagy in land plants. Further studies in this plant will
contribute to revealing the molecular mechanisms of autophagy
in plants, which would also be useful to gain insights
into how the autophagy machinery has been functionally
diversified and how autophagy has been recruited to support
plant physiology.
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MATERIALS AND METHODS

Identification of Orthologs for Core
Autophagy Machinery
Amino acid sequences of core autophagy machinery in K. nitens,
P. patens, and M. polymorpha were obtained in MarpolBase1

using ATG genes of A. thaliana (Li et al., 2014; Shemi et al.,
2015; Liu et al., 2018) as queries. ATG genes in C. braunii
were searched in the C. braunii portal site2. For core autophagy
machinery orthologs in C. reinhardtii except for ATG11, we
referred to the previous study (Jiang et al., 2012; Shemi et al.,
2015). The ATG11 homolog in C. reinhardtii was searched in
MarpolBase. For ATG17, ATG29, and ATG31, whose homologs
have not been identified in A. thaliana thus far, ATG genes in
S. cerevisiae were used as queries. ATG10 and ATG12 homologs
in S. pratensis, N. mirabilis, C. orbicularis, and M. viride
were searched in the transcriptome database in MarpolBase.
ATG18 homologs in D. salina, V. carteri, C. subellipsoidea C-
169, M. pusilla CCMP1545, and O. lucimarinus were searched
in Phytozome v12.1.63. ATG18 homologs in O. tauri were
searched in MarpolBase. A domain search was performed
using SMART4 (Letunic et al., 2014; Letunic and Bork, 2017).
The accession numbers and amino acid sequences analyzed
in this study are included in the Supplementary Material.
We followed the nomenclature proposed in Bowman et al.
(2016) for nomenclature of genes, proteins, and mutants of
M. polymorpha.

Phylogenetic Analysis of ATG18
Amino acid sequences of ATG18 in various plant species
were aligned with ClustalX 2.1 (Larkin et al., 2007), and
alignment gaps were removed using Gblocks5. Phylogenetic
analysis was performed using PhyML 3.06 (Guindon et al.,
2010) under the LG+G+I+F model, which was selected
by Smart Model Selection in PhyML (Lefort et al., 2017).
Bootstrap analysis was performed by resampling 1,000 sets.
The sequences used in the phylogenetic analysis and the
alignment from which gaps were removed were included in the
Supplementary Material.

Vector Construction
Genomic sequences of MpATG8a (Mapoly0001s0494.1) and
MpATG8b (Mapoly0027s0034.1) were amplified by PCR from
genomic DNA prepared from gemmae of M. polymorpha
accession Takaragaike-1 (Tak-1, male) (Ishizaki et al., 2008), and
the amplified products were subcloned into pENTR/D-TOPO
(Invitrogen) according to the manufacturer’s instructions. To
construct mCitrine- and mRFP-MpATG8, genomic sequences
comprising the protein-coding regions and 3′-flanking sequences
(2 kb) were amplified with the SmaI site followed by a

1http://marchantia.info/
2https://bioinformatics.psb.ugent.be/orcae/overview/Chbra
3https://phytozome.jgi.doe.gov/pz/portal.html
4http://smart.embl-heidelberg.de/
5http://molevol.cmima.csic.es/castresana/Gblocks_server.html
6http://www.atgc-montpellier.fr/phyml/

flexible linker sequence (Gly–Gly–Ser–Gly) attached at the
5′-end and subcloned into the pENTR vector. Then, cDNA
for mRFP or mCitrine containing the SmaI site at the 5′-
end was inserted into the SmaI site of pENTR vectors
containing the MpATG8 genes using the In-Fusion HD
Cloning System (Clontech) according to the manufacturer’s
instructions. The 5 kb 5′-sequence [promoter + 5′-untranslated
region (UTR)] of each MpATG8 was then amplified and
inserted into the SmaI site of the mRFP/mCitrine-MpATG8
vectors. The resultant chimeric genes were then introduced
into pMpGWB301 (mCitrine-tagged MpATG8a and MpATG8b)
or pMpGWB101 (mRFP-MpATG8a) (Ishizaki et al., 2015)
using the Gateway LR ClonaseTM II Enzyme Mix (Invitrogen)
according to the manufacturer’s instructions. To construct
CRISPR/Cas9 vectors, two complementary oligonucleotides in
the sequences of MpATG2, MpATG5, and MpATG7 were
synthesized and annealed, and the resulting double-stranded
fragments were subcloned at the BsaI site of the pMpGE_En03
vector (Sugano et al., 2018). The resultant gRNA cassette
flanked by the attL1 and attL2 sequences in pMpGE_En03
were then introduced into the pMpGE010 vector (Sugano et al.,
2018) using the Gateway LR Clonase II Enzyme Mix. The
list of primer sequences used in this study is included in the
Supplementary Material.

