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Deep learning techniques, and in particular Convolutional Neural Networks (CNNs), have

led to significant progress in image processing. Since 2016, many applications for the

automatic identification of crop diseases have been developed. These applications could

serve as a basis for the development of expertise assistance or automatic screening tools.

Such tools could contribute to more sustainable agricultural practices and greater food

production security. To assess the potential of these networks for such applications,

we survey 19 studies that relied on CNNs to automatically identify crop diseases. We

describe their profiles, their main implementation aspects and their performance. Our

survey allows us to identify the major issues and shortcomings of works in this research

area. We also provide guidelines to improve the use of CNNs in operational contexts as

well as some directions for future research.

Keywords: convolutional neural networks, deep learning, precision agriculture, Review (article), plant diseases

detection

1. INTRODUCTION

Plant health and food safety are closely linked. The Food and Agriculture Organization of the
United Nations (FAO) estimates that pests and diseases lead to the loss of 20–40% of global food
production, constituting a threat to food security (Food and Agriculture Organization of the
United Nation, International Plant Protection Convention, 2017). Using pesticides is a way of
protecting crops from these infestations and thus preserve yields. Their use has been one of the
factors behind the increase in food production since the 1950s, enabling it to meet the needs of
a growing population (Cooper and Dobson, 2007). However, the use of such substances is not
environmentally harmless. Applying these substances negatively impacts biodiversity, including
insect, bird, and fish populations, as well as soil, air, and water quality (Risebrough, 1986; Gill
and Garg, 2014; Goulson, 2014; Sanchez-Bayo and Goka, 2014; Knillmann and Liess, 2019). Their
use also constitutes a risk to human health, with both acute and chronic effects (Weisenburger,
1993; Bassil et al., 2007; Kim et al., 2016). However, the quantity of pesticides used is increasing
worldwide, with +78% of tons of active ingredients used between 1990 and 2016 (Food and
Agriculture Organization of the United Nation, 2018).

Knowledge of a fields’ phytosanitary conditions is a decisive factor in limiting the use of
pesticides while protecting harvests. Indeed, it enables farmers to carry out proper practices in
the right place and at the right time. However, assessing the healthiness of fields is not simple,
and it requires a high level of expertise. Indeed, a disease can be expressed differently from one
plant species to another, or even from one variety to another. A given symptom may be the result
of different problems, and these problems may also combine on the same plant. Even nutritional
deficiencies and pests can produce symptoms similar to those of some diseases (Barbedo, 2016).
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Assessing the healthiness of plots is also time consuming.
Checking the condition of each plant several times in a season
is not practical on large farms. The difficulty of accessing
some crops can also complicate prospection. The automatic
identification of diseases by imagery has the potential to solve
all these issues by using automatic prospection or expert
assistance tools.

Determining the healthiness of a plant through an image is,
however, a very difficult task. Indeed, crops are rich and complex
environments. Their evolution is constant, with leaves, flowers,
and fruits changing throughout the season. Their appearance
also slightly changes during the day, as the amount and angle of
incident solar radiation impacts their spectral response. Several
techniques have been used to develop identification methods
for crop diseases, whether under controlled or real conditions.
These techniques were based in particular on the analysis of
visible and near-infrared reflectance, on the development of
specific vegetation indexes or even by pattern analysis. For
more information on these techniques (see Sankaran et al.,
2010; Mahlein et al., 2012; Martinelli et al., 2015; Barbedo,
2016). Those studies also identify several issues that block the
effective use of these techniques for the automatic identification
of diseases. Some of these issues are operational in nature and
relate to image acquisition, weather constraints, deployment
costs, availability, processing speed, and real-time diagnostic
capabilities. Analyzing images from fields adds other issues,
such as the ability to process complex elements like foliage or
non-uniform backgrounds. Other bottlenecks are linked to the
complexity of phytosanitary problems such as symptom variation
over time and between varieties, or to the possibility of multiple
disorders appearing simultaneously. Techniques capable of
overcoming these challenges are needed to produce operational
automatic diseases identification solutions. Since 2012, Deep
Neural Networks (DNNs) and in particular Convolutional
Neural Networks (CNNs) have been very successful in various
computer vision tasks, such as object detection and recognition,
classification, and biometry. The convolution layers of a CNN can
be seen as matching filters that are derived directly from the data.
CNNs thus produce a hierarchy of visual representations that are
optimized for a specific task. As a result of CNN training, a model
is obtained—a set of weights and biases—which then responds to
the specific task it was designed for. One of the major strengths
of CNNs is their capacity of generalization—that is, the ability
to process data never observed before. This enables a certain
robustness to background heterogeneity, to image acquisition
conditions and to intra-class variability. However, learning those
visual representations involves large-scale training data. Given
their large number of parameters, one common problem of
DNNs is their tendency to overfit the training data, which means
that they become unable to generalize (Alom et al., 2018). The
choice of the architecture adapted to a specific problem and the
interpretability of the training results (black box effect) are other
challenges surrounding CNNs. For more details about CNNs
please refer to the following references: LeCun et al. (2015) and
Goodfellow et al. (2016).

The purpose of this article is to synthesize the studies that
have used CNNs to automatically identify crop diseases from

images and to assess their potential for operational tools. This
paper is organized as follows. The research method used to form
our analysis corpus is detailed in section 2. After describing
selected studies’ profiles, section 3 presents the main aspects
of the implementation of CNN-based methods, as well as their
performance. In section 4, we focus on techniques that can help
us better understand the trained models in order to avoid the
black box effect and to ensure the reliability of the obtained
results. Finally, in section 5, we highlight good practices based on
both our experience with CNNs and on conclusions from other
application areas. Future research directions are also proposed.

2. RESEARCH METHODOLOGY

The literature search was conducted through SCOPUS for
works that matched keywords such as “deep learning,” “deep
neural network,” or “convolutional neural network,” along with
keywords regarding “diseases,” and “plants” or “crops.” The
references of the selected articles were also checked. Only
English-language articles published in established peer-reviewed
journals through December 2018 were selected. The search was
limited to studies using RGB images and supervised learning.
Nineteen articles met our criteria. Synthesis tables describing
these articles are presented in the Appendix.

3. DEEP LEARNING APPLIED TO
DISEASES IDENTIFICATION

3.1. Selected Studies’ Profile
In the selected corpus, there was a strong interest in market
gardening, with tomatoes in 10 of the 19 selected articles. The
issue of automatic crop disease identification can be addressed in
a general or in a specialized approach. In the general approach
(6/19), multi-crop and multi-disease models are trained, while
the specialized approach focuses on one crop (13/19). The main
similarity of these studies was their focus on analyzing a single
organ: the leaves. Only two studies integrated other plant parts
(Fuentes et al., 2017, 2018). The selected corpus mentions two
application delivery approaches that motivate the development
of automatic diseases identification solutions. The first approach
is based on the use of mobile expertise tools that provide
in-the-field identification capabilities. This approach relies on
pictures taken with a regular hand-held camera and centered
on leaves. The analysis tools are based on image classification,
where a class or category label is assigned to each analyzed image
(Figure 1A). Ramcharan et al. (2017) and Picon et al. (2018)
implemented mobile applications to use their models in the field.
The second application delivery approach is based on automatic
phytosanitary monitoring via autonomous vehicles. This is
not presented in concrete terms but rather as a development
perspective. In addition, to achieve a working model under field
conditions, the data used for training must reflect the complexity
of the studied environment. Diseases, plants, and crops in general
are dynamic objects and environments whose appearance can
change. Several phenological or symptom development stages,
backgrounds, light conditions, and even several acquisition scales
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FIGURE 1 | Expected output examples of (A) the classification, (B) the object detection, and (C) the segmentation of images containing esca disease symptoms.

(one organ, one plant, several plants) must be integrated. It is also
necessary to not only identify diseases but also to locate them.
Classification therefore does not produce adequate output when
used without a localization solution. To obtain their location,
two approaches can be used: object detection, which provides
identification and location as a bounding box (Figure 1B), or
segmentation, which provides identification for each pixel in
the given image (Figure 1C). In the corpus, 16 studies perform
classification and 3 use object detection.

3.2. Dataset Design
3.2.1. Data Origin and Characteristics
The quantity of information and the diversity within the images
varies among the studies. Three types of datasets can be defined,
depending on their level of complexity (Figure 2). The first
type consists of images captured under controlled conditions.
In this case, images show one leaf picked up in the field and
placed on a uniform background, in an environment with
controlled illumination (Figure 2A). This simplifies the image
analysis process by removing any variability related to external
conditions or plant morphology in order to focus on symptom
expression. A total of 13 of the 19 studies used such images.
The second and slightly more complex type of dataset consists
of images captured under uncontrolled conditions, but focusing
on a particular plant organ, generally a leaf. In this case, images
have a complex background but the largest area is occupied by
the object of interest (Figure 2B). Only 3 of the 19 studies used
such images. Finally, the last type of dataset consists of images
captured under uncontrolled conditions and without focusing on
a particular plant organ. These images therefore reflect what an
operator would see in the field, with all the complexity associated
with foliage architecture (Figure 2C). This kind of dataset is the
one best-suited to build an operational automatic phytosanitary
monitoring tool. Only 3 of the 19 studies used such images.

A majority of the images used in these studies come from
public datasets (11 out of 19 studies). The most widely used

dataset is PlantVillage, a database initially described in Hughes
and Salathé (2015) and now containing 87,848 photographs
of leaves of healthy and infected plants (Ferentinos, 2018). A
total of 25 species are represented through 58 classes, with
62.7% of the images taken under controlled conditions. Barbedo
(2018b) used an open database containing 1,383 images of 12
plant species through 56 classes. Its acquisition conditions are
mainly controlled. On the other hand, DeChant et al. (2017)
used a dataset captured under uncontrolled conditions and with
no focus on a particular plant organ. This dataset is highly
specialized in the identification of Northern Leaf Blight (NLB)
infected maize plants. A description of an extended version of
this dataset can be found in Wiesner-Hanks et al. (2018). It
consists of 18,222 annotated handheld, boom and drone images
with 105,705 NLB lesions. The availability of such databases is
significant, as it provides a high number of annotated images—a
key factor of success in deep learning. These images can also be
used for benchmarking, enabling a comparison of the accuracy
of models created by different research groups. Collecting
images in the field and gathering them into databases such as
PlantVillage is an ideal solution to improve the community’s
research capabilities.

The images in private datasets (the type utilized by eight
studies) were all handheld. A weakness of such datasets is that
they sometimes lack important details, such as the capture
conditions, acquisition date, varieties studied and the intensity
of the analyzed symptoms. In some studies, too few or even no
samples are illustrated, making it impossible to determine the
application prospects of the trained models. Indeed, a model
trained with a low-complexity image dataset (as defined earlier)
will not be able to generalize to data from amore complex setting.
This was underlined by Mohanty et al. (2016), whose accuracy
went from 99.35% on a held-out test set to 31% on a test set with
images taken under different conditions. The work of Ferentinos
(2018) divided the PlantVillage dataset based on either laboratory
or field conditions. Their model trained on laboratory images

Frontiers in Plant Science | www.frontiersin.org 3 July 2019 | Volume 10 | Article 941

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Boulent et al. Automatic Plant Diseases Identification

FIGURE 2 | Typology of image complexity found in the datasets. Esca grape disease on (A) an image captured under controlled condition (from the PlantVillage

dataset), (B) an image captured under uncontrolled condition and with a focus on a particular organ, and (C) an image captured under uncontrolled conditions and

without focus on a particular organ.

reached 33.27% accuracy when applied on field images, while
their model trained on field images reached 65.69% accuracy
when applied on laboratory images. As data is the key element of
a successful CNN-based model, its characteristics and source(s)
must be well described.