Plant Material and Transformation
The M. polymorpha accession Tak-1 was grown asexually
and maintained on 1/2× Gamborg’s B5 medium containing
1.4% agar at 22◦C under continuous white light.
Transformation was performed as previously described
(Kubota et al., 2013). Transformants were selected on
plates containing 10 mg/l hygromycin B and 250 mg/l
cefotaxime for the pMpGWB101 and pMpGE010 vectors
and 0.5 µM chlorsulfuron and 250 mg/l cefotaxime for the
pMpGWB301 vector.

Confocal Laser Scanning Microscopy
Five-day-old thalli grown on 1/2× Gamborg’s B5 medium
containing 1.4% agar at 22◦C under continuous white light were
used for observation. Dorsal thallus tissues were observed using
an LSM 780 confocal microscope (Carl Zeiss) as previously
described (Kanazawa et al., 2016). For concA treatment, 4-
day-old thalli were incubated in liquid 1/2× Gamborg’s B5
medium plus 1 µM concA (Santa Cruz Biotechnology, sc-
202111) for 14 h at 22◦C under continuous white light. concA
was dissolved in dimethyl sulfoxide (DMSO) at 1 mM as a stock
solution. For the mock treatment, samples were treated with
DMSO at a concentration equal to that used for the inhibitor-
treated samples.

Identification of Mutation Points
For genotyping of mutants generated by CRISPR/Cas9, total
RNA was extracted from 5-day-old thalli of Mpatg5-1ge, Mpatg7-
1ge, and Mpatg2-1ge using the RNeasy Plant Mini Kit (Qiagen)
and used as a template for reverse transcription using SuperScript
III Reverse Transcriptase (Invitrogen) and the oligo (dT)
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(18-mer) primer according to the manufacturer’s instructions.
Mutations in the obtained cDNA fragments were analyzed by
direct sequencing.

Immunoblot Analysis
Five-day-old thalli were used for the immunoblot analysis.
One hundred milligrams of plants were homogenized in
200 µl of grinding buffer [50 mM HEPES–KOH, pH 7.5,
340 mM sorbitol, 5 mM MgCl2, and 1× CompleteTM

Protease Inhibitor Cocktail (Roche)] for each genotype and
centrifuged at 1,000 × g for 10 min. The supernatants were
centrifuged at 3,000 × g for 10 min, and the resulting
supernatants were used for immunoblotting. The polyclonal
anti-GFP antibody (Kanazawa et al., 2016) was purified
by affinity column chromatography using the GST-mCitrine
protein bound to the HiTrapTM NHS-activated HP Column
(GE Healthcare) and used at 500× dilution. The peroxidase-
conjugated donkey anti-rabbit immunoglobulin antibody (GE
Healthcare) was used as the secondary antibody. Signals were
detected using Immobilon Western Chemiluminescent HRP
Substrate (Merck).

Measurement of Chlorophyll Content
Five-day-old thalli were incubated in 1 ml of liquid 1/2×
Gamborg’s B5 medium for 3 days under continuous light
or in 10 mM MES (pH 5.5) for 3 days under dark
condition, and chlorophyll was extracted by soaking in 500 µl
N,N-dimethylformamide overnight. Calculation of chlorophyll
concentrations was done according to Porra et al. (1989). Three
thalli were treated as one sample for correct measurement
of fresh weights.
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