3.2.2. Class Taxonomy Definition
Classes are defined by diseases and species (in the case of multi-
species models). In Wang et al. (2017), classes reflect disease
severity levels. Both the intensity and the stages of infection
can lead to a high degree of variability in symptoms. This
variability can be expressed through separate classes (as didWang
et al., 2017) or integrated in global classes. However, since it is
difficult to obtain enough images for all expressions, especially
over a single growing season, Barbedo (2018a) recommends the
continuous addition of new images to the training dataset. The
number of classes vary greatly from one study to another—from
2 (DeChant et al., 2017) to 58 (Ferentinos, 2018). Four studies
also dedicated a class to the background. Adding such a class is
meaningful for a real world application, where the background is
not uniform. To this end, Sladojevic et al. (2016) and Brahimi
et al. (2018) used the publicly available Stanford Background
dataset (Gould et al., 2009). On the other hand, Fuentes et al.
(2017) extracted patches of healthy plants and background from
their images and put them together in a transversal class of
negatives. They relied on hard negatives to form this class. Hard
negatives are false positives obtained from previous evaluations
that are integrated into the training set for the negative class
for a new training. This practice aims to reduce the number of
false positives by confronting the network to situations that it
has previously failed to manage properly. The negative class is
quite complex to construct, as it must integrate all the diversity
of the real world without having an excessively higher number
of images than the positive classes. Using hard negatives can
help target the most relevant negative cases. Even if imbalance
is a reflection of the field reality where healthy plants are in the

majority, some classes should not have a much higher number
of examples than others. The class imbalance problem affects
both the convergence of the model and its ability to generalize
(Buda et al., 2018). Different strategies can be chosen either at a
data level or at an algorithm level to minimize the detrimental
effect of imbalance (Krawczyk, 2016). Wang et al. (2017) chose
undersampling. They divided their healthy leaves’ class into 12
clusters of 110 images for training and 27 for testing, thereby
providing classes of the same size (between 102 and 144 for
training and between 23 and 36 for testing). Having a taxonomy
that only includes individual diseases is a simplification of reality.
Very often, diseases, nutritional disorders, and/or pests can be
present at the same time, combining their symptoms. Creating
a class for each phytosanitary problem combination does not
seem to be a suitable solution since the number of possible
classes would increase considerably (Barbedo, 2018a). It would
be unfeasible to collect enough images for each class. To solve
this problem, Barbedo (2018a) proposes to consider lesions
individually and process only areas of symptomatic interest
identified by the user. Another possibility is to train binary
models (target disease versus the rest) and thus give primacy of
detection to the disease of interest, even if it does not express
“pure” symptoms. In any case, the greatest challenge is to cover
enough symptom expressions so that the model can be applied in
real world conditions.

3.2.3. Data Annotation
The association of a label to all or part of an image—is a laborious
but unavoidable step in supervised learning. Repetitive and time-
consuming, it must be carried out by an expert in identifying
crop diseases, which makes this task difficult to delegate. The
annotation method depends on the general approach chosen
for image analysis. For classification, it consists of associating
a label to each image, either by integrating it in the metadata
or by organizing the images, e.g., into folders corresponding
to the different classes. For object detection, the coordinates of
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the target within the image must be entered. This is done by
delineating regions of interest that are often rectangular but may
also correspond more precisely to the object in question.

For the identification of diseases, the annotation step raises
the question of the analysis scale and of the importance given to
the context. Indeed, what is the best piece of information to send
to the network? The lesion, the leaf, or the whole plant? Each of
these levels are valid and provide complementary features.With a
close symptom view, textural elements stand out (Figure 3A). A
complete view of the leaf reveals symptom patterns (Figure 3B).
Finally, a view of the whole plant provides a spatial perspective of
the symptoms. For example, some problems occur preferentially
on young leaves or infect a whole branch (Figures 3C,D). Some
authors compared those scales and assessed their impact on the
final results. Ramcharan et al. (2017) formed two datasets: an
“original cassava dataset” with entire cassava leaves, and a “leaflet
cassava dataset” where the leaflets were manually cropped. The
accuracies obtained were slightly higher at the leaflet scale for
three of the five studied diseases. Leaf cropping thus had no
significant impact, despite the fact that the “dataset leaflet” was
seven times wider than the original. Picon et al. (2018) addressed
the early identification of wheat diseases. Three ways of extracting
the tiles sent to the network were tested. The first downsampled
the image to match the size required by the network. The second
approach was to crop a rectangle containing only the leaf. The
third approach, called “superpixel based tile extraction,” was
based on the segmentation of the image into homogeneous zones.
On the test set, the balanced accuracy value was higher at the
superpixel scale for one of the two diseases tested. There is
therefore no ideal amount of context to give, as it varies from one
object of study to another. It is however interesting to note the
potential of multi-scale approaches that benefit from information
captured at different scales. Note also that a random scaling factor
can be added during data augmentation to helpmodels generalize
to scale variations (see section 3.3.3).

3.2.4. Dataset Division
When using deep neural networks, three separate datasets are
required to develop a model. The first set, the training set,
is the collection of images to be used by the network to
automatically learn its hidden parameters, such as weights and
biases. The second set, the validation set, is used to manually
adjust hyperparameters, which are essentially the settings that
cannot be automatically learned during training. These include
among others the learning rate, the batch size and the network
architecture. For more information about hyperparameters (see
Goodfellow et al., 2016). The values of these hyperparameters
are often set empirically, as they are linked to the problem,
the dataset, and the model architecture. Therefore, there are no
good predefined values, as they must be tuned based on the
performance (in terms of accuracy) obtained on the validation
set. This means that information about the validation data
indirectly leaks into the model, resulting in an artificial ability
to perform well on these images (Chollet, 2017). For that
reason, the validation images should only be used to tune the
hyperparameters; the final evaluation of the model’s performance
is done using the test set, discussed in the next paragraph. The

model being trained can be evaluated on the validation set at the
end of each epoch, allowing the training process to be monitored
and to detect overfitting. The training and validation sets come
from the same data source that is subdivided. Most of the images
go for training (between 70 and 85% depending of the size of the
dataset). Mohanty et al. (2016) and Zhang S. et al. (2018) tried
five different separation ratios and both concluded that using
80% for training and 20% for validation was ideal for their data.
Another way to divide the images into training and validation sets
is cross validation. The dataset is divided into several subsets that
are randomly used for training or validation. Cross validation is
useful when the dataset is small as it avoids any result bias caused
by an arbitrary predetermined and fixed data separation. It is
used in 5 of the 19 selected studies. Once the hyperparameters
have been defined, further training can be done by gathering the
training and validation sets to benefit from a greater number
of images.

The third dataset that is needed is the test set. It is used when
the training phase has been completed, with the objective of
evaluating the model’s final generalization ability. The accuracy
on the test set is thus the most important metric to compute,
as it provides an overview of the model’s performance beyond
the hyperparameter exploration process. The test set must be
independent from the training and validation sets, so it cannot
be obtained from a simple subdivision. However, 6 of the studies
we analyzed (31.5%) formed their test set this way. Worse yet, 11
of the studies (58%) did not even have a test set. Only 2 studies
(10.5%) performed evaluation on an explicitly different test
set. Having those three datasets is essential, since the observed
data variability in the agricultural setting is quite important.
Therefore, there must be a way to ensure that the generated
models can operate under different conditions and in different
fields. Using data acquired on a different plot for the test set can
be a good and simple way to achieve data independence. Even
though obtaining data in an agricultural setting can be complex,
it should not lead to overlooking this critical aspect.

3.2.5. Data Pre-processing
Before sending images to the network, two pre-processing steps
are often necessary. First, the images must typically be resized
to match the size of the input layer of the CNN. The sizes are
quite standard from one network to another, with for example
227 × 227 for AlexNet, 224 × 224 for DenseNet, ResNet, and
VGG, and 299× 299 for Inception. Secondly, the images must be
normalized to help the model to converge more quickly as well
as to better generalize on unseen data (Chollet, 2017). Other pre-
processing operations have been proposed. Mohanty et al. (2016)
and Oppenheim and Shani (2017) transformed their images to
grayscale. Mohanty et al. (2016) compared accuracies obtained
on grayscale with those from color images. The performance was
slightly higher on the color models, with the f1-score improving
from 1.34 to 3.33% (for details on the f1-score, see Powers,
2011). Even if using color images helps the identification process,
as the performance decreases only slightly during the grayscale
transformation, this highlights that the network relies mainly
on other features to identify diseases. In the same study, the
authors also evaluated the impact of background suppression. In
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FIGURE 3 | Selecting an analysis scale: from a scale close up on the main symptoms (A) to a scale providing more contextual features (D). Example of a vine branch

affected by flavescence dorée.

fact, background management is one of the challenging elements
in the implementation of automatic methods for identifying
phytosanitary problems in imagery. With conventional image
processingmethods, leaf segmentation is a preliminary step to the
analysis (Barbedo, 2016). The performance obtained byMohanty
et al. (2016) is marginally better with the background, improving
the f1-score by slightly <1%. Since background segmentation
is not an option on images taken in the field, and since it is
the strength of the CNNs to manage complex backgrounds,
background suppression is unnecessary.

3.3. Training Phase
During the training phase, the model’s internal weights are
automatically updated over several iterations. External factors
such as the training strategy, architecture, regularization
techniques, or the value of the hyperparameters influence this
training process.

Comparing studies and their results to extract insights on how
to define the training phase is complicated because they do not
use the same data and they do not provide all the parameters
required to reproduce their experiments. It is also difficult to

appreciate the significance of the conclusions made in these
studies because their experiments are not performed multiple
times to evaluate the impact of random initializations and
training sample ordering. Nevertheless, we decided to present
some comparisons of training and architectural strategies while
keeping in mind that some of their results are potentially biased.

3.3.1. Training Strategies
There are two ways to train a CNN: from scratch or with transfer
learning. Transfer learning is when a network that is pre-trained
on a large set of images (for example ImageNet, and its 1.2
million images in 1,000 classes) is used and adapted to another
task. This kind of learning is enabled by the fact that the first
layers of CNNs learn generic low-level features that are not class
specific (Zeiler and Fergus, 2014). In practice, this adaptation is
done using the network weights from previous training. Using
transfer learning allows us to use CNNs even when the amount
of training data is limited, which is often the case in the context
of crop diseases identification. This technique helps to achieve
greater generalizability, as the network had previously learned
to deal with millions of examples. It is also a way to save in
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terms of computing time and capacity. There are two ways to
perform transfer learning: by feature extraction and fine-tuning.
Feature extraction consists in keeping the weights of a pre-trained
model intact and using the embeddings it produces to train a
new classifier on the target dataset. Fine-tuning consists in using
the weights of a pre-trained model to initialize the model and
then training all or part of these weights on the target dataset
(Chollet, 2017). Choosing one technique or the other depends in
particular on the proximity between both the source and target
datasets (in case they are very close, feature extraction may be
sufficient) but also on the size of the target dataset. Training a
large number of layers with a small dataset may increase the
risk of overfitting. Training from scratch is when the network
weights are not inherited from a previous model but are instead
randomly initialized. It requires a larger training set, and the
overfitting risk is higher since the network has no experience
from previous training sessions and so must rely on the input
data to define all its weights. However, this approach allows
us to define a problem-specific network architecture that can
improve the performance. These problem-specific architectures
can be developed, for example, to handle more than three color
channels, multi-scale dimensions, or to integrate multiple models
trained differently (with dissimilar hyperparameters or datasets).
In our corpus, 15 studies (79%) used transfer learning and 7
studies (37%) trained a model from scratch.

Choosing a training strategy depends on both technical
(amount of available images, computing capacity) and thematic
(availability of a suitable architecture or of pre-trained weights
compatible with the data used) considerations. Brahimi
et al. (2018) compared three training strategies on six CNN
architectures (AlexNet, DenseNet-169, Inception v3, ResNet-34,
SqueezeNet-1.1, and VGG13). They used the PlantVillage
dataset augmented with a background class. Two strategies used
transfer learning: feature extraction and complete fine-tuning.
In the third strategy, the network was trained from scratch. The
accuracies obtained on the validation set and the training time
are shown in Figure 4. For the six architectures, fine-tuning
gave the highest precision (from 99.2% for SqueezeNet to
99.5% for VGG13). The times required for fine-tuning and
for training from scratch are close (from 1.05 to 5.64 h for
fine-tuning and from 1.05 to 5.91 h when trained from scratch).
The feature extraction approach had the lowest training times
(from 0.85 to 3.63 h).

Overall, training from scratch and transfer-learning should
not be seen as completely mutually exclusive strategies. In case
of a new architecture where no prior weights are available, pre-
training may still provide some benefits. The idea is to start by
training themodel from scratch on a large dataset (like ImageNet,
but also PlantVillage or another plant database) and then carry
out fine-tuning on the specific data gathered for the study
(Cruz et al., 2017; Picon et al., 2018).

3.3.2. Architectures
CNNs are based on three main components: convolutional
layers, pooling layers and activation functions, commonly
Rectified Linear Units (ReLUs). The number of layers used,
their arrangement and the introduction of other processing

units vary from one architecture to another, determining
their specificity. In 17 of the 19 selected studies, state-of-
the-art architectures were used. Architectures proposed
alongside the first popular CNNs (e.g., LeNet, AlexNet,
and CaffeNet) are used in 11 studies. One study used
SqueezeNet, known to achieve similar performance as
AlexNet on ImageNet with 50 times fewer parameters.
The acclaimed ResNet, VGG, and Inception architectures
are used in 15 studies. Newer architectures such as
DenseNet or ResNetXt are used in three studies. For
more information about architectures, see the work of
Khan et al. (2019).

In 12 of the 19 studies, different architectures were compared,
with the highest and lowest accuracy for 4 of these studies
reported (Figure 5). The accuracies range from 59% with a
ResNet-101 (Fuentes et al., 2017) to 99.75% with a DenseNet-
121 architecture (Too et al., 2018). Network complexity and
depth do not necessarily lead to higher accuracy, as shown by
the superiority of the VGG-16 results over those of ResNet-
101 for Fuentes et al. (2017) and the closeness of the results
of Inception-V3 and SqueezeNet (Brahimi et al., 2018). The
performance reported for a unique architecture may also
vary from one study to another, as in the case of VGG-
16, which ranked as the best architecture for Wang et al.
(2017) and Fuentes et al. (2018), but as the worst for Too
et al. (2018). Since architecture implementations are now widely
distributed through standard libraries such as PyTorch and
Tensorflow/Keras, we advise trying several architectures to find
the ones that bring the best results on a studied case. This choice
will depend on the nature of the data, its quantity and the time
and resources available for training. Choosing an architecture
and defining the optimal values of the other hyperparameters
can seem like a hazardous trial-and-error process. However,
there are methods to guide this process, whether through
manual hyperparameters tuning, random or grid research
(Bengio, 2012; Goodfellow et al., 2016; Smith, 2018).

Custom architectures were used in seven studies. In some
cases, this involved adapting a reference architecture so that it
is more efficient in handling the study data. To limit the risk
of overfitting due to their small dataset, Oppenheim and Shani
(2017) relied on drop-out, a regularization technique based on
the random disconnection of links between model layers. In
other cases, architectures were more customized. Cruz et al.
(2017) implemented what they called an “Abstraction Level
Fusion.” They injectedmanually generated features into the fully-
connected layers of the network in order to guide its training and
possibly accelerate it. Zhang S. et al. (2018) presented a three-
channel convolutional neural network with the goal of improving
the use of color information. DeChant et al. (2017) developed
a three-stage process based on the training of several CNNs to
compute heat maps which are used to determine if the analyzed
image contain diseased lesions. Fuentes et al. (2018) implemented
a framework based on CNN filter banks to minimize the number
of false positives. Customized architectures can be useful to
obtain a model more adapted to a specific study case. However,
a customized architecture must be compared to a recent state-of-
the-art architecture in order to measure its unique contribution.
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FIGURE 4 | Comparison of the training time (h) and accuracy values (%) obtained on a validation set according to different architectures and training strategies.

Adapted from Brahimi et al. (2018).

3.3.3. Regularization Techniques
The main challenge in machine learning is to obtain a trained
model that is able to analyze new and unseen data. This aspect
is far from being guaranteed by high training accuracy. Indeed,
the main pitfall in deep learning is overfitting. This occurs
when the number of input samples is too small compared to
the learning capacity of the network. Overfitting does not allow
to learn the general characteristics of the classes and instead
captures the noise of the training set (Srivastava et al., 2014).
This leads to a model with high accuracy during training but
that is unable to generalize (i.e., it does not achieve high test
accuracy). In the corpus, trained models are not systematically
tested on independent data (only two studies have an explicitly
independent test set). It is therefore, not possible to determine

whether the models were overfitting. However, several of the
selected studies presented a low minimum number of samples
per class (before augmentation): equal to or less than 55 for 2
studies, and between 55 and 200 for 8 studies. In those cases, the
number of images seems too small to train a model in a robust
way—especially considering the diversity in the plant world.

To improve model generalization, the first and obvious step is
to gather more data. However, obtaining many images for a given
class can be complicated in an agricultural context, especially
when it comes to diseases. In machine learning, techniques have
been developed to improve the performance of the test set, even
if it means reducing the performance of the training set. These
techniques are called regularization techniques (Goodfellow
et al., 2016). One of these is data augmentation, which consists
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FIGURE 5 | Comparison of the accuracies obtained using different architectures. For each study, the lowest and highest performance achieved on the validation set

(or test set when available) is reported.

of the transformation of the geometry or intensity of the original
images to make them seem like new images. The operations are
often simple: rotation, mirroring, random cropping, zooming, or
even adding noise, changing contrast, and brightness values as
well as simulating new backgrounds. The size of the dataset and
its diversity are therefore artificially increased. The augmentation
operations can be performed in different ways, using one or
several (possibly randomly chosen) transformations per image.
The transformations can also be applied before the start of the
whole training process, or “online” when each image batch is
uploaded. An incorrect practice noted in some studies must be
highlighted: the augmentation was sometimes carried out before
the separation of the images into training and validation sets. It
is important to carry out these augmentation operations once the
sets have been defined to ensure that an image and its duplicates
are in the same set. Additional techniques applied to the model

itself, such as drop-out (detailed in section 3.3.2), or during the
training process, such as weight decay and early stopping, were
found in the articles. The use of such techniques is recommended.

3.4. CNN Performance
3.4.1. Comparison With Other Approaches
In image classification, CNNs outperform traditional image
processing methods in several applications. This general trend
is also observed in the automatic identification of crop diseases.
Some of the selected studies compared the performance obtained
with CNNs to that of other methods. In all of these studies,
the CNN results are better than the others. Figure 6 groups
the best results obtained for a CNN and for an alternative
method in studies that made a comparison. The difference of
accuracy ranged from 3% (Brahimi et al., 2017) to 28.89%
(Liu B. et al., 2017).
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FIGURE 6 | Comparison of accuracy values obtained by CNNs and by other image processing methods. Only the best CNN architecture and comparative approach

for each study were reported. If given in the study, the precision on a test set was reported.

3.4.2. Generalization Performance
To assess the generalizability of a model, it must be evaluated
on a dataset of images never seen before, which is the test set
mentioned in section 3.2.4. Only 2 of the 19 studies selected
relied on an explicitly independent dataset to conduct this
evaluation. Mohanty et al. (2016) trained a model to identify
14 crop species and 26 diseases. They used the PlantVillage
database. After an accuracy of 99.35% on a held-out test set,
they performed an evaluation on two new datasets of 121 and
119 images, respectively, downloaded from the Internet. On
these datasets, they got an accuracy of 31.40% for the first and
31.69% for the second. Even if this accuracy is higher than
random guessing, it is insufficient for practical use. It can be
assumed that the training led to overfitting and/or that the input
dataset lacked diversity compared to the test set. Picon et al.
(2018) aimed to identify three wheat diseases. Using a mobile
application, technicians tested the model for two of the three
diseases studied: Septoria (77 images) and Rust (54 images),
to which they added 27 images of healthy plants. A balanced
accuracy of 98% was obtained for Septoria, and of 96% for Rust.

No drop in performance was observed. This solid performance
can be explained by the fact that the test images were acquired at
the end of the season—where the symptoms are most visible—
but also thanks to good training practices. Indeed, acquiring
more than 1000 samples per class, in several plots in Spain and
Germany, over three seasons (2014, 2015, and 2016) and in
real environments resulted in enough diversity for the model to
work well in operational conditions. These two studies emphasize
once again the importance of adopting good training practices
and defining an independent test set to properly evaluate the
performance of CNNs and their ability to be used operationally.

4. UNDERSTANDING THE TRAINED
MODELS

One of the downsides associated with deep learning methods is
the difficulty in understanding what the model has learned—the
famous black box effect. Still, it is possible to understand the
model’s inner mechanism or at least get a glimpse of it through
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several techniques. By better understanding the trained models,
we can not only ensure the relevance of the results generated, but
also improve their quality.

4.1. Standard Techniques
Easy-to-implement methods that can assess the quality of
prediction and gain an insight into how the training progressed
have been found in the studied corpus. First, additional metrics
to the overall accuracy may be calculated, such as the level of
confidence in its prediction and the sensitivity and specificity
of the model. By using confusion matrices, inter-class confusion
can be assessed. The analysis of incorrect predictions is used to
find problematic situations that the model cannot handle. Thus,
DeChant et al. (2017) observed that illumination variations,
background leaves, dead ground vegetation, senescent leaves
at the bottom of canopies and insects were badly handled by
their model. Fuentes et al. (2017) observed confusion between
classes with high pattern variations. Ferentinos (2018) pointed
out that their model struggles to manage shadow effects, the
presence of non-plant objects, and the case where the analyzed
leaf occupies a small and non-central part of the image. They may
also have found images that were not properly annotated. While
these methods lead to a better appreciation of models results
and provide clues for improvement, they do not ensure that
the training is properly carried out and that the results are due
to relevant features. For instance, in our case, these techniques
cannot confirm that only plant lesions are used to identify the
target diseases instead of other unrelated characteristics from
the photos.

4.2. Visualization Techniques
To improve the transparency of the learning process, several
visualization methods have been developed, allowing us to
picture what is happening in the network. Atabay (2017) used
the occlusion technique which consists in sliding an occlusion
window on the image to study the variation in the probability
belonging to the right class. They pointed out that the class
was sometimes assigned because of pixels belonging to the
background—indicating that the features learned were not just
those linked to the symptoms. Brahimi et al. (2018) also used the
occlusion technique but underlined that it was computationally
expensive and time-consuming. They computed saliency maps
based on gradient values to estimate the pixels’ importance in
the node corresponding to the ground truth. They computed this
in two ways: with and without guided backpropagation, where
only the positive gradients are propagated through the activation
functions, which helps to obtain more precise visualizations.
Mohanty et al. (2016) visualized the top activated feature
maps at the output of early convolution layers (Figure 7A).
Zhang K. et al. (2018) used t-distributed Stochastic Neighbor
Embedding (t-SNE) to visualize the features of their final
fully connected layer and to evaluate the distance between
their classes (Figure 7B). The insight brought by all these
visualization methods can help us understand the behavior
of trained models while suggesting new improvements. Their
implementation minimizes the black box effect, solidifying the
reliability that can be attributed to the models, which is decisive
for an application in real agricultural conditions. Implementing

visualization solutions has also been recommended in the
medical image analysis field, where understanding the prediction
system is crucial to ensure correct diagnostics (Litjens et al.,
2017). For more details on visualization techniques (see
Zeiler and Fergus, 2014; Qin et al., 2018).

5. DISCUSSION

CNNs provide unparalleled performance in tasks related to the
classification and detection of crop diseases. They are able to
manage complex issues in difficult imaging conditions. Their
robustness may now allow them to emerge from the research
environment and become part of operational tools. However,
before tools for expertise assistance and automatic screening
become a reality, a few steps still need to be tested and integrated.
In this section, we first discuss the best practices to adopt
all along the development chain so that trained models are
able to handle the real-world complexities of agricultural and
phytosanitary problems. We then identify the elements to be
further addressed to make such tools fully operational, including
possible research directions.

5.1. Adopting the Best Practices
5.1.1. Targeted Image Acquisition
The robustness of a trained model is linked to the quality of
its training dataset. Data diversity is one of the key elements
to ensure model generalization. Indeed, as also highlighted in
Barbedo (2018a), the training dataset has to reflect the reality
of the operational environment, which is very challenging.
Considering the target application before data acquisition can
allow us to capture more appropriate images. For example, for
an automatic screening tool, the entire plant must be included
in the image, while for an expertise assistance tool, only the
leaf or the fruit can be focused on. The operational scope must
also be defined in advance. For example, in the case of a tool
operating on several varieties or even species, it is necessary to
include all the different expressions of symptoms. Carrying out
the acquisitions at different hours of the day and under several
meteorological conditions ensures the model can operate free
from these constraints. Ideally, images should also be acquired
on several farms in order to be confronted with a variety of
maintenance conditions. Using more than one camera avoids
dependency on a particular device. Following this step, the nature
of the test set should be considered to ensure that its images will
be independent from those used in training. For this purpose, a
plot can be devoted to produce the test set. The plot conditions
must match the target application scenario, for example by
including diseases other than the one studied.

5.1.2. Dataset Preparation
The architecture of a model is not the main factor that must be
considered to obtain good accuracy. It is rather the quality of the
training data as well as its preprocessing and augmentation that
can provide the most significant accuracy improvements (Litjens
et al., 2017). All steps related to the preparation of the data must
therefore be carried out in a rigorous way. The annotation phase
should begin by an explicit definition of the class taxonomy,
particularly if the contamination intensity is annotated. This step
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FIGURE 7 | Visualization examples found in the corpus (A) Activations in the first convolution layer visualization (Mohanty et al., 2016). (B) T-distributed Stochastic

Neighbor Embedding on the final fully connected layer (Zhang K. et al., 2018).

ensures ensures the annotations reproducibility. Having more
than one expert for annotation prevents the risk of dependence
on the annotator. Besides, augmentation operations have proven
to be effective against overfitting. Easy to set up, they are
fully encouraged. It is however imperative to perform these
transformations after the separation into training and validation
subsets. Otherwise, an image and its transformation could end up
in both training and validation sets, causing data leakage. Dealing
with the class imbalance is also important for the convergence of
the model and its generalizability (see section 3.2.2).

5.1.3. Training and Evaluation Phases
If the time and computing resources allow, conducting several
training sessions with the same hyperparameters can lead to
improved accuracy, as random initializations can have an impact
on the results. When comparing hyperparameters, it would also
be advisable to consider fixing the random number generators
to prevent them from biasing the comparison. Experimenting
with more than one type of architecture can also have a
positive effect. For equal accuracy, choosing the least complex
architecture is more advantageous from an operational point
of view. If applicable, transfer learning is recommended to
improve computation time and generalizability. Once all the
hyperparameters have been fixed, the model should be retrained
by combining the images previously used for training and
validation into a global training set. Indeed, as soon as all
the hyperparameters have been defined, there is no longer any
reason to keep the validation set. It is then worth using this
global training set to try to improve the accuracy one last time
(i.e., without follow-up adjustments to any hyperparameters).
The retrained model can then be evaluated on the test set.
The visualization step is also important, as it helps to better
understand what is happening in the model and to ensure the
robustness of the results. This methodology can also provide
opportunities to improve performance.

5.1.4. Sharing Reproducible Results
To ensure the results obtained and shared are useful to the
scientific community, it is important to have a reproducible
research perspective, which is sometimes still lacking in artificial
intelligence (Hutson, 2018). When working with CNNs, this
requires the sharing of not only all of the hyperparameters,
but also data, code, and even trained models. This sharing is
not always possible because of commercial considerations, but
it does allow reproducible works to gain a greater scientific
appreciation (Peng, 2011) and to contribute to the progress of
the research field.

5.2. Outlook
Most applications in crop diseases identification will emerge
in uncontrolled environments. Efforts will therefore have to be
focused on forming datasets similar to what is found in the
field and preferably taken with the acquisition tool of the target
scenario application—whether it is a smartphone, a drone, a
robot or a tractor. Once new data is acquired, it commonly
involves annotation. This step is quite tedious but it is possible
to simplify it with active learning. Active learning is an iterative
procedure designed to find and annotate the most informative
samples. The concept behind this methodology is that annotating
good examples can lead to similar or even better accuracy than
annotating all examples, and for a lower operative cost as well as
requiring less time. A model must first be trained from a small
subset of annotated examples. This model is then queried to find
the most informative samples (Settles, 2009). Already used as a
tool to build datasets in machine learning, this technique is now
used with deep neural networks, including for the annotation
of medical images (Gorriz et al., 2017; Otálora et al., 2017)
or in remote-sensing (Liu P. et al., 2017). Another way to
reduce the annotation effort would be to share the annotated
data. By combining data annotated by different experts, this
would also prevent bias related to individual annotators, and it
would generally help improve the quality of annotations. Robust
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and complete datasets could be formed this way. Nevertheless,
annotation in such specialized areas is sometimes complex and
it can even be difficult for an expert to identify the symptoms
of a plant disease. Rigorous annotation is therefore challenging
and associated with uncertainty, leading to difficulties in the use
of images grouped by social networks (Barbedo, 2018a). Having
more benchmarck datasets would be very valuable for our field.
This recommendation is shared in other areas where annotation
requires significant expertise, such as image processing in biology
and medicine (Ching et al., 2018). An alternative approach is
to avoid the annotation process entirely by using unsupervised
learning algorithms for anomaly detection. Already investigated
in the medical field (Chalapathy and Chawla, 2019), this could be
explored for plant analysis.

In a more thematic way, one other aspect to explore is the
early detection of disease. As the first symptoms aremore difficult
to detect, the use of cameras capturing infrared reflectance
would be very interesting. Going beyond the identification model
to a decision model is also a perspective. A tool that can
identify the problem and provide recommendations for solving
it could be a real asset for more sustainable agriculture. The
output of the identification model could be just one of the
inputs of the decision model, together with auxiliary features
such as weather forecasts, geographical characteristics, plot
contamination history, or disease diffusion pattern.

Next, the classification goal found in most of the corpus’
articles is suitable for expertise tools but not for automatic
screening. Indeed, for this second application, a localization of
symptoms is also necessary. In this case, image-space detection
or segmentation approaches can be used. Deployment models
and user interfaces will also have to be designed. If onboard
tools are developed to provide real-time diagnostics, light CNN
architectures will be required. The question of minimum spatial
resolution will also need to be explored. Close collaboration
with farmers could lead to creating solutions fully meeting their

needs and financial capacities. User feedback will be decisive,
as it will enrich the models with new samples, leading to more
robust identification.

6. CONCLUSION

In this paper, we identified some of the major issues and
shortcomings of works that used CNNs to automatically identify
crop diseases. We also provided guidelines and procedures to
follow in order to maximize the potential of CNNs deployed in
real-world applications. Many already-published solutions based
on CNNs are not currently operational for field use mostly
due to a lack of conformity to several important concepts of
machine learning. This lack of conformity may lead to poor
generalization capabilities for unfamiliar data samples and/or
imaging conditions, which lowers the practical use of the trained
models. Nevertheless, the studied works show the potential of
deep learning techniques for crop diseases identification. Their
findings are definitely promising for the development of new
agricultural tools that could contribute to a more sustainable and
secure food production.
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APPENDIX

References Culture Training dataset Complexitya Number of

classes

Number of

images

Min–Max number

samples/class

Atabay, 2017 Tomato PlantVillage subset ∗ 10 19,742 373–5,357

Barbedo, 2018b 12 crop plants Barbedo, 2016 (15% controlled, 85% in

field)

∗ 56 1,383 5–77

Brahimi et al., 2017 Tomato PlantVillage subset ∗ 9 14,828 325–4,032

Brahimi et al., 2018 14 crop species PlantVillage ∗ 39 54,323 152–5,507

Cruz et al., 2017 Olive Own dataset (controlled) ∗ 3 299 99–100

DeChant et al., 2017 Maize Own dataset (field) ∗ ∗ ∗ 2 1,796 768–1,028

Ferentinos, 2018 25 crop species PlantVillage dataset ∗ 58 87,848 43–6,235

Fuentes et al., 2017 Tomato Own dataset (field) ∗ ∗ ∗ 10 5,000 338–18,899

Fuentes et al., 2018 Tomato Own dataset (field) ∗ ∗ ∗ 12 8,927 338–18,899

Liu B. et al., 2017 Apple Own dataset (controlled and field) ∗ 4 1,053 2,366–4,147

Mohanty et al., 2016 14 crop species PlantVillage ∗ 38 54,306 152–5,507

Oppenheim and Shani, 2017 Potato Own dataset (controlled) ∗ 5 400 265–738

Picon et al., 2018 Wheat Johannes et al., 2017 extended (field) ∗∗ 4 8,178 1,116–3,338

Ramcharan et al., 2017 Cassava Own dataset (field) ∗∗ 6 2,756 309–415

Sladojevic et al., 2016 Apple, Pear, Cherry, Peach,

Grapevine

Own dataset (internet) NA 15 4,483 108–1,235

Too et al., 2018 14 crop plants PlantVillage ∗ 38 54,306 152–5,507

Wang et al., 2017 Apple PlantVillage subset ∗ 4 2,086 145–1,644

Zhang S. et al., 2018 A/ Tomato B/ Cucumber A/ PlantVillage subset B/ Own dataset (in

field)

A/ * B/ ** A/ 8 B/ 5 A/ 15,817 B/

500

A/ 366 - 5350 B/ 100

Zhang K. et al., 2018 Tomato PlantVillage subset ∗ 9 5,550 405–814

aNA, Not Applicable.
∗Complexity level allowing identification under controlled conditions.
∗∗Complexity level allowing identification under uncontrolled conditions.
∗∗∗Complexity level allowing the development of automatic screening tools.

References Classification or

detectiona
Deep CNN architecture Training

strategyb
Best

accuracy(%)c
Evaluation

qualityd

Atabay, 2017 C VGG16, 19, custom architecture FS–TL 97.53 ∗∗

Barbedo, 2018b C GoogleNet TL 87 ∗

Brahimi et al., 2017 C AlexNet, GoogleNet FS–TL 99.18 ∗

Brahimi et al., 2018 C AlexNet, DenseNet169, Inception v3, ResNet34,

SqueezeNet1-1.1, VGG13

FS -TL 99.76 ∗

Cruz et al., 2017 C LeNet TL 98.60 ∗

DeChant et al., 2017 D Custom three stages architecture FS 96.70 ∗∗

Ferentinos, 2018 C AlexNet, AlexNetOWTBn, GoogleNet, Overfeat, VGG Unspecified 99.53 ∗

Fuentes et al., 2017 D AlexNet, ZFNet, GoogleNet, VGG16, ResNet50, 101,

ResNetXt-101

TL 85.98 ∗∗

Fuentes et al., 2018 D Custom architecture with Refinement Filter Bank TL 96.25 ∗∗

Liu B. et al., 2017 C AlexNet, GoogleNet, ResNet 20, VGG 16 and custom

architecture

FS -TL 97.62 ∗

Mohanty et al., 2016 C AlexNet, GoogleNet FS–TL 31 ∗∗*

Oppenheim and Shani, 2017 C VGG Unspecified 96 ∗

Picon et al., 2018 C Custom ResNet50, Resnet50 TL 97 ∗∗*

Ramcharan et al., 2017 C Inception V3 TL 93 ∗∗

Sladojevic et al., 2016 C CaffeNet TL 96.3 ∗

Too et al., 2018 C Inception V4, VGG 16, ResNet 50, 101 and 152, DenseNet

121

TL 99.75 ∗∗

Wang et al., 2017 C VGG16, 19, Inception-V3, ResNet50 TL 90.40 ∗

Zhang S. et al., 2018 C Custom Three Channels CNN, DNN, LeNet-5, GoogleNet FS A/ 87.15 B/ 91.16 A/ ∗ B/ ∗

Zhang K. et al., 2018 C AlexNet, GoogleNet, ResNet TL 97.28 ∗

aClassification (C)—Detection (D).
bFrom Scratch (FS)—Transfer Learning (TL).
c If available, the accuracy of the explicitly different test set is privileged.
dSSAbsence of three explicit subsets; SSThree explicit subsets; SSSTest set explicitly different from the training set.
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